Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 590
Filtrar
1.
Heliyon ; 10(14): e34253, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39092265

RESUMEN

In this study, an attempt has been made to investigate the possibility of a machine learning model, Artificial Neural Network (ANN) for seasonal prediction of the temperature of Dhaka city. Prior knowledge of temperature is essential, especially in tropical regions like Dhaka, as it aids in forecasting heatwaves and implementing effective preparedness schemes. While various machine learning models have been employed for the prediction of hot weather across the world, research specially focused on Bangladesh is limited. Additionally, the application of machine learning models needs to be curated to suit the particular weather features of any region. Therefore, this study approaches ANN method for prediction of the temperature of Dhaka exploring the underlying role of related weather variables. Using the daily data for the months of February to July collected from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data (0.25° × 0.25° global grid) for the years 2011-2020, this study focuses on finding the combination of weather variables in predicting temperatures. The densely populated city, Dhaka, has faced severe consequences due to extreme climate conditions in recent years, and this study will pave a new dimension for further research regarding the topic.

2.
Cureus ; 16(7): e63699, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39092371

RESUMEN

Until recently, innovations in surgery were largely represented by extensions or augmentations of the surgeon's perception. This includes advancements such as the operating microscope, tumor fluorescence, intraoperative ultrasound, and minimally invasive surgical instrumentation. However, introducing artificial intelligence (AI) into the surgical disciplines represents a transformational event. Not only does AI contribute substantively to enhancing a surgeon's perception with such methodologies as three-dimensional anatomic overlays with augmented reality, AI-improved visualization for tumor resection, and AI-formatted endoscopic and robotic surgery guidance. What truly makes AI so different is that it also provides ways to augment the surgeon's cognition. By analyzing enormous databases, AI can offer new insights that can transform the operative environment in several ways. It can enable preoperative risk assessment and allow a better selection of candidates for procedures such as organ transplantation. AI can also increase the efficiency and throughput of operating rooms and staff and coordinate the utilization of critical resources such as intensive care unit beds and ventilators. Furthermore, AI is revolutionizing intraoperative guidance, improving the detection of cancers, permitting endovascular navigation, and ensuring the reduction in collateral damage to adjacent tissues during surgery (e.g., identification of parathyroid glands during thyroidectomy). AI is also transforming how we evaluate and assess surgical proficiency and trainees in postgraduate programs. It offers the potential for multiple, serial evaluations, using various scoring systems while remaining free from the biases that can plague human supervisors. The future of AI-driven surgery holds promising trends, including the globalization of surgical education, the miniaturization of instrumentation, and the increasing success of autonomous surgical robots. These advancements raise the prospect of deploying fully autonomous surgical robots in the near future into challenging environments such as the battlefield, disaster areas, and even extraplanetary exploration. In light of these transformative developments, it is clear that the future of surgery will belong to those who can most readily embrace and harness the power of AI.

3.
Front Psychiatry ; 15: 1436006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086731

RESUMEN

Treatment-Resistant Depression (TRD) poses a substantial health and economic challenge, persisting as a major concern despite decades of extensive research into novel treatment modalities. The considerable heterogeneity in TRD's clinical manifestations and neurobiological bases has complicated efforts toward effective interventions. Recognizing the need for precise biomarkers to guide treatment choices in TRD, herein we introduce the SelecTool Project. This initiative focuses on developing (WorkPlane 1/WP1) and conducting preliminary validation (WorkPlane 2/WP2) of a computational tool (SelecTool) that integrates clinical data, neurophysiological (EEG) and peripheral (blood sample) biomarkers through a machine-learning framework designed to optimize TRD treatment protocols. The SelecTool project aims to enhance clinical decision-making by enabling the selection of personalized interventions. It leverages multi-modal data analysis to navigate treatment choices towards two validated therapeutic options for TRD: esketamine nasal spray (ESK-NS) and accelerated repetitive Transcranial Magnetic Stimulation (arTMS). In WP1, 100 subjects with TRD will be randomized to receive either ESK-NS or arTMS, with comprehensive evaluations encompassing neurophysiological (EEG), clinical (psychometric scales), and peripheral (blood samples) assessments both at baseline (T0) and one month post-treatment initiation (T1). WP2 will utilize the data collected in WP1 to train the SelecTool algorithm, followed by its application in a second, out-of-sample cohort of 20 TRD subjects, assigning treatments based on the tool's recommendations. Ultimately, this research seeks to revolutionize the treatment of TRD by employing advanced machine learning strategies and thorough data analysis, aimed at unraveling the complex neurobiological landscape of depression. This effort is expected to provide pivotal insights that will promote the development of more effective and individually tailored treatment strategies, thus addressing a significant void in current TRD management and potentially reducing its profound societal and economic burdens.

