Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 654
Filtrar
1.
Tissue Cell ; 90: 102517, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39137537

RESUMEN

The Egyptian tortoise (Testudo kleinmanni) is remarkably adapted to its harsh desert environment, a characteristic that is crucial for its survival under extreme conditions. This study was aimed at providing a deeper understanding of the lingual salivary gland structures in the Egyptian tortoise and examining how these structures help the tortoise manage hydration and nutrition in arid conditions. Utilizing a combination of light microscopy and immunofluorescence, this research introduced pioneering methods involving seven different antibodies, marking a first in the study of reptilian salivary glands. Our investigations categorized the tortoise's salivary glands into papillary and non-papillary types. The papillary glands were further classified into superficial, deep, interpapillary, and intraepithelial salivary glands, while non-papillary glands included superficial and deep lingual types. Structurally, these glands are organized into lobules, delineated by interlobular septa, and are equipped with a duct system comprising interlobular, intercalated, and main excretory ducts with gland openings on the tongue's surface and the papillae surfaces. Notably, the superficial glands displayed both tubuloalveolar and acinar configurations, whereas the deep lingual glands were exclusively acinar. Immunofluorescence results indicated that α-smooth muscle actin (α-SMA) was prevalent in myoepithelial cells, myofibroblasts, and blood vessels, suggesting their integral role in glandular function and support. E-cadherin was predominantly found in epithelial cells, enhancing cell adhesion and integrity, which are critical for efficient saliva secretion. Importantly, Mucin 1 (MUC1) and Mucin 5B (MUC5B) staining revealed that most glands were mucous in nature, with MUC5B specifically marking mucin within secretory cells, confirming their primary function in mucous secretion. PDGFRα and CD34 highlighted the presence of telocytes and stromal cells within the glandular and interlobular septa, indicating a role in structural organization and possibly in regenerative processes. Cytokeratin 14 expression was noted in the basal cells of the glands, underscoring its role in upholding the structural foundation of the epithelial barrier. In conclusion, this detailed morphological and immunological characterization of the Egyptian tortoise's salivary glands provides new insights into their complex structure and essential functions. These findings not only enhance our understanding of reptilian physiology but also underline the critical nature of salivary glands in supporting life in arid environments. This study's innovative use of a broad range of immunofluorescence markers opens new avenues for further research into the adaptive mechanisms of reptiles.

2.
Cancer Med ; 13(15): e70079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118454

RESUMEN

BACKGROUND: Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE: This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS: The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS: The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION: The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.


Asunto(s)
Aptámeros de Nucleótidos , Supervivencia Celular , Cisplatino , Doxorrubicina , Liposomas , Mucina-1 , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Mucina-1/metabolismo , Mucina-1/química , Liposomas/química , Cisplatino/farmacología , Cisplatino/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células HeLa , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Composición de Medicamentos/métodos
3.
Talanta ; 279: 126665, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116728

RESUMEN

Mucin 1 (MUC1) is frequently overexpressed in various cancers and is essential for early cancer detection. Current methods to detect MUC1 are expensive, time-consuming, and require skilled personnel. Therefore, developing a simple, sensitive, highly selective MUC1 detection sensor is necessary. In this study, we proposed a novel "signal-on-off" strategy that, in the presence of MUC1, synergistically integrates catalytic hairpin assembly (CHA) with DNA tetrahedron (Td)-based nonlinear hybridization chain reaction (HCR) to enhance the immobilization of electrochemically active methylene blue (MB) on magnetic nanoparticles (MNP), marking the MB signal "on". Concurrently, the activation of CRISPR-Cas12a by isothermal amplification products triggers the cleavage of single-stranded DNA (ssDNA) at the electrode surface, resulting in a reduction of MgAl-LDH@Fc-AuFe-MIL-101 (containing ferrocene, Fc) on the electrode, presenting the "signal-off" state. Both MB and MgAl-LDH@Fc-AuFe-MIL-101 electrochemical signals were measured and analyzed. Assay parameters were optimized, and sensitivity, stability, and linear range were assessed. Across a concentration spectrum of MUC1 spanning from 10 fg/mL to 100 ng/mL, the MB and MgAl-LDH@Fc-AuFe-MIL-101 signals were calibrated with each other, demonstrating a "signal-on-off" dual electrochemical signaling pattern. This allows for the precise and quantitative detection of MUC1 in clinical samples, offering significant potential for medical diagnosis.

