Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 279: 116481, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788562

RESUMEN

Manganese (Mn) overexposure has been associated with the development of neurological damage reminiscent of Parkinson's disease, while the underlying mechanisms have yet to be fully characterized. This study aimed to investigate the mechanisms leading to injury in dopaminergic neurons induced by Mn and identify novel treatment approaches. In the in vivo and in vitro models, ICR mice and dopaminergic neuron-like PC12 cells were exposed to Mn, respectively. We treated them with anti-ferroptotic agents ferrostatin-1 (Fer-1), deferoxamine (DFO), HIF-1α activator dimethyloxalylglycine (DMOG) and inhibitor LW6. We also used p53-siRNA to verify the mechanism underlying Mn-induced neurotoxicity. Fe and Mn concentrations increased in ICR mice brains overexposed to Mn. Additionally, Mn-exposed mice exhibited movement impairment and encephalic pathological changes, with decreased HIF-1α, SLC7A11, and GPX4 proteins and increased p53 protein levels. Fer-1 exhibited protective effects against Mn-induced both behavioral and biochemical changes. Consistently, in vitro, Mn exposure caused ferroptosis-related changes and decreased HIF-1α levels, all ameliorated by Fer-1. Upregulation of HIF-1α by DMOG alleviated the Mn-associated ferroptosis, while LW6 exacerbated Mn-induced neurotoxicity through downregulating HIF-1α. p53 knock-down also rescued Mn-induced ferroptosis without altering HIF-1α protein expression. Mn overexposure resulted in ferroptosis in dopaminergic neurons, mediated through the HIF-1α/p53/SLC7A11 pathway.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Encéfalo , Ferroptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Manganeso , Ratones Endogámicos ICR , Proteína p53 Supresora de Tumor , Animales , Ferroptosis/efectos de los fármacos , Células PC12 , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Manganeso/toxicidad , Encéfalo/efectos de los fármacos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Ratas , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Ciclohexilaminas/farmacología , Fenilendiaminas/toxicidad , Fenilendiaminas/farmacología , Deferoxamina/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Aminoácidos Dicarboxílicos
2.
Bioprocess Biosyst Eng ; 47(3): 393-401, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436717

RESUMEN

Calcium hypochlorite (Ca(ClO)2), which can be stably stored in powder form for a long period, is widely used as a disinfectant in various fields. A new sterilization process was developed in the present study, where a microalgal medium was sterilized using 0.02% Ca(ClO)2, followed by complete neutralization of the Ca(ClO)2 within 8 h through catalytic reaction of an MnCl2-Na2EDTA complex and a synergistic effect of glucose. When comparing the growth of Chlorella vulgaris in the autoclaved medium, a 2.65 times greater maximum cell growth was observed in cells grown in the medium prepared by treatment of Ca(ClO)2. This result indicates that denaturation of the medium by heat can hinder the growth of some microorganisms. In the case of cultivation of Euglena gracilis, successful culture growth was achieved without growth inhibition or contamination on a medium prepared in the same manner.


Asunto(s)
Chlorella vulgaris , Microalgas , Esterilización , Compuestos de Calcio , Biomasa
3.
Biotechnol Prog ; 40(1): e3384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37734048

RESUMEN

Aspergillus species have been highlighted in enzyme production looking for industrial applications, notably, amylases are one of the most interesting enzymes. They are capable of hydrolyzing α-glycosidic linkages of starch and widely used in industrial processes to produce ethanol, glucose, and fructose syrup as well as in the textiles, detergents, and paper industries applications. In this context, this work aimed at the biochemical characterization of the glucoamylase from Aspergillus japonicus and its application in the bio-bleaching process of recycled paper. The optimum temperature and pH for the glucoamylase assay were standardized as 50°C and 5.5. After 1 h of incubation, glucoamylase retained 90% of its activity at 30-50°C. It also kept 70% of its activity in the pH range of 4.0-6.5 after an hour of incubation. The enzyme led to an increase of 30% in the relative whiteness of 10 dry grams of sulfite paper and magazine paper when applied along with commercial cellulase and 10 mM MnCl2 . In addition, after the treatments, the glucoamylase recovered activity was 30%-32%, which indicates a prolonged availability of the enzyme and can considerably curtail the redundant downstream process of the recycled paper bio-bleaching. Thus, the glucoamylase from A. japonicus has a significant role in bio-bleaching recycled paper, reducing the necessity of hard chemicals, and improving the industrial process in an interesting economic and ecological mode.