4.
Diagn Microbiol Infect Dis ; 110(3): 116472, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39146634

RESUMEN

Tuberculosis (T.B.) remains a prominent global cause of health challenges and death, exacerbated by drug-resistant strains such as multidrug-resistant tuberculosis MDR-TB and extensively drug-resistant tuberculosis XDR-TB. For an effective disease management strategy, it is crucial to understand the dynamics of T.B. infection and the impacts of treatment. In the present article, we employ AI-based machine learning techniques to investigate the immunity impact of medications. SEIPR epidemiological model is incorporated with MDR-TB for compartments susceptible to disease, exposed to risk, infected ones, preventive or resistant to initial treatment, and recovered or healed population. These masses' natural trends, effects, and interactions are formulated and described in the present study. Computations and stability analysis are conducted upon endemic and disease-free equilibria in the present model for their global scenario. Both numerical and AI-based nonlinear autoregressive exogenous NARX analyses are presented with incorporating immediate treatment and delay in treatment. This study shows that the active patients and MDR-TB, both strains, exist because of the absence of permanent immunity to T.B. Furthermore, patients who have recovered from tuberculosis may become susceptible again by losing their immunity and contributing to transmission again. This article aims to identify patterns and predictors of treatment success. The findings from this research can contribute to developing more effective tuberculosis interventions.

5.
Front Genet ; 15: 1375468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149587

RESUMEN

Introduction: This study explores using Neural Ordinary Differential Equations (NODEs) to analyze hormone dynamics in the hypothalamicpituitary-adrenal (HPA) axis during Trier Social Stress Tests (TSST) to classify patients with Major Depressive Disorder (MDD). Methods: Data from TSST were used, measuring plasma ACTH and cortisol concentrations. NODE models replicated hormone changes without prior knowledge of the stressor. The derived vector fields from NODEs were input into a Convolutional Neural Network (CNN) for patient classification, validated through cross-validation (CV) procedures. Results: NODE models effectively captured system dynamics, embedding stress effects in the vector fields. The classification procedure yielded promising results, with the 1x1 CV achieving an AUROC score that correctly identified 83% of Atypical MDD patients and 53% of healthy controls. The 2x2 CV produced similar outcomes, supporting model robustness. Discussion: Our results demonstrate the potential of combining NODEs and CNNs to classify patients based on disease state, providing a preliminary step towards further research using the HPA axis stress response as an objective biomarker for MDD.

6.
Sci Rep ; 14(1): 18852, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143135

RESUMEN

The controversy surrounding whether serum total cholesterol is a risk factor for the graded progression of knee osteoarthritis (KOA) has prompted this study to develop an authentic prediction model using a machine learning (ML) algorithm. The objective was to investigate whether serum total cholesterol plays a significant role in the progression of KOA. This cross-sectional study utilized data from the public database DRYAD. LASSO regression was employed to identify risk factors associated with the graded progression of KOA. Additionally, six ML algorithms were utilized in conjunction with clinical features and relevant variables to construct a prediction model. The significance and ranking of variables were carefully analyzed. The variables incorporated in the model include JBS3, Diabetes, Hypertension, HDL, TC, BMI, SES, and AGE. Serum total cholesterol emerged as a significant risk factor for the graded progression of KOA in all six ML algorithms used for importance ranking. XGBoost algorithm was based on the combined best performance of the training and validation sets. The ML algorithm enables predictive modeling of risk factors for the progression of the KOA K-L classification and confirms that serum total cholesterol is an important risk factor for the progression of KOA.