4.
Mol Biotechnol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172331

RESUMEN

Dysregulation of renal tubular epithelial cell (RTEC) apoptosis is one of the critical steps underlying the occurrence and development of nephrolithiasis. Although N6-methyladenosine (m6A) modification has been extensively studied and associated with various pathologic processes, research on its specific role in RTEC injury and apoptosis remains limited. In this study, we found that overexpression of ALKBH5 reduced the level of m6A modification in RTEC cells and notably promoted RTEC apoptosis. Further mechanism studies revealed that ALKBH5 mainly  decreased the m6A level on the mRNA of  Mucin 1 (MUC1) gene in RTECs. Moreover, ALKBH5  impaired the stability of MUC1 mRNA in RTECs, leading to  attenuated expression of MUC1. Finally, we determined that the ALKBH5-MUC1 axis primarily facilitated RTEC apoptosis by regulating the PI3K/Akt signaling pathway. This study revealed the critical role of the ALKBH5-MUC1-PI3K/Akt regulatory system in RTEC apoptosis and provided new therapeutic targets for treating nephrolithiasis.

5.
J Ovarian Res ; 17(1): 161, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118097

RESUMEN

Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.


Asunto(s)
Inmunoconjugados , Mucinas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Mucinas/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
6.
Anal Bioanal Chem ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031228

RESUMEN

This study developed an innovative biosensor strategy for the sensitive and selective detection of canine mammary tumor biomarkers, cancer antigen 15-3 (CA 15-3) and mucin 1 (MUC-1), integrating green silver nanoparticles (GAgNPs) with machine learning (ML) algorithms to achieve high diagnostic accuracy and potential for noninvasive early detection. The GAgNPs-enhanced electrochemical biosensor demonstrated selective detection of CA 15-3 in serum and MUC-1 in tissue homogenates, with limits of detection (LODs) of 0.07 and 0.11 U mL-1, respectively. The nanoscale dimensions of the GAgNPs endowed them with electrochemically active surface areas, facilitating sensitive biomarker detection. Experimental studies targeted CA 15-3 and MUC-1 biomarkers in clinical samples, and the biosensor exhibited ease of use and good selectivity. Furthermore, ML algorithms were employed to analyze the electrochemical data and predict biomarker concentrations, enhancing the diagnostic accuracy. The Random Forest algorithm achieved 98% accuracy in tumor presence prediction, while an Artificial Neural Network attained 76% accuracy in CA 15-3-based tumor grade classification. The integration of ML techniques with the GAgNPs-based biosensor offers a promising approach for noninvasive, accurate, and early detection of canine mammary tumors, potentially revolutionizing veterinary diagnostics. This multilayered strategy, combining eco-friendly nanomaterials, electrochemical sensing, and ML algorithms, holds significant potential for advancing both biomedical research and clinical practice in the field of canine mammary tumor diagnostics.

7.
Biomedicines ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062082

RESUMEN

Patients with pancreatic neuroendocrine tumors (pNETs) have limited access to effective targeted agents and invariably succumb to progressive disease. MUC1-C is a druggable oncogenic protein linked to driving pan-cancers. There is no known involvement of MUC1-C in pNET progression. The present work was performed to determine if MUC1-C represents a potential target for advancing pNET treatment. We demonstrate that the MUC1 gene is upregulated in primary pNETs that progress with metastatic disease. In pNET cells, MUC1-C drives E2F- and MYC-signaling pathways necessary for survival. Targeting MUC1-C genetically and pharmacologically also inhibits self-renewal capacity and tumorigenicity. Studies of primary pNET tissues further demonstrate that MUC1-C expression is associated with (i) an advanced NET grade and pathological stage, (ii) metastatic disease, and (iii) decreased disease-free survival. These findings demonstrate that MUC1-C is necessary for pNET progression and is a novel target for treating these rare cancers with anti-MUC1-C agents under clinical development.

