Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38881304

RESUMEN

Digestion can make up a substantial proportion of animal energy budgets, yet our understanding of how it varies with sex, body mass and ration size is limited. A warming climate may have consequences for animal growth and feeding dynamics that will differentially impact individuals in their ability to efficiently acquire and assimilate meals. Many species, such as walleye (Sander vitreus), exhibit sexual size dimorphism (SSD), whereby one sex is larger than the other, suggesting sex differences in energy acquisition and/or expenditure. Here, we present the first thorough estimates of specific dynamic action (SDA) in adult walleye using intermittent-flow respirometry. We fed male (n=14) and female (n=9) walleye two ration sizes, 2% and 4% of individual body mass, over a range of temperatures from 2 to 20°C. SDA was shorter in duration and reached higher peak rates of oxygen consumption with increasing temperature. Peak SDA increased with ration size and decreased with body mass. The proportion of digestible energy lost to SDA (i.e. the SDA coefficient) was consistent at 6% and was unrelated to temperature, body mass, sex or ration size. Our findings suggest that sex has a negligible role in shaping SDA, nor is SDA a contributor to SSD for this species. Standard and maximum metabolic rates were similar between sexes but maximum metabolic rate decreased drastically with body mass. Large fish, which are important for population growth because of reproductive hyperallometry, may therefore face a bioenergetic disadvantage and struggle most to perform optimally in future, warmer waters.


Asunto(s)
Metabolismo Energético , Consumo de Oxígeno , Caracteres Sexuales , Animales , Masculino , Femenino , Consumo de Oxígeno/fisiología , Percas/fisiología , Percas/crecimiento & desarrollo , Temperatura , Calentamiento Global , Tamaño Corporal
2.
Sci Total Environ ; 922: 171057, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378061

RESUMEN

Ocean warming is a prevailing threat to marine ectotherms. Recently the "plastic floors, concrete ceilings" hypothesis was proposed, which suggests that a warmed fish will acclimate to higher temperatures by reducing standard metabolic rate (SMR) while keeping maximum metabolic rate (MMR) stable, therefore improving aerobic scope (AS). Here we evaluated this hypothesis on red drum (Sciaenops ocellatus) while incorporating measures of hypoxia vulnerability (critical oxygen threshold; Pcrit) and mitochondrial performance. Fish were subjected to a 12-week acclimation to 20 °C or 28 °C. Respirometry was performed every 4 weeks to obtain metabolic rate and Pcrit; mitochondrial respirometry was performed on liver and heart samples at the end of the acclimation. 28 °C fish had a significantly higher SMR, MMR, and Pcrit than 20 °C controls at time 0, but SMR declined by 36.2 % over the 12-week acclimation. No change in SMR was observed in the control treatment. Contrary to expectations, SMR suppression did not improve AS relative to time 0 owing to a progressive decline in MMR over acclimation time. Pcrit decreased by 27.2 % in the warm-acclimated fishes, which resulted in temperature treatments having statistically similar values by 12-weeks. No differences in mitochondrial traits were observed in the heart - despite a Δ8 °C assay temperature - while liver respiratory and coupling control ratios were significantly improved, suggesting that mitochondrial plasticity may contribute to the reduced SMR with warming. Overall, this work suggests that warming induced metabolic suppression offsets the deleterious consequences of high oxygen demand on hypoxia vulnerability, and in so doing greatly expands the theoretical range of metabolically available habitats for red drum.


Asunto(s)
Perciformes , Animales , Perciformes/metabolismo , Hipoxia , Peces/metabolismo , Oxígeno/metabolismo , Aclimatación , Temperatura
3.
J Therm Biol ; 119: 103788, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38281315

