Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 96(2): 125-136, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38490366

RESUMEN

BACKGROUND: Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS: A cohort of 11 disease-associated and 5 neutral variants (detected in healthy individuals) were tested in 3 cell-free assays and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton X-100 insolubility. PRESR (predicting STXBP1-related disorder), a machine learning algorithm that uses both sequence- and 3-dimensional structure-based features, was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS: Disease-associated variants, but none of the neutral variants, produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS: These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3-dimensional information improve disease prediction. PRESR is a publicly available diagnostic tool.


Asunto(s)
Proteínas Munc18 , Mutación Missense , Estabilidad Proteica , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Humanos , Neuronas/metabolismo , Animales , Aprendizaje Automático , Células HEK293
2.
Cell Mol Life Sci ; 81(1): 86, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349432

RESUMEN

Glucose-stimulated insulin secretion (GSIS) in pancreatic islet ß-cells primarily relies on electrophysiological processes. Previous research highlighted the regulatory role of KCNH6, a member of the Kv channel family, in governing GSIS through its influence on ß-cell electrophysiology. In this study, we unveil a novel facet of KCNH6's function concerning insulin granule exocytosis, independent of its conventional electrical role. Young mice with ß-cell-specific KCNH6 knockout (ßKO) exhibited impaired glucose tolerance and reduced insulin secretion, a phenomenon not explained by electrophysiological processes alone. Consistently, islets from KCNH6-ßKO mice exhibited reduced insulin secretion, conversely, the overexpression of KCNH6 in murine pancreatic islets significantly enhanced insulin release. Moreover, insulin granules lacking KCNH6 demonstrated compromised docking capabilities and a reduced fusion response upon glucose stimulation. Crucially, our investigation unveiled a significant interaction between KCNH6 and the SNARE protein regulator, Munc18-1, a key mediator of insulin granule exocytosis. These findings underscore the critical role of KCNH6 in the regulation of insulin secretion through its interaction with Munc18-1, providing a promising and novel avenue for enhancing our understanding of the Kv channel in diabetes mechanisms.


Asunto(s)
Exocitosis , Insulina , Animales , Ratones , Fenómenos Electrofisiológicos , Glucosa , Secreción de Insulina
3.
Biol Psychiatry Glob Open Sci ; 4(1): 284-298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38298782

RESUMEN

Background: STXBP1-related disorder (STXBP1-RD) is a neurodevelopmental disorder caused by pathogenic variants in the STXBP1 gene. Its gene product MUNC18-1 organizes synaptic vesicle exocytosis and is essential for synaptic transmission. Patients present with developmental delay, intellectual disability, and/or epileptic seizures, with high clinical heterogeneity. To date, the cellular deficits of neurons of patients with STXBP1-RD are unknown. Methods: We combined live-cell imaging, electrophysiology, confocal microscopy, and mass spectrometry proteomics to characterize cellular phenotypes of induced pluripotent stem cell-derived neurons from 6 patients with STXBP1-RD, capturing shared features as well as phenotypic diversity among patients. Results: Neurons from all patients showed normal in vitro development, morphology, and synapse formation, but reduced MUNC18-1 RNA and protein levels. In addition, a proteome-wide screen identified dysregulation of proteins related to synapse function and RNA processes. Neuronal networks showed shared as well as patient-specific phenotypes in activity frequency, network irregularity, and synchronicity, especially when networks were challenged by increasing excitability. No shared effects were observed in synapse physiology of single neurons except for a few patient-specific phenotypes. Similarities between functional and proteome phenotypes suggested 2 patient clusters, not explained by gene variant type. Conclusions: Together, these data show that decreased MUNC18-1 levels, dysregulation of synaptic proteins, and altered network activity are shared cellular phenotypes of STXBP1-RD. The 2 patient clusters suggest distinctive pathobiology among subgroups of patients, providing a plausible explanation for the clinical heterogeneity. This phenotypic spectrum provides a framework for future validation studies and therapy design for STXBP1-RD.