8.
Cancer Diagn Progn ; 4(4): 464-469, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962532

RESUMEN

Background/Aim: Oncotype DX Breast Recurrence Score® test (ODx) is a gene profiling assay predicting the benefit of adjuvant chemotherapy for early-stage hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Meanwhile, to avoid unnecessary financial burden on the patient, many studies have attempted to establish alternatives to ODx using conventional clinicopathological factors, but these have not yet been successful. Thus, we retrospectively investigated clinicopathological factors to establish alternatives to ODx. Patients and Methods: Data from 114 Japanese women who underwent ODx were retrospectively examined to investigate the relationship between ODx recurrence score (RS) and clinicopathological features, including MUC1 staining patterns on immunohistochemical assessment. An RS of 0-25 was defined as low, and 26-100 as high. Results: Ninety patients (79%) had low RS and 24 patients (21%) had high RS. Univariate analysis revealed that low tumor grade, high progesterone receptor (PgR) expression, and low Ki67 labeling index (LI) were significantly associated with low RS (p=0.025, p<0.001, and p<0.001, respectively). Tumors with an apical pattern of MUC1 staining also frequently had a low RS (p=0.024). In multivariate analysis, PgR expression and Ki67 LI were independent factors associated with RS (p<0.001, for both). When the ODx results were categorized with a combination of these two factors, only 2% of the PgR-high and Ki67-low group (one in 51 cases) had a high RS. Conclusion: PgR expression and Ki67 LI were independent factors correlated with RS. MUC1 staining pattern also has the potential to be a useful marker. We believe that it is crucial to continue attempts to identify patients who are unlikely to benefit from ODx.

9.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963035

RESUMEN

Globally, non­small cell lung cancer (NSCLC) is a significant threat to human health, and constitutes >80% of lung cancer cases. Cisplatin (CDDP), a commonly used drug in clinical treatment, has been the focus of research aiming to mitigate its potent toxicity through encapsulation within liposomes. However, challenges, such as a reduced drug loading efficiency and nonspecific release, have emerged as obstacles. The present study aimed to improve the encapsulation efficiency of CDDP within liposomes by pre­preparation of CDDP and modifying the liposome surface through the incorporation of peanut agglutinin (PNA) as a ligand [CDDP­loaded PNA­modified liposomes (CDDP­PNA­Lip)]. This strategy was designed to enhance the delivery of CDDP to tumour tissues, thereby reducing associated side effects. The effect of CDDP­PNA­Lip on the proliferation and migration of NSCLC cell lines with high MUC1 expression was elucidated through in vitro studies. Additionally, the capacity of PNA modification to augment the targeted anti­tumour efficacy of liposomes was assessed through xenograft tumour experiments. The results indicated that in an in vitro uptake assay Rhodamine B (RhB)­loaded PNA­modified liposomes were taken up by cells with ~50% higher efficiency compared with free RhB. In addition, CDDP­PNA­Lip resulted in a 2.65­fold enhancement of tumour suppression in vivo compared with free CDDP. These findings suggested that the encapsulation of CDDP within ligand­modified liposomes may significantly improve its tumour­targeting capabilities, providing valuable insights for clinical drug development.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Liposomas , Neoplasias Pulmonares , Aglutinina de Mani , Cisplatino/farmacología , Cisplatino/administración & dosificación , Liposomas/química , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Animales , Aglutinina de Mani/química , Línea Celular Tumoral , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Femenino , Sistemas de Liberación de Medicamentos/métodos
10.
Front Biosci (Landmark Ed) ; 29(7): 240, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39082346

RESUMEN

BACKGROUND: Uncontrolled cellular proliferation may result in the progression of diseases such as cancer that promote organism death. Programmed cell death (PCD) is an important mechanism that ensures the quality and quantity of cells, which could be developed as a potential biomarker for disease diagnosis and treatment. METHODS: RNA-seq data and clinical information of nasopharyngeal carcinoma (NPC) patients were downloaded from the Gene Expression Omnibus (GEO), and 1548 PCD-related genes were collected. We used the "limma" package to analyze differentially expressed genes (DEGs). The STRING database was used for protein interaction analysis, and the least absolute shrinkage and selection operator (Lasso) and support vector machines (SVMs) regression analyses were used to identify biomarkers. Then, the timeROC package was used for classifier efficiency assessment, and the "CIBERSORT" package was used for immune infiltration analysis. Wound healing and transwell migration assay were performed to evaluate migration and invasion. RESULTS: We identified 800 DEGs between our control and NPC patient groups, in which 59 genes appeared to be PCD-related DEGs, with their function closely associated with NPC progression, including activation of the PI3K-Akt, TGF-ß, and IL-17 signaling pathways. Furthermore, based on the STRING database, Cytoscape and six algorithms were employed to screen 16 important genes (GAPDH, FN1, IFNG, PTGS2, CXCL1, MYC, MUC1, LTF, S100A8, CAV1, CDK4, EZH2, AURKA, IL33, S100A9, and MIF). Subsequently, two reliably characterized biomarkers, FN1 and MUC1, were obtained from the Lasso and SVM analyses. The Receiver operating characteristic (ROC) curves showed that both biomarkers had area under the curve (AUC) values higher than 0.9. Meanwhile, the enrichment analysis showed that in NPC patients, the FN1 and MUC1 expression levels correlated with programmed cell death-related pathways. The enrichment analysis and cellular experimental results indicated that FN1 and MUC1 were overexpressed in NPC cells and associated with programmed cell death-related pathways. Importantly, FN1 and MUC1 severely affected the ability of NPC cells to migrate, invade, and undergo apoptosis. Finally, medroxyprogesterone acetate and 8-Bromo-cAMP acted as drug molecules for the docking of FN1 and MUC1 molecules, respectively, and had binding capacities of -9.17 and -7.27 kcal/mol, respectively. CONCLUSION: We examined the PCD-related phenotypes and screened FN1 and MUC1 as reliable biomarkers of NPC; our findings may promote the development of NPC treatment strategy.