Asunto(s)
Colesterol , Progresión de la Enfermedad , Aprendizaje Automático , Osteoartritis de la Rodilla , Humanos , Colesterol/sangre , Osteoartritis de la Rodilla/sangre , Masculino , Femenino , Factores de Riesgo , Persona de Mediana Edad , Estudios Transversales , Anciano , Algoritmos
7.
J Environ Manage ; 367: 122018, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111007

RESUMEN

Climate change has a significant impact on dissolved oxygen (DO) concentrations, particularly in coastal inlets where numerous human activities occur. Due to the various water quality (WQ), hydrological, and climatic parameters that influence this phenomenon, predicting and modeling DO variation is a challenging process. Accordingly, this study introduces an innovative Deep Learning Neural Network (DLNN) methodology to model and predict DO concentrations for the Egyptian Rashid coastal inlet, leveraging field-recorded WQ and hydroclimatic datasets. Initially, statistical and exploratory data analyses are performed to provide a thorough understanding of the relationship between DO fluctuations and associated WQ and hydroclimatic stressors. As an initial step towards developing an effective DO predictive model, conventional Machine Learning (ML) approaches such as Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Decision Tree Regressor (DTR) are employed. Subsequently, a DLNN approach is utilized to validate the prediction capabilities of the investigated conventional ML approaches. Finally, a sensitivity analysis is conducted to evaluate the impact of WQ and hydroclimatic parameters on predicted DO. The outcomes demonstrate that DLNN significantly improves DO prediction accuracy by 4% compared to the best-performing ML approach, achieving a Correlation Coefficient of 0.95 with a root mean square error (RMSE) of 0.42 mg/l. Solar radiation (SR), pH, water levels (WL), and atmospheric pressure (P) emerge as the most significant hydroclimatic parameters influencing DO fluctuations. Ultimately, the developed models could serve as effective indicators for coastal authorities to monitor DO changes resulting from accelerated climate change along the Egyptian coast.


Asunto(s)
Cambio Climático , Aprendizaje Profundo , Oxígeno , Oxígeno/química , Oxígeno/análisis , Redes Neurales de la Computación , Calidad del Agua , Monitoreo del Ambiente/métodos
8.
Sensors (Basel) ; 24(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124036

RESUMEN

The accuracy of classifying motor imagery (MI) activities is a significant challenge when using brain-computer interfaces (BCIs). BCIs allow people with motor impairments to control external devices directly with their brains using electroencephalogram (EEG) patterns that translate brain activity into control signals. Many researchers have been working to develop MI-based BCI recognition systems using various time-frequency feature extraction and classification approaches. However, the existing systems still face challenges in achieving satisfactory performance due to large amount of non-discriminative and ineffective features. To get around these problems, we suggested a multiband decomposition-based feature extraction and classification method that works well, along with a strong feature selection method for MI tasks. Our method starts by splitting the preprocessed EEG signal into four sub-bands. In each sub-band, we then used a common spatial pattern (CSP) technique to pull out narrowband-oriented useful features, which gives us a high-dimensional feature vector. Subsequently, we utilized an effective feature selection method, Relief-F, which reduces the dimensionality of the final features. Finally, incorporating advanced classification techniques, we classified the final reduced feature vector. To evaluate the proposed model, we used the three different EEG-based MI benchmark datasets, and our proposed model achieved better performance accuracy than existing systems. Our model's strong points include its ability to effectively reduce feature dimensionality and improve classification accuracy through advanced feature extraction and selection methods.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Electroencefalografía/métodos , Humanos , Algoritmos , Procesamiento de Señales Asistido por Computador , Imaginación/fisiología , Encéfalo/fisiología
9.
J Neural Eng ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151457

RESUMEN

OBJECTIVE: Electroencephalography (EEG) has evolved into an indispensable instrument for estimating cognitive workload in various domains. ML and DL techniques have been increasingly employed to develop accurate workload estimation and classification models based on EEG data. The goal of this systematic review is to compile the body of research on EEG workload estimation and classification using ML and DL approaches. METHODS: The PRISMA procedures were followed in conducting the review, searches were conducted through databases at SpringerLink, ACM Digital Library, IEEE Explore, PUBMED, and Science Direct from the beginning to the end of February 16, 2024. Studies were selected based on predefined inclusion criteria. Data were extracted to capture study design, participant demographics, EEG features, ML/DL algorithms, and reported performance metrics. RESULTS: Out of the 125 items that emerged, 33 scientific papers were fully evaluated. The study designs, participant demographics, and EEG workload measurement and categorization techniques used in the investigations differed. SVM, CNN, and hybrid networks are examples of ML and DL approaches that were often used. Analyzing the accuracy scores achieved by different ML/DL models. Furthermore, a relationship was noted between sample frequency and model accuracy, with higher sample frequencies generally leading to improved performance. The percentage distribution of ML/DL methods revealed that SVMs, CNNs, and RNNs were the most commonly utilized techniques, reflecting their robustness in handling EEG data. SIGNIFICANCE: The comprehensive review emphasizes how ML may be used to identify mental workload across a variety of disciplines using EEG data. Optimizing practical applications requires multimodal data integration, standardization efforts, and real-world validation studies. These systems will also be further improved by addressing ethical issues and investigating new EEG properties, which will improve human-computer interaction and performance assessment.