4.
Brain ; 147(6): 2185-2202, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242640

RESUMEN

Heterozygous de novo mutations in the neuronal protein Munc18-1/STXBP1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia and tremor, summarized as STXBP1 encephalopathies. Although haploinsufficiency is the prevailing disease mechanism, it remains unclear how the reduction in Munc18-1 levels causes synaptic dysfunction in disease as well as how haploinsufficiency alone can account for the significant heterogeneity among patients in terms of the presence, onset and severity of different symptoms. Using biochemical and cell biological readouts on mouse brains, cultured mouse neurons and heterologous cells, we found that the synaptic Munc18-1 interactors Doc2A and Doc2B are unstable in the absence of Munc18-1 and aggregate in the presence of disease-causing Munc18-1 mutants. In haploinsufficiency-mimicking heterozygous knockout neurons, we found a reduction in Doc2A/B levels that is further aggravated by the presence of the disease-causing Munc18-1 mutation G544D as well as an impairment in Doc2A/B synaptic targeting in both genotypes. We also demonstrated that overexpression of Doc2A/B partially rescues synaptic dysfunction in heterozygous knockout neurons but not heterozygous knockout neurons expressing G544D Munc18-1. Our data demonstrate that STXBP1 encephalopathies are not only characterized by the dysfunction of Munc18-1 but also by the dysfunction of the Munc18-1 binding partners Doc2A and Doc2B, and that this dysfunction is exacerbated by the presence of a Munc18-1 missense mutant. These findings may offer a novel explanation for the significant heterogeneity in symptoms observed among STXBP1 encephalopathy patients.


Asunto(s)
Proteínas de Unión al Calcio , Proteínas Munc18 , Mutación , Proteínas del Tejido Nervioso , Neuronas , Sinapsis , Animales , Humanos , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Sinapsis/genética
5.
Genes (Basel) ; 14(12)2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38137001

RESUMEN

In recent years, the affordability and availability of genetic testing have led to its increased use in clinical care. The increased frequency of testing has led to STXBP1 variants being identified as one of the more common variants associated with neurological disorders. In this review, we aim to summarize the common clinical phenotypes associated with STXBP1 pathogenic variants, provide an overview of their known natural history, and discuss current research into the genotype to phenotype correlation. We will also provide an overview of the suspected normal function of the STXBP1-encoded Munc18-1 protein, animal models, and experimental techniques that have been developed to study its function and use this information to try to explain the diverse phenotypes associated with STXBP1-related disorders. Finally, we will explore current therapies for STXBP1 disorders, including an overview of treatment goals for STXBP1-related disorders, a discussion of the current evidence for therapies, and future directions of personalized medications for STXBP1-related disorders.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Animales , Epilepsia/genética , Pruebas Genéticas , Discapacidad Intelectual/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Mutación , Humanos
6.
Protein Sci ; 33(3): e4870, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38109275

RESUMEN

Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.

7.
BMC Biol ; 21(1): 158, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443000

RESUMEN

BACKGROUND: Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS: Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS: Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.


Asunto(s)
Proteínas del Tejido Nervioso , Proteína 2 de Membrana Asociada a Vesículas , Ratones , Animales , Proteínas del Tejido Nervioso/genética , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Sintaxina 1/genética , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Unión Proteica
8.
Neurosci Lett ; 810: 137317, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37286070

RESUMEN

Fragile X syndrome (FXS) is a developmental disorder characterized by intellectual disability and autistic-like behaviors. These symptoms are supposed to result from dysregulated translation in pre- and postsynapses, resulting in aberrant synaptic plasticity. Although most drug development research on FXS has focused on aberrant postsynaptic functions by excess translation in postsynapses, the effect of drug candidates on FXS in presynaptic release is largely unclear. In this report, we developed a novel assay system using neuron ball culture with beads to induce presynapse formation, allowing for the analysis of presynaptic phenotypes, including presynaptic release. Metformin, which is shown to rescue core phenotypes in FXS mouse model by normalizing dysregulated translation, ameliorated the exaggerated presynaptic release of neurons of FXS model mouse using this assay system. Furthermore, metformin suppressed the excess accumulation of the active zone protein Munc18-1, which is supposed to be locally translated in presynapses. These results suggest that metformin rescues both postsynaptic and presynaptic phenotypes by inhibiting excess translation in FXS neurons.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Ratones , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Sinapsis/fisiología
9.
Structure ; 31(1): 68-77.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608665