Asunto(s)
Apoptosis , Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Transcriptoma , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Apoptosis/genética , Perfilación de la Expresión Génica/métodos , Mapas de Interacción de Proteínas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transducción de Señal , Máquina de Vectores de Soporte
11.
Anal Chim Acta ; 1312: 342762, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834277

RESUMEN

Mucin1 (MUC1) is an extensively glycosylated transmembrane protein that is widely distributed and overexpressed on the surface of cancer cells, playing an important role in tumor occurrence and metastasis. Therefore, highly sensitive detection of MUC1 is of great significance for early diagnosis, treatment monitoring, and prognosis of cancer. Here, an ultra-sensitive photoelectrochemical (PEC) sensing platform was developed based on an aptamer amplification strategy for highly selective and sensitive detection of MUC1 overexpressed in serum and on cancer cell surfaces. The sensing platform utilized copper phthalocyanine to fabricate porous organic polymers (CuPc POPs), and was effectively integrated with g-C3N4/MXene to form a ternary heterojunction material (g-C3N4/MXene/CuPc POPs). This material effectively improved electron transfer capability, significantly enhanced light utilization, and greatly enhanced photoelectric conversion efficiency, resulting in a dramatic increase in photocurrent response. MUC1 aptamer 1 was immobilized on a chitosan-modified photoelectrode for the selective capture of MUC1 or MCF-7 cancer cells. When the target substance was present, MUC1 aptamer 2 labeled with methylene blue (MB) was specifically adsorbed on the electrode surface, leading to enhanced photocurrent. The concentration of MUC1 directly correlated with the number of MB molecules attracted to the electrode surface, establishing a linear relationship between photocurrent intensity and MUC1 concentration. The PEC biosensor exhibited excellent sensitivity for MUC1 detection with a wide detection range from 1 × 10-7 to 10 ng/mL and a detection limit of 8.1 ag/mL. The detection range for MCF-7 cells was from 2 × 101 to 2 × 106 cells/mL, with the capability for detecting single MCF-7 cells. The aptamer amplification strategy significantly enhanced PEC performance, and open up a promising platform to establish high selectivity, stability, and ultrasensitive analytical techniques.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Electroquímicas , Mucina-1 , Polímeros , Mucina-1/análisis , Humanos , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Células MCF-7 , Porosidad , Polímeros/química , Límite de Detección , Técnicas Biosensibles/métodos , Indoles/química , Procesos Fotoquímicos , Compuestos Organometálicos/química
12.
Genes (Basel) ; 15(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927743