Asunto(s)
Aspergillus , Glucano 1,4-alfa-Glucosidasa , Glucano 1,4-alfa-Glucosidasa/química , Temperatura , Almidón , Concentración de Iones de Hidrógeno
4.
Biomed Pharmacother ; 155: 113697, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36137406

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder imposing a severe health and socioeconomic burden worldwide. Existing pharmacological approaches for developing PD are poorly developed and do not represent all the characteristics of disease pathology. Developing cost-effective, reliable Zebrafish (ZF) model will meet this gap. The present study was conceived to develop a reliable PD model in the ZF using manganese chloride (MnCl2). Here, we report that chronic exposure to 2 mM MnCl2 for 21 days produced non-motor and motor PD-like symptoms in adult ZF. Compared with control fish, MnCl2-treated fish showed reduced locomotory activity, indicating a deficit in motor function. In the light-dark box test, MnCl2-treated fish exhibited anxiety and depression-like behavior. MnCl2-treated fish exhibited a less olfactory preference for amino acids, indicating olfactory dysfunction. These behavioral symptoms were associated with decreased dopamine and increased DOPAC levels. Furthermore, oxidative stress-mediated apoptotic pathway, decreased brain derived neurotropic factor (BDNF) and increased pro-inflammatory cytokines levels were observed upon chronic exposure to MnCl2 in the brain of ZF. Thus, MnCl2-induced PD in ZF can be a cost-effective PD model in the drug discovery process. Moreover, this model could be potentially utilized to investigate the molecular pathways underlying the multifaceted pathophysiology which leads to PD using relatively inexpensive species. MnCl2 being heavy metal may have other side effects in addition to neurotoxicity. Our model recapitulates most of the hallmarks of PD, but not all pathological processes are involved. Future studies are required to recapitulate the complete pathophysiology of PD.


Asunto(s)
Enfermedad de Parkinson , Pez Cebra , Animales , Pez Cebra/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Dopamina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Enfermedades Neuroinflamatorias , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estrés Oxidativo , Apoptosis , Aminoácidos/metabolismo , Citocinas/metabolismo
5.
Environ Toxicol Pharmacol ; 93: 103870, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35523392

RESUMEN

Manganese (Mn) is an essential metal for living organisms. However, the excess of Mn can be toxic, especially for the central nervous system. Herein, we used adult zebrafish as model organism to investigate the relationship of an environmentally relevant Mn exposure with the onset of neurobehavioral disturbances and brain biochemical alterations. Fish were exposed to MnCl2 at 0.5, 2.0, 7.5 and 15.0 mg/L for 96 h, and after submitted to trials for examining exploratory, locomotor and anxiety-related behaviors. The neurobehavioral parameters were followed by the analyses of cell viability, Mn accumulation and acetylcholinesterase activity in the brain, and whole-body cortisol levels. By Novel tank, Light dark and Social preference test, we found that the exposure to Mn, along with locomotor deficits induced anxiety-like phenotypes in zebrafish. Most of these behavioral changes were evoked by the highest concentrations, which also caused cell viability loss, higher accumulation of Mn and increased AChE activity in the brain, and an increase in the whole-body cortisol content. Our findings demonstrated that zebrafish are quite sensitive to levels of Mn found in the environment, and that the magnitude of the neurotoxic effects may be associated with the levels of manganese accumulated in the brain. Interestingly, we showed that Mn exposure in addition to motor deficits may also cause psychiatric abnormalities, namely anxiety.