10.
Am J Clin Pathol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136261

RESUMEN

OBJECTIVES: This review summarizes the current and potential uses of artificial intelligence (AI) in the current state of clinical microbiology with a focus on replacement of labor-intensive tasks. METHODS: A search was conducted on PubMed using the key terms clinical microbiology and artificial intelligence. Studies were reviewed for relevance to clinical microbiology, current diagnostic techniques, and potential advantages of AI in routine microbiology workflows. RESULTS: Numerous studies highlight potential labor, as well as diagnostic accuracy, benefits to the implementation of AI for slide-based and macroscopic digital image analyses. These range from Gram stain interpretation to categorization and quantitation of culture growth. CONCLUSIONS: Artificial intelligence applications in clinical microbiology significantly enhance diagnostic accuracy and efficiency, offering promising solutions to labor-intensive tasks and staffing shortages. More research efforts and US Food and Drug Administration clearance are still required to fully incorporate these AI applications into routine clinical laboratory practices.

11.
Abdom Radiol (NY) ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133362

RESUMEN

Early identification of pancreatitis remains a significant clinical diagnostic challenge that impacts patient outcomes. The evolution of quantitative imaging followed by deep learning models has shown great promise in the non-invasive diagnosis of pancreatitis and its complications. We provide an overview of advancements in diagnostic imaging and quantitative imaging methods along with the evolution of artificial intelligence (AI). In this article, we review the current and future states of methodology and limitations of AI in improving clinical support in the context of early detection and management of pancreatitis.

12.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39066007

RESUMEN

In today's world, the significance of reducing energy consumption globally is increasing, making it imperative to prioritize energy efficiency in 5th-generation (5G) networks. However, it is crucial to ensure that these energy-saving measures do not compromise the Key Performance Indicators (KPIs), such as user experience, quality of service (QoS), or other important aspects of the network. Advanced wireless technologies have been integrated into 5G network designs at multiple network layers to address this difficulty. The integration of emerging technology trends, such as machine learning (ML), which is a subset of artificial intelligence (AI), and AI's rapid improvements have made the integration of these trends into 5G networks a significant topic of research. The primary objective of this survey is to analyze AI's integration into 5G networks for enhanced energy efficiency. By exploring this intersection between AI and 5G, we aim to identify potential strategies and techniques for optimizing energy consumption while maintaining the desired network performance and user experience.

13.
Sensors (Basel) ; 24(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39066103

RESUMEN

As Canada's population of older adults rises, the need for aging-in-place solutions is growing due to the declining quality of long-term-care homes and long wait times. While the current standards include questionnaire-based assessments for monitoring activities of daily living (ADLs), there is an urgent need for advanced indoor localization technologies that ensure privacy. This study explores the use of Ultra-Wideband (UWB) technology for activity recognition in a mock condo in the Glenrose Rehabilitation Hospital. UWB systems with built-in Inertial Measurement Unit (IMU) sensors were tested, using anchors set up across the condo and a tag worn by patients. We tested various UWB setups, changed the number of anchors, and varied the tag placement (on the wrist or chest). Wrist-worn tags consistently outperformed chest-worn tags, and the nine-anchor configuration yielded the highest accuracy. Machine learning models were developed to classify activities based on UWB and IMU data. Models that included positional data significantly outperformed those that did not. The Random Forest model with a 4 s data window achieved an accuracy of 94%, compared to 79.2% when positional data were excluded. These findings demonstrate that incorporating positional data with IMU sensors is a promising method for effective remote patient monitoring.