RESUMEN

Ionizing radiation (IR) and chemotherapy with DNA-damaging drugs such as cisplatin are vital cancer treatment options. These treatments induce double-strand breaks (DSBs) as cytotoxic DNA damage; thus, the DSB repair activity in each cancer cell significantly influences the efficacy of the treatments. Pancreatic cancers are known to be resistant to these treatments, and the overexpression of MUC1, a member of the glycoprotein mucins, is associated with IR- and chemo-resistance. Therefore, we investigated the impact of MUC1 on DSB repair. This report examined the effect of the overexpression of MUC1 on homologous recombination (HR) and non-homologous end-joining (NHEJ) using cell-based DSB repair assays. In addition, the therapeutic potential of NHEJ inhibitors including HDAC inhibitors was also studied using pancreatic cancer cell lines. The MUC1-overexpression enhances NHEJ, while partially suppressing HR. Also, MUC1-overexpressed cancer cell lines are preferentially killed by a DNA-PK inhibitor and HDAC1/2 inhibitors. Altogether, MUC1 induces metabolic changes that create an imbalance between NHEJ and HR activities, and this imbalance can be a target for selective killing by HDAC inhibitors. This is a novel mechanism of MUC1-mediated IR-resistance and will form the basis for targeting MUC1-overexpressed pancreatic cancer.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Mucina-1 , Neoplasias Pancreáticas , Regulación hacia Arriba , Humanos , Mucina-1/genética , Mucina-1/metabolismo , Reparación del ADN por Unión de Extremidades/genética , Línea Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Recombinación Homóloga , Inhibidores de Histona Desacetilasas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
13.
Transl Oncol ; 47: 102046, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38943923

RESUMEN

Tumor derived Extracellular vesicles (EVs) in circulating system may contain tumor-specific markers, and EV detection in body fluids could become an important tool for early tumor diagnosis, prognosis assessment. Meningiomas are the most common benign intracranial tumors, few studies have revealed specific protein markers for meningiomas from patients' body fluids. In this study, using proximity labeling technology and non-tumor patient plasma as a control, we detected protein levels of EVs in plasma samples from meningioma patients before and after surgery. Through bioinformatics analysis, we discovered that the levels of EV count and protein count in meningioma patients were significantly higher than those in healthy controls, and were significantly decreased postoperatively. Among EV proteins in meningioma patients, the levels of MUC1, SIGLEC11, E-Cadherin, KIT, and TASCTD2 were found not only significantly elevated than those in healthy controls, but also significantly decreased after tumor resection. Moreover, using publicly available GEO databases, we verified that the mRNA level of MUC1, SIGLEC11, and CDH1 in meningiomas were significantly higher in comparison with normal dura mater tissues. Additionally, by analyzing human meningioma specimens collected in this study, we validated the protein levels of MUC1 and SIGLEC11 were significantly increased in WHO grade 2 meningiomas and were positively correlated with tumor proliferation levels. This study indicates that meningiomas secret EV proteins into circulating system, which may serve as specific markers for diagnosis, malignancy predicting and tumor recurrent assessment.

14.
Chembiochem ; : e202400391, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877657

RESUMEN

Interactions between the tumor-associated carbohydrate antigens of Mucin 1 (MUC1) and the carbohydrate-binding proteins, lectins, often lead to the creation of a pro-tumor microenvironment favoring tumor initiation, progression, metastasis, and immune evasion. Macrophage galactose binding lectin (MGL) is a C-type lectin receptor found on antigen-presenting cells that facilitates the uptake of carbohydrate antigens for antigen presentation, modulating the immune response homeostasis, autoimmunity, and cancer. Considering the crucial role of tumor-associated forms of MUC1 and MGL in tumor immunology, a thorough understanding of their binding interaction is essential for it to be exploited for cancer vaccine strategies. The synthesis of MUC1 glycopeptide models carrying a single or multiple Tn and/or sialyl-Tn antigen(s) is described. A novel approach for the sialyl-Tn threonine building block suitable for the solid phase peptide synthesis was developed. The thermodynamic profile of the binding interaction between the human MGL and MUC1 glycopeptide models was analyzed using isothermal titration calorimetry. The measured dissociation constants for the sialyl-Tn-bearing peptide epitopes were consistently lower compared to the Tn antigen and ranged from 10 µM for mono- to 1 µM for triglycosylated MUC1 peptide, respectively. All studied interactions, regardless of the glycan's site of attachment or density, exhibited enthalpy-driven thermodynamics.