Asunto(s)
Manganeso , Pez Cebra , Acetilcolinesterasa , Animales , Ansiedad/inducido químicamente , Conducta Animal , Hidrocortisona , Manganeso/toxicidad , Fenotipo , Pez Cebra/fisiología
6.
Genes (Basel) ; 11(8)2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824672

RESUMEN

Reverse transcription of RNA templates containing modified ribonucleosides transfers modification-related information as misincorporations, arrest or nucleotide skipping events to the newly synthesized cDNA strand. The frequency and proportion of these events, merged from all sequenced cDNAs, yield a so-called RT signature, characteristic for the respective RNA modification and reverse transcriptase (RT). While known for DNA polymerases in so-called error-prone PCR, testing of four different RTs by replacing Mg2+ with Mn2+ in reaction buffer revealed the immense influence of manganese chloride on derived RT signatures, with arrest rates on m1A positions dropping from 82% down to 24%. Additionally, we observed a vast increase in nucleotide skipping events, with single positions rising from 4% to 49%, thus implying an enhanced read-through capability as an effect of Mn2+ on the reverse transcriptase, by promoting nucleotide skipping over synthesis abortion. While modifications such as m1A, m22G, m1G and m3C showed a clear influence of manganese ions on their RT signature, this effect was individual to the polymerase used. In summary, the results imply a supporting effect of Mn2+ on reverse transcription, thus overcoming blockades in the Watson-Crick face of modified ribonucleosides and improving both read-through rate and signal intensity in RT signature analysis.


Asunto(s)
Iones/metabolismo , Manganeso/metabolismo , Transcripción Reversa , Emparejamiento Base , Iones/química , Manganeso/química , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleósidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Folia Morphol (Warsz) ; 79(4): 672-680, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31777945

RESUMEN

BACKGROUND: Manganese (Mn) is widely used for industrial purposes and exposure to high levels of Mn may cause an irreversible brain disease. Propolis is a natural plant product; it acts as a powerful reactive oxygen species scavenger and improves the neurodegeneration process. MATERIALS AND METHODS: In this study 40 adult male albino rats were divided randomly into four groups 10 rats each: group I (control group), group II manganese chloride (MnCl2) received 10 mg/kg/day/orally for 4 weeks by intra-gastric tube, group III (propolis group) received 50 mg/kg/day/orally for 4 weeks by intra-gastric tube, and group IV (MnCl2 + propolis group) received the same doses with the same duration and route as in groups II and III. Rats were sacrificed after 24 h of last dose. The olfactory bulbs removed, the right bulb cut to be processed for haematoxylin and eosin, immunohistochemical staining and the left cut for electron microscopic studies. RESULTS: Results revealed that rat olfactory bulb from MnCl2 group showed darkly stained mitral cells with dark pyknotic nuclei, some show pericellular spaces and vacuolation, dark apoptotic cells in granular cells, neuropil vacuolation and pyknotic astrocyte. Electron microscopic examination showed abnormal granular cell with irregular damaged nuclear membrane, rupture of myelin fibre. Mitral nerve cell with destructed nucleus, many cytoplasmic vacuoles, swollen rough endoplasmic reticulum, vacuolated mitochondria and neuropil were observed. Manganese chloride + propolis group showed improvement compared to MnCl2 group. CONCLUSIONS: It was concluded that propolis can ameliorate the toxic changes of manganese chloride on rat olfactory bulb.


Asunto(s)
Bulbo Olfatorio , Própolis , Animales , Cloruros/toxicidad , Masculino , Compuestos de Manganeso , Própolis/farmacología , Ratas
8.
Molecules ; 23(4)2018 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-29690516

RESUMEN

The basal production of secondary metabolites in medicinal plants is limited. One of the effective approaches that encourages plants to produce a remarkable amount of precious compounds is an application of elicitors. Our work was focused on the elicitation of Eschscholzia californica Cham. suspension cultures using various concentrations of MnCl2 (5; 10; 15 mg/L) with the aim of evaluating its effect on sanguinarine, chelerythrine, and macarpine production and gene expression of enzymes involved in the biosynthesis of mentioned secondary metabolites (BBE, 4'-OMT, CYP80B1) or in defense processes (LOX). Suspension cultures were exposed to elicitor for 24, 48, and 72 h. The content of alkaloids in phytomass was determined on the basis of their fluorescence properties. The relative mRNA expression of selected genes was analyzed using the ΔΔCt value method. PCR products were evaluated by melting curve analysis to confirm the specific amplification. Our results demonstrated that Eschscholzia californica Cham. cell suspension cultures evince sensitivity to the presence of MnCl2 in growth media resulting in the increased production of benzophenanthridine alkaloids and gene expression of selected enzymes. Manganese chloride seems to be a potential elicitor supporting natural biosynthetic properties in plant cell cultures and can be applied for the sustained production of valuable secondary metabolites.