RESUMEN

As the prototype of Sec1/Munc18 (SM) family proteins, Munc18-1 can manipulate the distinct conformations of syntaxin-1 for controlling intracellular membrane fusion. The Munc18-1-interacting domain of Mint1 (Mint1-MID) binds to Munc18-1 together with syntaxin-1 to form a Mint1-Munc18-1-syntaxin-1 complex, but the mechanism underlying the complex assembly remains unclear. Here, we determine the structure of the Mint1-MID-Munc18-1-syntaxin-1 complex. Unexpectedly, Munc18-1 recognizes Mint1-MID and syntaxin-1 simultaneously via two opposite sites. The canonical central cavity between domains 1 and 3a of Munc18-1 embraces closed syntaxin-1, whereas the non-canonical basic pocket in domain 3b captures the acidic Mint1-MID helix. The domain 3b-mediated recognition of an acidic-helical motif is distinct from other target-recognition modes of Munc18-1. Mutations in the interface between domain 3b and Mint1-MID disrupt the assembly of the Mint1-Munc18-1-syntaxin-1 complex. This work reveals a non-canonical target-binding site in Munc18-1 domain 3b for assembling the Mint1-Munc18-1-syntaxin-1 complex.


Asunto(s)
Proteínas Munc18 , Proteínas SNARE , Proteínas Qa-SNARE/metabolismo , Sitios de Unión , Proteínas Munc18/genética , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Sintaxina 1/química , Dominios Proteicos , Unión Proteica , Proteínas SNARE/metabolismo
10.
Neurochem Res ; 48(3): 791-803, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36335177

RESUMEN

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction closely associated with mortality in the acute phase of sepsis. Abnormal neurotransmitters release, such as glutamate, plays a crucial role in the pathological mechanism of SAE. Munc18-1 is a key protein regulating neurotransmission. However, whether Munc18-1 plays a role in SAE by regulating glutamate transmission is still unclear. In this study, a septic rat model was established by the cecal ligation and perforation. We found an increase in the content of glutamate in the hippocampus of septic rat, the number of synaptic vesicles in the synaptic active area and the expression of the glutamate receptor NMDAR1. Meanwhile, it was found that the expressions of Munc18-1, Syntaxin1A and Synaptophysin increased, which are involved in neurotransmission. The expression levels of Syntaxin1A and Synaptophysin in hippocampus of septic rats decreased after interference using Munc18-1siRNA. We observed a decrease in the content of glutamate in the hippocampus of septic rats, the number of synaptic vesicles in the synaptic activity area and the expression of NMDAR1. Interestingly, it was also found that the down-regulation of Munc18-1 improved the vital signs of septic rats. This study shows that CLP induced the increased levels of glutamate in rat hippocampus, and Munc18-1 may participate in the process of hippocampal injury in septic rats by affecting the levels of glutamate via regulating Syntaxin1A and Synaptophysin. Munc18-1 may serve as a potential target for SAE therapy.


Asunto(s)
Encefalopatía Asociada a la Sepsis , Sepsis , Ratas , Animales , Sinaptofisina/metabolismo , Ácido Glutámico/metabolismo , Encefalopatía Asociada a la Sepsis/metabolismo , Sepsis/metabolismo , Hipocampo/metabolismo
11.
eNeuro ; 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36257704

RESUMEN

Absence of presynaptic protein MUNC18-1 (gene: Stxbp1) leads to neuronal cell death at an immature stage before synapse formation. Here, we performed transcriptomic and proteomic profiling of immature Stxbp1 knockout (KO) cells to discover which cellular processes depend on MUNC18-1. Hippocampi of Stxbp1 KO mice showed cell-type specific dysregulation of 2123 transcripts primarily related to synaptic transmission and immune response. To further investigate direct, neuron-specific effects of MUNC18-1 depletion, a proteomic screen was performed on murine neuronal cultures at two developmental timepoints prior to onset of neuron degeneration. 399 proteins were differentially expressed, which were primarily involved in synaptic function (especially synaptic vesicle exocytosis) and neuron development. We further show that many of the downregulated proteins upon loss of MUNC18-1 are normally upregulated during this developmental stage. Thus, absence of MUNC18-1 extensively dysregulates the transcriptome and proteome, primarily affecting synaptic and developmental profiles. Lack of synaptic activity is unlikely to underlie these effects, as the changes were observed in immature neurons without functional synapses, and minimal overlap was found to activity-dependent proteins. We hypothesize that presence of MUNC18-1 is essential to advance neuron development, serving as a 'checkpoint' for neurons to initiate cell death in its absence.Significance StatementPresynaptic protein MUNC18-1 is essential for neuronal functioning. Pathogenic variants in its gene, STXBP1, are among the most common found in patients with developmental delay and epilepsy. To discern the pathogenesis in these patients, a thorough understanding of MUNC18-1's function in neurons is required. Here, we show that loss of MUNC18-1 results in extensive dysregulation of synaptic and developmental proteins in immature neurons before synapse formation. Many of the downregulated proteins are normally upregulated during this developmental stage. This indicates that MUNC18-1 is a critical regulator of neuronal development, which could play an important role in the pathogenesis of STXBP1 variant carriers.