Asunto(s)
Actividades Cotidianas , Aprendizaje Automático , Humanos , Monitoreo Ambulatorio/métodos , Monitoreo Ambulatorio/instrumentación , Dispositivos Electrónicos Vestibles , Acelerometría/instrumentación , Acelerometría/métodos , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación
14.
Sci Total Environ ; 947: 174469, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972419

RESUMEN

Understanding the transformation process of dissolved organic matter (DOM) in the sewer is imperative for comprehending material circulation and energy flow within the sewer. The machine learning (ML) model provides a feasible way to comprehend and simulate the DOM transformation process in the sewer. In contrast, the model accuracy is limited by data restriction. In this study, a novel framework by integrating generative adversarial network algorithm-machine learning models (GAN-ML) was established to overcome the drawbacks caused by the data restriction in the simulation of the DOM transformation process, and humification index (HIX) was selected as the output variable to evaluate the model performance. Results indicate that the GAN algorithm's virtual dataset could generally enhance the simulation performance of regression models, deep learning models, and ensemble models for the DOM transformation process. The highest prediction accuracy on HIX (R2 of 0.5389 and RMSE of 0.0273) was achieved by the adaptive boosting model which belongs to ensemble models trained by the virtual dataset of 1000 samples. Interpretability analysis revealed that dissolved oxygen (DO) and pH emerge as critical factors warranting attention for the future development of management strategies to regulate the DOM transformation process in sewers. The integrated framework proposed a potential approach for the comprehensive understanding and high-precision simulation of the DOM transformation process, paving the way for advancing sewer management strategy under data restriction.

15.
Comput Toxicol ; 29: 1-14, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38993502

RESUMEN

Animal toxicity testing is time and resource intensive, making it difficult to keep pace with the number of substances requiring assessment. Machine learning (ML) models that use chemical structure information and high-throughput experimental data can be helpful in predicting potential toxicity . However, much of the toxicity data used to train ML models is biased with an unequal balance of positives and negatives primarily since substances selected for in vivo testing are expected to elicit some toxicity effect. To investigate the impact this bias had on predictive performance, various sampling approaches were used to balance in vivo toxicity data as part of a supervised ML workflow to predict hepatotoxicity outcomes from chemical structure and/or targeted transcriptomic data. From the chronic, subchronic, developmental, multigenerational reproductive, and subacute repeat-dose testing toxicity outcomes with a minimum of 50 positive and 50 negative substances, 18 different study-toxicity outcome combinations were evaluated in up to 7 ML models. These included Artificial Neural Networks, Random Forests, Bernouilli Naïve Bayes, Gradient Boosting, and Support Vector classification algorithms which were compared with a local approach, Generalised Read-Across (GenRA), a similarity-weighted k-Nearest Neighbour (k-NN) method. The mean CV F1 performance for unbalanced data across all classifiers and descriptors for chronic liver effects was 0.735 (0.0395 SD). Mean CV F1 performance dropped to 0.639 (0.073 SD) with over-sampling approaches though the poorer performance of KNN approaches in some cases contributed to the observed decrease (mean CV F1 performance excluding KNN was 0.697 (0.072 SD)). With under-sampling approaches, the mean CV F1 was 0.523 (0.083 SD). For developmental liver effects, the mean CV F1 performance was much lower with 0.089 (0.111 SD) for unbalanced approaches and 0.149 (0.084 SD) for under-sampling. Over-sampling approaches led to an increase in mean CV F1 performance (0.234, (0.107 SD)) for developmental liver toxicity. Model performance was found to be dependent on dataset, model type, balancing approach and feature selection. Accordingly tailoring ML workflows for predicting toxicity should consider class imbalance and rely on simpler classifiers first.

16.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39001123

RESUMEN

As 5G technology becomes more widespread, the significant improvement in network speed and connection density has introduced more challenges to network security. In particular, distributed denial of service (DDoS) attacks have become more frequent and complex in software-defined network (SDN) environments. The complexity and diversity of 5G networks result in a great deal of unnecessary features, which may introduce noise into the detection process of an intrusion detection system (IDS) and reduce the generalization ability of the model. This paper aims to improve the performance of the IDS in 5G networks, especially in terms of detection speed and accuracy. It proposes an innovative feature selection (FS) method to filter out the most representative and distinguishing features from network traffic data to improve the robustness and detection efficiency of the IDS. To confirm the suggested method's efficacy, this paper uses four common machine learning (ML) models to evaluate the InSDN, CICIDS2017, and CICIDS2018 datasets and conducts real-time DDoS attack detection on the simulation platform. According to experimental results, the suggested FS technique may match 5G network requirements for high speed and high reliability of the IDS while also drastically cutting down on detection time and preserving or improving DDoS detection accuracy.