Asunto(s)
Cloruros/metabolismo , Eschscholzia/metabolismo , Compuestos de Manganeso/metabolismo , Alcaloides/biosíntesis , Vías Biosintéticas/efectos de los fármacos , Cloruros/farmacología , Eschscholzia/efectos de los fármacos , Eschscholzia/genética , Compuestos de Manganeso/farmacología
9.
Neurotoxicology ; 65: 255-263, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29155171

RESUMEN

Manganese neurotoxicity presents with Parkinson-like symptoms, with degeneration of dopaminergic neurons in the basal ganglia as the principal pathological feature. Manganese neurotoxicity studies may contribute to a better understanding of the mechanism of Parkinson's disease. Here, we examined the effects of manganese on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodelling, cell cycle progression, DNA repair and apoptosis. In this study, we found that manganese chloride (MnCl2) may significantly suppress the acetylation of histone H3 and H4 in PC12 cells and SHSY5Y cells in a time-dependent manner. Then we tested the role of manganese chloride on histone acetyltransferase (HAT) and histone deacetylase (HDAC). The results showed that MnCl2 increased the activity of HDAC but decreased that of HAT in PC12 cells. Further experiments showed that MnCl2 selectively increased the expression levels of HDAC3 and HDAC4 rather than HDAC1 and HDAC2, but decreased that of HAT in PC12 cells and SHSY5Y cells. Pretreatment with the HAT inhibitor anacardic acid (AA) enhanced manganese-induced decrease in cell viability and apoptosis, but HDAC inhibition by TSA drug had an opposite effect in PC12 cells. Collectively, MnCl2 inhibited the acetylation of core histones in cell culture models of PD, and that inhibition of HDAC activity by TSA protects against manganese-induced cell death, indicating that histone acetylation may represent key epigenetic changes in manganese-induced dopaminergic neurotoxicity.


Asunto(s)
Acetilación/efectos de los fármacos , Cloruros/toxicidad , Histonas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ácidos Anacárdicos/farmacología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloruros/antagonistas & inhibidores , Sinergismo Farmacológico , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Compuestos de Manganeso/antagonistas & inhibidores , Ratas
10.
Toxicol Appl Pharmacol ; 336: 94-100, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29054681

RESUMEN

Manganese neurotoxicity is characterized by Parkinson-like symptoms with degeneration of dopaminergic neurons in the basal ganglia as the principal pathological feature. Manganese neurotoxicity studies may contribute to a good understanding of the mechanism of Parkinson's disease (PD). In this study, we first confirmed that MnCl2 can promote the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein in the nucleus or cytoplasm while increasing the binding activity of Nrf2 and antioxidant response elements, further promoting the expression of downstream target gene heme oxygenase 1 (HO-1) and leading to increase levels of reactive oxygen species (ROS) and reduce the levels of reduced glutathione (GSH). Second, we investigated the role of histone acetylation in the activation of Nrf2/HO-1 pathway by manganese chloride in rat adrenal pheochromocytoma (PC12) cells. Histone acetyltransferase inhibitor (anacardic acid) and histone deacetylase inhibitor (trichostatin A, TSA) were used as pretreatment reagents to adjust the level of histone acetylation. Here, we show that downregulation of histone acetylation can inhibit Mn-induced Nrf2 nuclear translocation and further inhibits the Mn-activated Nrf2/HO-1 pathway. This downregulation also promotes manganese-induced increase of ROS and decrease of GSH in neurons. These results suggest that the downregulation of histone acetylation may play an important role in the neurotoxicity caused by manganese and that TSA may provide new ideas and targets in treating manganese-induced Parkinson's syndrome and PD.