12.
J Cell Sci ; 135(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36245272

RESUMEN

MUNC18-1 (also known as syntaxin-binding protein-1, encoded by Stxbp1) binds to syntaxin-1. Together, these proteins regulate synaptic vesicle exocytosis and have a separate role in neuronal viability. In Stxbp1 null mutant neurons, syntaxin-1 protein levels are reduced by 70%. Here, we show that dynamin-1 protein levels are reduced at least to the same extent, and transcript levels of Dnm1 (which encodes dynamin-1) are reduced by 50% in Stxbp1 null mutant brain. Several, but not all, other endocytic proteins were also found to be reduced, but to a lesser extent. The reduced dynamin-1 expression was not observed in SNAP25 null mutants or in double-null mutants of MUNC13-1 and -2 (also known as Unc13a and Unc13b, respectively), in which synaptic vesicle exocytosis is also blocked. Co-immunoprecipitation experiments demonstrated that dynamin-1 and MUNC18-1 do not bind directly. Furthermore, MUNC18-1 levels were unaltered in neurons lacking all three dynamin paralogues. Finally, overexpression of dynamin-1 was not sufficient to rescue neuronal viability in Stxbp1 null mutant neurons; thus, the reduction in dynamin-1 is not the single cause of neurodegeneration of these neurons. The reduction in levels of dynamin-1 protein and mRNA, as well as of other endocytosis proteins, in Stxbp1 null mutant neurons suggests that MUNC18-1 directly or indirectly controls expression of other presynaptic genes.


Asunto(s)
Dinamina I , Proteínas Munc18 , Dinamina I/genética , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Neuronas/metabolismo , Exocitosis/fisiología
13.
Crit Rev Biochem Mol Biol ; 57(4): 443-460, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36151854

RESUMEN

Fusion of transmitter-containing vesicles with plasma membranes at the synaptic and neuromuscular junctions mediates neurotransmission and muscle contractions, respectively, thereby underlying all thoughts and actions. The fusion process is driven by the coupled folding and assembly of three synaptic SNARE proteins--syntaxin-1 and SNAP-25 on the target plasma membrane (t-SNAREs) and VAMP2 on the vesicular membrane (v-SNARE) into a four-helix bundle. Their assembly is chaperoned by Munc18-1 and many other proteins to achieve the speed and accuracy required for neurotransmission. However, the physiological pathway of SNARE assembly and its coupling to membrane fusion remains unclear. Here, we review recent progress in understanding SNARE assembly and membrane fusion, with a focus on results obtained by single-molecule manipulation approaches and electric recordings of single fusion pores. We describe two pathways of synaptic SNARE assembly, their associated intermediates, energetics, and kinetics. Assembly of the three SNAREs in vitro begins with the formation of a t-SNARE binary complex, on which VAMP2 folds in a stepwise zipper-like fashion. Munc18-1 significantly alters the SNARE assembly pathway: syntaxin-1 and VAMP2 first bind on the surface of Munc18-1 to form a template complex, with which SNAP-25 associates to conclude SNARE assembly and displace Munc18-1. During membrane fusion, multiple trans-SNARE complexes cooperate to open a dynamic fusion pore in a manner dependent upon their copy number and zippering states. Together, these results demonstrate that stepwise and cooperative SNARE assembly drive stagewise membrane fusion.