RESUMEN

Foraging behavior is known to place demands on the metabolic characteristics of anurans. Active foragers feeding on sedentary prey typically have high aerobic capacity and low anaerobic capacity, whereas sit-and-wait foragers feeding on active and mobile prey have the opposite pattern. Thus, the energetic demands of foraging may influence their metabolic adaptations to harsh environments, such as high elevations. Anurans that engage in active foraging have been found to increase maximum metabolic rate (MMR) and aerobic scope (AS, the difference between MMR and resting metabolic rate, RMR) at high elevations. However, data are lacking in amphibian ambush foragers. In this study, we examined the RMR, MMR, AS, and feeding capacity of a sit-and-wait forager ─the Asiatic toad (Bufo gargarizans), from two populations that are in close geographic proximity but differ by 1350 m in elevation. Our results show that there is no elevational variation in RMR and feeding capacity in either males or females. However, there are sex-specific variations in MMR and AS along an elevational gradient; females from high elevations have lower MMR and smaller net AS than their counterparts from low elevations while males maintain similar MMR and net AS across elevations. Furthermore, aerobic performances do not appear to be associated with feeding capacity at either the individual or population level. Our results support the hypothesis that sit-and-wait foragers may not increase their aerobic capacity as a strategy in hypoxic and low food availability environments and the role of sex in these adaptive adjustments should not be overlooked.


Asunto(s)
Metabolismo Basal , Bufonidae , Humanos , Animales , Femenino , Masculino
4.
Artículo en Inglés | MEDLINE | ID: mdl-36206849

RESUMEN

Fish from commercially farmed stocks are often released into the natural environment to supplement wild populations. This practice is often applied to salmonid fish as they are an essential fishery resource and also used for recreational angling. However, farmed fish tend to show lower survival rates after release than wild fish. For this reason, the release of semi-wild fish is increasingly used in Japan; these fish are generated using female fish from domesticated stocks and male fish of wild origin. The survival rate of released semi-wild fish is higher than that of farmed fish, but the reason for this is unknown. This study compared the metabolism and swimming performance of semi-wild and farmed masu salmon (Oncorynchus masou). The analyses showed that resting metabolic rate (RMR), maximum metabolic rate (MMR) and swimming speeds that minimize energy costs of travel (optimal swimming speed) were higher in semi-wild fish than in farmed fish. Critical swimming speed did not differ significantly between the two groups of fish. Semi-wild fish with high RMR may have a social status advantage over farmed fish because a previous study reported that SMR, which is the value closest to basal metabolism significantly affects feeding motivation. This means that individuals with higher social status may be more motivated to feed. As RMR is proportional to food requirements, then release programs should be planned taking food resources at the release site into consideration.


Asunto(s)
Metabolismo Basal , Oncorhynchus , Femenino , Masculino , Animales , Natación/fisiología , Explotaciones Pesqueras , Granjas
5.
Biol Lett ; 18(6): 20220036, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35702980

RESUMEN

The energy cost of adaptive immune activation in endotherms is typically quantified from changes in resting metabolic rate following exposure to a novel antigen. An implicit assumption of this technique is that all variation in energy costs following antigenic challenge is due solely to adaptive immunity, while ignoring potential changes in the energy demands of ongoing bodily functions. We critically assess this assumption by measuring both basal metabolic rate (BMR) and exercise-induced maximal metabolic rate (MMR) in house sparrows before and after the primary and two subsequent vaccinations with either saline (sham) or two novel antigens (keyhole limpet haemocyanin and sheep red blood cells; KLH and SRBC, respectively). We also examined the effect of inducing male breeding levels of testosterone (T) on immune responses and their metabolic costs in both males and females. Although there was a moderate decrease in KLH antibody formation in T-treated birds, there was no effect of T on BMR, MMR or immunity to SRBC. There was no effect of vaccination on BMR but, surprisingly, all vaccinated birds maintained MMR better than sham-treated birds as the experiment progressed. Our findings caution against emphasizing energy costs or nutrient diversion as being responsible for reported fitness reductions following activation of adaptive immunity.


Asunto(s)
Gorriones , Animales , Metabolismo Basal/fisiología , Metabolismo Energético/fisiología , Femenino , Masculino , Ovinos , Gorriones/fisiología
6.
Biol Lett ; 18(2): 20210374, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35168378

RESUMEN

The use of energy is universal to all life forms and all levels of biological organization, potentially linking processes operating at variable scales. Individual and species ranges might be energetically constrained, yet divergent metabolic limitations at both scales can disassociate these individual and species traits. We analysed comparative energetic and range data to unravel the mechanistic basis of the dissociation between individual and species range sizes observed among mammalian species. Our results demonstrate that basal, or maintenance, metabolism negatively correlates with individual ranges, but, at the same time, it positively correlates with species ranges. High aerobic capacity, i.e. maximum metabolic rate, positively correlates with individual ranges, but it is weakly related to species range size. These antagonistic energetic constraints on both ranges could lead to a disassociation between individual and species traits and to a low covariation between home and species range sizes. We show that important organismal functions, such as basal and maximum metabolic rates, have the potential to unravel mechanisms operating at different levels of biological organization and to expose links between energy-dependent processes at different scales.