15.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702644

RESUMEN

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Asunto(s)
Carcinoma de Células Escamosas , Proliferación Celular , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Femenino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Ratones , Fosforilación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
16.
Kidney Int Rep ; 9(5): 1451-1457, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707821

RESUMEN

Introduction: Patients with autosomal dominant tubulointerstitial kidney disease (ADTKD) usually present with nonspecific progressive chronic kidney disease (CKD) with mild to negative proteinuria and a family history. ADTKD-MUC1 leads to the formation of a frameshift protein that accumulates in the cytoplasm, leading to tubulointerstitial damage. ADTKD-MUC1 prevalence remains unclear because MUC1 variants are not routinely detected by standard next-generation sequencing (NGS) techniques. Methods: We developed a bioinformatic counting script that can detect specific genetic sequences and count the number of occurrences. We used DNA samples from 27 patients for validation, 11 of them were patients from the Lille University Hospital in France and 16 were from the Wake Forest Hospital, NC. All patients from Lille were tested with an NGS gene panel with our script and all patients from Wake Forest Hospital were tested with the snapshot reference technique. Between January 2018 and February 2023, we collected data on all patients diagnosed with MUC1 variants with this script. Results: A total of 27 samples were tested anonymously by the BROAD Institute reference technique for confirmation and we were able to get a 100% concordance for MUC1 diagnosis. Clinico-biologic characteristics in our cohort were similar to those previously described in ADTKD-MUC1. Conclusion: We describe a new simple and cost-effective method for molecular testing of ADTKD-MUC1. Genetic analyses in our cohort suggest that MUC1 might be the first cause of ADTKD. Increasing the availability of MUC1 diagnosis tools will contribute to a better understanding of the disease and to the development of specific treatments.

17.
J Transl Med ; 22(1): 476, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764010

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is the leading cause of blinding eye disease among working adults and is primarily attributed to the excessive proliferation of microvessels, which leads to vitreous hemorrhage and retinal traction, thereby significantly impairing patient vision. NSUN2-mediated RNA m5C methylation is implicated in various diseases, and in this investigation, we focused on elucidating the impact of NSUN2 on the regulation of the expression of the downstream gene MUC1, specifically through RNA m5C methylation, on the progression of DR. METHOD: Utilizing Microarray analysis, we examined patient vitreous fluid to pinpoint potential therapeutic targets for DR. Differential expression of NSUN2 was validated through qRT-PCR, Western blot, and immunofluorescence in human tissue, animal tissue, and cell model of DR. The relationship between NSUN2 and DR was explored in vitro and in vivo through gene knockdown and overexpression. Various techniques, such as MeRIP-qPCR and dot blot, were applied to reveal the downstream targets and mechanism of action of NSUN2. RESULTS: The levels of both NSUN2 and RNA m5C methylation were significantly elevated in the DR model. Knockdown of NSUN2 mitigated DR lesion formation both in vitro and in vivo. Mechanistically, NSUN2 promoted MUC1 expression by binding to the RNA m5C reader ALYREF. Knockdown of ALYREF resulted in DR lesion alterations similar to those observed with NSUN2 knockdown. Moreover, MUC1 overexpression successfully reversed a series of DR alterations induced by NSUN2 silencing. CONCLUSIONS: NSUN2 regulates the expression of MUC1 through ALYREF-mediated RNA m5C methylation, thereby regulating the progression of DR and providing a new option for the treatment of DR in the future.


Asunto(s)
Retinopatía Diabética , Progresión de la Enfermedad , Metiltransferasas , Mucina-1 , Metilación de ARN , Animales , Humanos , Masculino , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Metilación , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Mucina-1/metabolismo , Mucina-1/genética
18.
Anticancer Res ; 44(6): 2689-2698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821605

RESUMEN

BACKGROUND/AIM: There are two main subtypes of mucinous carcinoma (MC) based on the quantification of the mucinous component: the pure variant (pMC) and the mixed variant (mMC). pMC has been subdivided into pure A with a hypocellular variant, and pure B with a hypercellular variant. PATIENTS AND METHODS: We retrospectively analyzed the clinicopathological features of 99 patients with MC who were treated at our institution from January 2002 to December 2014. We evaluated the expression profiles of markers, including mucin (MUC) family members, in the patients groups representing different MC subtypes by performing immunohistochemistry to identify factors involved in the differentiation and progression of MCs. RESULTS: Among the 99 patients, 76 (76.8%) had pure mucinous carcinomas (pMC) and the other 23 (23.2%) had mixed mucinous carcinomas (mMC). Of the pMCs, 54 were pure A and 22 were pure B. The prognosis was worse for pure B than pure A and worse for mMC than pMC. Although there was no significant difference in clinicopathological factors between the pure A and pure B groups, immunohistochemical staining revealed differences in the localization of mucin MUC1 and ß-catenin. A comparison of the pMC and mMC cases revealed more lymphovascular invasion in mMC and differences in the localization of ß-catenin between the two groups. CONCLUSION: The patients' prognoses were significantly poorer depending on the histologic subtype (in the order pure A, pure B, and mixed). MUC1 localization and ß-catenin were revealed as independent predictors contributing to the poorer prognosis.