17.
Diagnostics (Basel) ; 14(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39001268

RESUMEN

Lung cancer, also known as lung carcinoma, has a high death rate, but an early diagnosis can substantially reduce this risk. In the current era, prediction models face challenges such as low accuracy, excessive noise, and low contrast. To resolve these problems, an advanced lung carcinoma prediction and risk screening model using transfer learning is proposed. Our proposed model initially preprocesses lung computed tomography images for noise removal, contrast stretching, convex hull lung region extraction, and edge enhancement. The next phase segments the preprocessed images using the modified Bates distribution coati optimization (B-RGS) algorithm to extract key features. The PResNet classifier then categorizes the cancer as normal or abnormal. For abnormal cases, further risk screening determines whether the risk is low or high. Experimental results depict that our proposed model performs at levels similar to other state-of-the-art models, achieving enhanced accuracy, precision, and recall rates of 98.21%, 98.71%, and 97.46%, respectively. These results validate the efficiency and effectiveness of our suggested methodology in early lung carcinoma prediction and risk assessment.

18.
Diagnostics (Basel) ; 14(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39001346

RESUMEN

The advent of artificial intelligence (AI) is revolutionizing medicine, particularly radiology. With the development of newer models, AI applications are demonstrating improved performance and versatile utility in the clinical setting. Thoracic imaging is an area of profound interest, given the prevalence of chest imaging and the significant health implications of thoracic diseases. This review aims to highlight the promising applications of AI within thoracic imaging. It examines the role of AI, including its contributions to improving diagnostic evaluation and interpretation, enhancing workflow, and aiding in invasive procedures. Next, it further highlights the current challenges and limitations faced by AI, such as the necessity of 'big data', ethical and legal considerations, and bias in representation. Lastly, it explores the potential directions for the application of AI in thoracic radiology.

19.
J Neurooncol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958849

RESUMEN

PURPOSE: Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. METHODS: A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. RESULTS: Treatment of central nervous system (CNS) tumors is being improved through advances across AI-such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. CONCLUSION: While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future.

20.
Int J Pharm ; 661: 124405, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950660

RESUMEN

High shear wet granulation (HSWG) is widely used in tablet manufacturing mainly because of its advantages in improving flowability, powder handling, process run time, size distribution, and preventing segregation. In line process analytical technology measurements are essential in capturing detailed particle dynamics and presenting real-time data to uncover the complexity of the HSWG process and ultimately for process control. This study presents an opportunity to predict the properties of the granules and tablets through torque measurement of the granulation bowl and the force exerted on a novel force probe within the powder bed. Inline force measurements are found to be more sensitive than torque measurements to the granulation process. The characteristic force profiles present the overall fingerprint of the high shear wet granulation, in which the evolution of the granule formation can improve our understanding of the granulation process. This provides rich information relating to the properties of the granules, identification of the even distribution of the binder liquid, and potential granulation end point. Data were obtained from an experimental high shear mixer across a range of key process parameters using a face-centred surface response design of experiment (DoE). A closed-form analytical model was developed from the DOE matrix using the discovery of evolutionary equations. The model is able to provide a strong predictive indication of the expected tablet tensile strength based only on the data in-line. The use of a closed form mathematical equation carries notable advantages over other AI methodologies such as artificial neural networks, notably improved interpretability/interrogability, and minimal inference costs, thus allowing the model to be used for real-time decision making and process control. The capability of accurately predicting, in real time, the required compaction force required to achieve the desired tablet tensile strength from upstream data carries the potential to ensure compression machine settings rapidly reach and are maintained at optimal values, thus maximising efficiency and minimising waste.


Asunto(s)
Excipientes , Polvos , Comprimidos , Resistencia a la Tracción , Comprimidos/química , Polvos/química , Excipientes/química , Composición de Medicamentos/métodos , Tecnología Farmacéutica/métodos , Tamaño de la Partícula , Química Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...