Asunto(s)
Cloruros/toxicidad , Hemo Oxigenasa (Desciclizante)/metabolismo , Histonas/metabolismo , Intoxicación por Manganeso/etiología , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/efectos de los fármacos , Acetilación , Transporte Activo de Núcleo Celular , Ácidos Anacárdicos/farmacología , Animales , Glutatión/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Compuestos de Manganeso , Intoxicación por Manganeso/tratamiento farmacológico , Intoxicación por Manganeso/enzimología , Intoxicación por Manganeso/genética , Factor 2 Relacionado con NF-E2/genética , Neuronas/enzimología , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Biomed Environ Sci ; 29(7): 494-504, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27554119

RESUMEN

OBJECTIVE: To investigate the role of autophagy in MnCl2-induced apoptosis in human bronchial epithelial 16HBE cells. METHODS: Cell proliferation was measured by MTT assay. Mitochondrial membrane potential (MMP) and apoptosis were measured by flow cytometry. Autophagic vacuoles were detected by fluorescence microscopy. Cellular levels of apoptosis and autophagy-related proteins were measured by western blotting. RESULTS: 16HBE cell proliferation was inhibited by MnCl2 in a dose- and time-dependent manner. MnCl2-induced 16HBE cell growth inhibition was related to MMP depolarization prior to the induction of apoptosis. Our data revealed that MnCl2-induced apoptosis in 16HBE cells was mediated by decreased expression of Bcl-2 and increased levels of cleaved caspase-3. It was observed that when we exposed 16HBE cells to MnCl2 in a dose-dependent manner, the formation of autophagic vacuoles and the levels of LC-3B-II were elevated. RNA interference of LC3B in these MnCl2-exposed cells demonstrated that MMP loss and apoptosis were enhanced. Additionally, the pan-caspase inhibitor Z-VAD-FMK increased the cellular levels of Bcl-2 and decreased apoptosis, but did not affect the cellular levels of LC3B in MnCl2-treated 16HBE cells. CONCLUSION: MnCl2 dose- and time-dependently inhibits 16HBE cell proliferation and induces MMP loss and apoptosis. Autophagy acts in a protective role against MnCl2-induced apoptosis in 16HBE cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/fisiología , Cloruros/farmacología , Células Epiteliales/efectos de los fármacos , Compuestos de Manganeso/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Autofagia/efectos de los fármacos , Bronquios , Línea Celular , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos
12.
Andrologia ; 48(10): 1092-1099, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26791599

RESUMEN

Testis-specific gene antigen10 (Tsga10), as a cytoskeletal protein in the sperm tail, impacts the sperm motility. This study investigates the correlation between sperm profile alterations and Tsga10 gene expression in adult mice exposed to formaldehyde (FA) and then treated with antioxidant effect of manganese (Mn2+ ). In this regard, we examined 35 NMRI adult male mice (6-8 weeks age) in 4 groups of control, sham, FA-exposed and FA+Mn2+ . The mice in FA+Mn2+ group were exposed to FA (10 mg kg-1 twice a day) for 2 weeks and treated with daily Mn2+ administration (5 mg kg-1 ) in the second week prior to sacrificing the mice for testis dissection. The right testis was dissected in each group and subjected to RNA extraction and cDNA syntheses for gene expression analysis by real-time PCR. The findings revealed that FA decreased sperm parameters and Tsga10 expression (52.6 ± 24.37%). However, the injected powerful manganese antioxidant improved sperm profile through overexpression of Tsga10 (121.6 ± 27.13%) under FA-induced stressful condition which proves the correlation between sperm profile and Tsga10 expression (P ≤ 0.05). This study also shows that Tsga10 expression protects sperm dysfunction in FA+Mn2+ group and resulting in better preservation of spermatozoa and improvement of male fertility.


Asunto(s)
Antioxidantes/farmacología , Formaldehído/farmacología , Manganeso/farmacología , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/efectos de los fármacos , Animales , Proteínas del Citoesqueleto , Expresión Génica/efectos de los fármacos , Masculino , Ratones , Proteínas de Plasma Seminal/genética , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo
13.
Food Chem ; 192: 548-56, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26304383