Asunto(s)
Adenocarcinoma Mucinoso , Biomarcadores de Tumor , Neoplasias de la Mama , Mucina-1 , beta Catenina , Humanos , Mucina-1/metabolismo , Femenino , beta Catenina/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patología , Persona de Mediana Edad , Anciano , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Estudios Retrospectivos , Biomarcadores de Tumor/metabolismo , Pronóstico , Adulto , Inmunohistoquímica , Anciano de 80 o más Años
19.
medRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766010

RESUMEN

Self-antigens abnormally expressed on tumors, such as MUC1, have been targeted by therapeutic cancer vaccines. We recently assessed in two clinical trials in a preventative setting whether immunity induced with a MUC1 peptide vaccine could reduce high colon cancer risk in individuals with a history of premalignant colon adenomas. In both trials, there were immune responders and non-responders to the vaccine. Here we used PBMC pre-vaccination and 2 weeks after the first vaccine of responders and non-responders selected from both trials to identify early biomarkers of immune response involved in long-term memory generation and prevention of adenoma recurrence. We performed flow cytometry, phosflow, and differential gene expression analyses on PBMCs collected from MUC1 vaccine responders and non-responders pre-vaccination and two weeks after the first of three vaccine doses. MUC1 vaccine responders had higher frequencies of CD4 cells pre-vaccination, increased expression of CD40L on CD8 and CD4 T-cells, and a greater increase in ICOS expression on CD8 T-cells. Differential gene expression analysis revealed that iCOSL, PI3K AKT MTOR, and B-cell signaling pathways are activated early in response to the MUC1 vaccine. We identified six specific transcripts involved in elevated antigen presentation, B-cell activation, and NF-kB1 activation that were directly linked to finding antibody response at week 12. Finally, a model using these transcripts was able to predict non-responders with accuracy. These findings suggest that individuals who can be predicted to respond to the MUC1 vaccine, and potentially other vaccines, have greater readiness in all immune compartments to present and respond to antigens. Predictive biomarkers of MUC1 vaccine response may lead to more effective vaccines tailored to individuals with high risk for cancer but with varying immune fitness.

20.
Gene ; 925: 148591, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38788818

RESUMEN

Primary liver cancer has consistently exhibited a high prevalence and fatality rate, necessitating the investigation of associated diagnostic markers and inhibition mechanisms to effectively mitigate its impact. The significance of apolipoprotein M (ApoM) in impeding the progression of neoplastic ailments is progressively gaining recognition. However, a comprehensive understanding of its underlying mechanism in liver cancer advancement remains to be elucidated. Recent evidence indicates a potential association between ApoM and polyunsaturated fatty acids (PUFAs), with the peroxidation of phospholipids (PLs) containing PUFAs being recognized as a crucial element in the occurrence of ferroptosis. This prompts us to investigate the impact of the APOM gene on the progression of liver cancer through the ferroptosis pathway and elucidate its underlying mechanisms. The findings of this study indicate that the liver cancer cell model, which was genetically modified to overexpress the APOM gene, demonstrated a heightened ferroptosis effect. Moreover, the observed inhibition of the GSH (Glutathione) - GPX4 (Glutathione Peroxidase 4) regulatory axis suggests that the role of this axis in inhibiting ferroptosis is weakened. Through intersection screening and validation, we found that Mucin 1,cell surface associated (MUC1) can inhibit ferroptosis and is regulated by the APOM gene. Bioinformatics analysis and screening identified miR-4489 as a mediator between the two. Experimental results using the dual luciferase reporter gene confirmed that has-miR-4489 targets MUC1's 3'-UTR and inhibits its expression. In conclusion, this study provides evidence that the APOM gene induces a down-regulation in the expression of the ferroptosis-inhibiting gene MUC1, mediated by miR-4489, thereby impeding the advancement of liver cancer cells through the facilitation of ferroptosis.


Asunto(s)
Apolipoproteínas M , Carcinoma Hepatocelular , Ferroptosis , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Ferroptosis/genética , Humanos , Apolipoproteínas M/genética , Apolipoproteínas M/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Células Hep G2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...