Asunto(s)
Fusión de Membrana , Proteínas SNARE , Cinética , Fusión de Membrana/fisiología , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas Qa-SNARE , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
14.
FEBS J ; 289(20): 6367-6384, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35561017

RESUMEN

Synaptic exocytosis requires efficient SNARE complex assembly that is precisely regulated by multiple regulatory proteins. Increasing evidence suggests that Munc18-1 and Munc13-1 protect SNARE complex assembly in a manner resistant to NSF and α-SNAP. However, the protective mechanisms of Munc18-1 and Munc13-1 are not fully understood. Here, by analyzing two pathways of SNARE complex assembly (i.e., the Munc18 - Munc13-dependent pathway and the Munc18 - Munc13-independent pathway), we found that the Munc18 - Munc13-dependent pathway of SNARE complex assembly is resistant to NSF - α-SNAP. In this pathway, Munc18-1 and Munc13-1 each, independently, have protective effects. The protective effect of Munc18-1 relies on the interaction with the C-terminal part of Syb2 during the transition from the Munc18-1/Syx1 complex to the SNARE complex. Moreover, the protective effect of Munc13-1 is most likely attributed to its ability in templating the assembling SNAREs. In addition, we found that the Munc18 - Munc13-dependent pathway opposes the association of α-SNAP with the SNARE bundle, thus explaining how this pathway is resistant to NSF - α-SNAP disassembly. Although the above results were derived from the studies on SNARE complex in solution or in cis-configurations, instead of trans-configurations residing on the opposite membrane, our data could still help to understand the protective mechanism of Munc18-1 and Munc13-1 in SNARE-mediated synaptic exocytosis.


Asunto(s)
Fusión de Membrana , Proteínas Munc18 , Proteínas Portadoras , Exocitosis , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/metabolismo
15.
Elife ; 102021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34427183

RESUMEN

Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX1's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.


Asunto(s)
Proteínas Munc18/metabolismo , Neuronas/metabolismo , Péptidos/metabolismo , Sinapsis/metabolismo , Sintaxina 1/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Fusión de Membrana , Ratones , Péptidos/química , Péptidos/genética , Unión Proteica , Conformación Proteica , Sinapsis/genética , Transmisión Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética
16.
J Neurosci ; 41(35): 7329-7339, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290081

RESUMEN

Post-tetanic potentiation (PTP) is a form of short-term plasticity that lasts for tens of seconds following a burst of presynaptic activity. It has been proposed that PTP arises from protein kinase C (PKC) phosphorylation of Munc18-1, an SM (Sec1/Munc-18 like) family protein that is essential for release. To test this model, we made a knock-in mouse in which all Munc18-1 PKC phosphorylation sites were eliminated through serine-to-alanine point mutations (Munc18-1SA mice), and we studied mice of either sex. The expression of Munc18-1 was not altered in Munc18-1SA mice, and there were no obvious behavioral phenotypes. At the hippocampal CA3-to-CA1 synapse and the granule cell parallel fiber (PF)-to-Purkinje cell (PC) synapse, basal transmission was largely normal except for small decreases in paired-pulse facilitation that are consistent with a slight elevation in release probability. Phorbol esters that mimic the activation of PKC by diacylglycerol still increased synaptic transmission in Munc18-1SA mice. In Munc18-1SA mice, 70% of PTP remained at CA3-to-CA1 synapses, and the amplitude of PTP was not reduced at PF-to-PC synapses. These findings indicate that at both CA3-to-CA1 and PF-to-PC synapses, phorbol esters and PTP enhance synaptic transmission primarily by mechanisms that are independent of PKC phosphorylation of Munc18-1.SIGNIFICANCE STATEMENT A leading mechanism for a prevalent form of short-term plasticity, post-tetanic potentiation (PTP), involves protein kinase C (PKC) phosphorylation of Munc18-1. This study tests this mechanism by creating a knock-in mouse in which Munc18-1 is replaced by a mutated form of Munc18-1 that cannot be phosphorylated. The main finding is that most PTP at hippocampal CA3-to-CA1 synapses or at cerebellar granule cell-to-Purkinje cell synapses does not rely on PKC phosphorylation of Munc18-1. Thus, mechanisms independent of PKC phosphorylation of Munc18-1 are important mediators of PTP.