RESUMEN

Simultaneous spectrophotometric determination of a mixture of overlapped complexes of Fe(3+), Mn(2+), Cu(2+), and Zn(2+) ions with 2-(3-hydroxy-1-phenyl-but-2-enylideneamino) pyridine-3-ol(HPEP) by orthogonal projection approach-feed forward neural network (OPA-FFNN) and continuous wavelet transform-feed forward neural network (CWT-FFNN) is discussed. Ionic complexes HPEP were formulated with varying reagent concentration, pH and time of color formation for completion of complexation reactions. It was found that, at 5.0 × 10(-4) mol L(-1) of HPEP, pH 9.5 and 10 min after mixing the complexation reactions were completed. The spectral data were analyzed using partial response plots, and identified non-linearity modeled using FFNN. Reducing the number of OPA-FFNN and CWT-FFNN inputs were simplified using dissimilarity pure spectra of OPA and selected wavelet coefficients. Once the pure dissimilarity plots ad optimal wavelet coefficients are selected, different ANN models were employed for the calculation of the final calibration models. The performance of these two approaches were tested with regard to root mean square errors of prediction (RMSE %) values, using synthetic solutions. Under the working conditions, the proposed methods were successfully applied to the simultaneous determination of metal ions in different vegetable and foodstuff samples. The results show that, OPA-FFNN and CWT-FFNN were effective in simultaneously determining Fe(3+), Mn(2+), Cu(2+), and Zn(2+) concentration. Also, concentrations of metal ions in the samples were determined by flame atomic absorption spectrometry (FAAS). The amounts of metal ions obtained by the proposed methods were in good agreement with those obtained by FAAS.


Asunto(s)
Metales Pesados/química , Espectrofotometría/métodos , Análisis de Ondículas , Dieta , Metales Pesados/análisis , Redes Neurales de la Computación
14.
NMR Biomed ; 28(8): 958-66, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26086648

RESUMEN

Manganese-enhanced MRI studies have proven to be useful in monitoring physiological activities associated with calcium ions (Ca(2+)) due to the paramagnetic property of the manganese ion (Mn(2+)), which makes it an excellent probe of Ca(2+) . In this study, we developed a method in which a Mn(2+)-enhanced T1 -map MRI could enable the monitoring of Ca(2+) influx during the early stages of intestinal ischemia-reperfusion (I/R) injury. The Mn(2+) infusion protocol was optimized by obtaining dose-dependent and time-course wash-out curves using a Mn(2+)-enhanced T1-map MRI of rabbit abdomens following an intravenous infusion of 50 mmol/l MnCl2 (5-10 nmol/g body weight (BW)). In the rabbit model of intestinal I/R injury, T1 values were derived from the T1 maps in the intestinal wall region and revealed a relationship between the dose of the infused MnCl2 and the intestinal wall relaxation time. Significant Mn(2+) clearance was also observed over time in control animals after the infusion of Mn(2+) at a dose of 10 nmol/g BW. This technique was also shown to be sensitive enough to monitor variations in calcium ion homeostasis in vivo after small intestinal I/R injury. The T1 values of the intestinal I/R group were significantly lower (P < 0.05) than that of the control group at 5, 10, and 15 min after Mn(2+) infusion. Our data suggest that MnCl2 has the potential to be an MRI contrast agent that can be effectively used to monitor changes in intracellular Ca(2+) homeostasis during the early stages of intestinal I/R injury.


Asunto(s)
Calcio/metabolismo , Enfermedades Intestinales/metabolismo , Intestino Delgado/metabolismo , Imagen por Resonancia Magnética/métodos , Manganeso/farmacocinética , Daño por Reperfusión/metabolismo , Animales , Biomarcadores/metabolismo , Medios de Contraste/farmacocinética , Homeostasis , Aumento de la Imagen/métodos , Enfermedades Intestinales/patología , Intestino Delgado/patología , Espectroscopía de Resonancia Magnética/métodos , Conejos , Daño por Reperfusión/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
15.
J Orthop Res ; 33(1): 122-30, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25231276

RESUMEN

This study investigated the effects of local delivery of manganese chloride (MnCl2), an insulin-mimetic compound, upon fracture healing using a rat femoral fracture model. Mechanical testing, histomorphometry, and immunohistochemistry were performed to assess early and late parameters of fracture healing. At 4 weeks post-fracture, maximum torque to failure was 70% higher (P<0.05) and maximum torsional rigidity increased 133% (P<0.05) in animals treated with 0.125 mg/kg MnCl2 compared to saline controls. Histological analysis of the fracture callus revealed percent new mineralized tissue was 17% higher (P<0.05) at day 10. Immunohistochemical analysis of the 0.125 mg/kg MnCl2 treated group, compared to saline controls, showed a 379% increase in the density of VEGF-C+ cells. In addition, compared to saline controls, the 0.125 mg/kg MnCl2 treated group showed a 233% and 150% increase in blood vessel density in the subperiosteal region at day 10 post-fracture as assessed by detection of PECAM and smooth muscle α actin, respectively. The results suggest that local MnCl2 treatment accelerates fracture healing by increasing mechanical parameters via a potential mechanism of amplified early angiogenesis leading to increased osteogenesis. Therefore, local administration of MnCl2 is a potential therapeutic adjunct for fracture healing.


Asunto(s)
Cloruros/farmacología , Cloruros/uso terapéutico , Fracturas del Fémur/tratamiento farmacológico , Curación de Fractura/efectos de los fármacos , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/uso terapéutico , Actinas/metabolismo , Animales , Fenómenos Biomecánicos , Femenino , Fracturas del Fémur/metabolismo , Masculino , Modelos Animales , Neovascularización Fisiológica/efectos de los fármacos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ratas , Ratas Endogámicas BB , Ratas Wistar , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/metabolismo
16.
J Magn Reson Imaging ; 41(3): 806-13, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24591227

RESUMEN

PURPOSE: To investigate the potential of manganese (Mn)-enhanced MRI for sensitive detection and delineation of tumors that demonstrate little enhancement on Gd-DTPA. MATERIALS AND METHODS: Eighteen nude rats bearing 1 to 2 cm in diameter orthotopic breast tumors (ZR75 and LM2) were imaged on a 3 Tesla (T) clinical scanner. Gd-DTPA was administered intravenously and MnCl2 subcutaneously, both at 0.05 mmol/kg. T1 -weighted imaging and T1 measurements were performed precontrast, 10 min post-Gd-DTPA, and 24 h post-MnCl2 . Tumors were excised and histologically assessed using H&E (composition and necrosis) and CD34 (vascularity). RESULTS: Most tumors (78%) demonstrated little enhancement (< 20% change in R1 ) on Gd-DTPA. MnCl2 administration achieved greater and more uniform enhancement throughout the tumor mass (i.e., not restricted to the tumor periphery), with R1 changing over 20% in 72% of tumors. MnCl2 -induced R1 changes compared with Gd-induced changes were significantly greater in both ZR75 (P < 0.01) and LM2 tumors (P < 0.05). Histology confirmed very low vascularity in both tumor models, and necrotic areas were well delineated only on Mn-enhanced MRI. CONCLUSION: Mn-enhanced MRI is a promising approach for detection of low-Gd-enhancing tumors.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Medios de Contraste , Gadolinio DTPA , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética , Manganeso , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratas , Ratas Desnudas
17.
Biotechnol Bioeng ; 108(10): 2348-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21557201

RESUMEN

The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/biosíntesis , Medios de Cultivo/química , Animales , Células CHO , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Glicosilación , Manosa , Ratones , Concentración Osmolar , Proteínas Recombinantes/biosíntesis
18.
Environ Health Toxicol ; 26: e2011017, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22232721

RESUMEN

OBJECTIVES: Manganese chloride (MnCl(2)) is one of heavy metals for causing neurogenerative dysfunction like Manganism. The purpose of this study was to determine the acute toxicity of MnCl(2) using different times and various concentrations including whether manganese toxicity may involve in two intrinsic pathways, endoplasmic reticulum (ER) stress and mitochondria dysfunction and lead to neuronal apoptosis mediated by organelle disorders in neuroblastoma cell line SK-N-MC. METHODS: In the acute toxicity test, five concentrations (200, 400, 600, 800, 1,000 uM) of MnCl(2) with 3, 6, 12, 24, 48 hours exposure were selected to analyze cell viability. In addition, to better understand their toxicity, acute toxicity was examined with 1,000 uM MnCl(2) for 24 hours exposure via reactive oxygen species (ROS), mitochondria membrane potential, western blotting and mitochondrial complex activities. RESULTS: Our results showed that both increments of dose and time prompt the increments in the number of dead cells. Cells treated by 1,000 µM MnCl(2) activated 265% (±8.1) caspase-3 compared to control cell. MnCl(2) induced intracellular ROS produced 168% (±2.3%) compared to that of the control cells and MnCl(2) induced neurotoxicity significantly dissipated 48.9% of mitochondria membrane potential compared to the control cells. CONCLUSIONS: This study indicated that MnCl(2) induced apoptosis via ER stress and mitochondria dysfunction. In addition, MnCl(2) affected only complex I except complex II, III or IV activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...