Asunto(s)
Proteínas Munc18/metabolismo , Plasticidad Neuronal/fisiología , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Animales , Femenino , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Masculino , Ratones , Ratones Noqueados , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Potenciales Postsinápticos Miniatura/fisiología , Proteínas Munc18/deficiencia , Mutación Missense , Ésteres del Forbol/farmacología , Fosforilación , Mutación Puntual , Proteína Quinasa C/deficiencia , Células de Purkinje/fisiología , Proteínas Recombinantes/metabolismo , Transmisión Sináptica/efectos de los fármacos
17.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823650

RESUMEN

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Asunto(s)
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Enfermedad/genética , Humanos , Fusión de Membrana , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Mutación , Pinzas Ópticas , Fosforilación , Dominios Proteicos , Pliegue de Proteína , Proteínas SNARE/genética
18.
Prion ; 15(1): 29-36, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33590815

RESUMEN

Amyloids are the fibrillar protein aggregates with cross-ß structure. Traditionally amyloids were associated with pathology, however, nowadays more data is emerging about functional amyloids playing essential roles in cellular processes. We conducted screening for functional amyloids in rat brain. One of the identified proteins was STXBP1 taking part in vesicular transport and neurotransmitter secretion. Using SDD-AGE and protein fractionation we found out that STXBP1 forms small detergent-insoluble aggregates in rat brain. With immunoprecipitation analysis and C-DAG system, we showed that STXBP1 forms amyloid-like fibrils. Thus, STXBP1 demonstrates amyloid properties in rat brain and in bacterial expression system.


Asunto(s)
Amiloide , Amiloidosis , Proteínas Munc18/metabolismo , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Ratas
19.
Front Mol Neurosci ; 14: 785696, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002621

RESUMEN

Calcium-dependent synaptic vesicle exocytosis is mediated by SNARE complex formation. The transition from the Munc18-1/syntaxin-1 complex to the SNARE complex is catalyzed by the Munc13-1 MUN domain and involves at least two conformational changes: opening of the syntaxin-1 linker region and extension of Munc18-1 domain 3a. However, the relationship and the action order of the two conformational changes remain not fully understood. Here, our data show that an open conformation in the syntaxin-1 linker region can bypass the requirement of the MUN NF sequence. In addition, an extended state of Munc18-1 domain 3a can compensate the role of the syntaxin-1 RI sequence. Altogether, the current data strongly support our previous notion that opening of the syntaxin-1 linker region by Munc13-1 is a key step to initiate SNARE complex assembly, and consequently, Munc18-1 domain 3a can extend its conformation to serve as a template for association of synaptobrevin-2 and syntaxin-1.

20.
Front Physiol ; 12: 775172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002760

RESUMEN

STXBP1 syndrome is a rare neurodevelopmental disorder caused by heterozygous variants in the STXBP1 gene and is characterized by psychomotor delay, early-onset developmental delay, and epileptic encephalopathy. Pathogenic STXBP1 variants are thought to alter excitation-inhibition (E/I) balance at the synaptic level, which could impact neuronal network dynamics; however, this has not been investigated yet. Here, we present the first EEG study of patients with STXBP1 syndrome to quantify the impact of the synaptic E/I dysregulation on ongoing brain activity. We used high-frequency-resolution analyses of classical and recently developed methods known to be sensitive to E/I balance. EEG was recorded during eyes-open rest in children with STXBP1 syndrome (n = 14) and age-matched typically developing children (n = 50). Brain-wide abnormalities were observed in each of the four resting-state measures assessed here: (i) slowing of activity and increased low-frequency power in the range 1.75-4.63 Hz, (ii) increased long-range temporal correlations in the 11-18 Hz range, (iii) a decrease of our recently introduced measure of functional E/I ratio in a similar frequency range (12-24 Hz), and (iv) a larger exponent of the 1/f-like aperiodic component of the power spectrum. Overall, these findings indicate that large-scale brain activity in STXBP1 syndrome exhibits inhibition-dominated dynamics, which may be compensatory to counteract local circuitry imbalances expected to shift E/I balance toward excitation, as observed in preclinical models. We argue that quantitative EEG investigations in STXBP1 and other neurodevelopmental disorders are a crucial step to understand large-scale functional consequences of synaptic E/I perturbations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...