Asunto(s)
Ecosistema , Mamíferos , Animales , Metabolismo Basal , Metabolismo Energético
7.
Artículo en Inglés | MEDLINE | ID: mdl-34678496

RESUMEN

Chronic elevation of circulating cortisol is known to have deleterious effects on fish, but information about the consequences of prolonged cortisol elevation on the metabolism of fish is scarce. To test the effects of chronic cortisol elevation on the aerobic performance of rainbow trout, we examined how two severities of chronically elevated plasma cortisol levels affected the oxygen uptake during rest and after exhaustive exercise using a high (HC) and a medium cortisol (MC) treatment. High cortisol doses significantly affected standard (SMR) and maximum metabolic rates (MMR) compared to control fish. In comparison, the medium cortisol treatment elevated maximum metabolic rates (MMR) but did not significantly influence SMR compared to a sham group (S) and control group (C). The medium cortisol treatment resulted in a significantly increased metabolic scope due to an elevation of MMR, an effect that was abolished in the HC group due to co-occuring elevations in SMR. The elevated SMR of the HC-treated fish could be explained by increased in vitro oxygen uptake rates (MO2) of specific tissues, indicating that the raised basal metabolism was caused, in part, by an increase in oxygen demand of specific tissues. Haematological results indicated an increased reliance on anaerobic metabolic pathways in cortisol-treated fish under resting conditions.


Asunto(s)
Hidrocortisona/metabolismo , Oncorhynchus mykiss/metabolismo , Anaerobiosis/efectos de los fármacos , Animales , Metabolismo Basal/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hidrocortisona/administración & dosificación , Hidrocortisona/sangre , Redes y Vías Metabólicas/efectos de los fármacos , Oncorhynchus mykiss/sangre , Consumo de Oxígeno/efectos de los fármacos , Esfuerzo Físico , Distribución Tisular
8.
Animals (Basel) ; 11(12)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34944222

RESUMEN

The metabolic rate could be one of the factors affecting the salinity tolerance capacity of fish. Experiment I tested whether metabolic rates correlate with the upper salinity tolerance limit among individual grass carp by daily increasing salinity (1 g kg-1 day-1). The feeding dropped sharply as the salinity reached 10 g kg-1 and ceased when salinities exceeded 11 g kg-1. The ventilation frequency decreased weakly as salinity increased from 0 to 12 g kg-1 and then increased rapidly as salinity reached 14 g kg-1. The fish survived at salinities lower than 14 g kg-1, and all fish died when salinity reached 17 g kg-1. The upper salinity tolerance limit was not correlated with metabolic rates. Therefore, a lower metabolic rate may not necessarily allow for better salinity tolerance capacity. Experiment II tested how different salinities (0, 0.375, 0.75, 1.5, 3, and 6 g kg-1 for 2 weeks) affect the metabolic parameters of grass carp. The changes in the resting metabolic rate with increasing salinity could be explained by the relative changes in interlamellar cell mass and protruding lamellae. The maximum metabolic rate remained constant, suggesting that the salinity-induced changes in the gill surface had a minor effect on oxygen uptake capacity.

9.
J Anim Ecol ; 90(8): 1854-1863, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33884621

RESUMEN

Energy is a universal resource essential for all life functions. The rate of transformation of energy into an organism, and the energetic investment into reproduction, determines population and ecological-level processes. Several hypotheses predicted that the ecological expansion and size of the geographic distribution of a species are shaped by, among other factors, metabolic performance. However, how organismal energetic characteristics contribute to species geographic range size is poorly understood. With phylogenetic comparative methods whether energetic maintenance costs (basal metabolic rate, BMR), aerobic capacity (maximum exercise metabolic rate, VO2 max), summit thermoregulation (summit metabolic rate, VO2 sum) and the ability to sustain energy provisioning (daily energy expenditure, DEE) determine the distribution of mammalian species range sizes was tested. Both basal and maximum exercise metabolic rates (accounting for body mass), but not summit thermogenic metabolic rate, were positively associated with species range sizes. Furthermore, daily energy expenditure (accounting for body mass) was positively associated with species ranges. Body mass (accounting for energetic maintenance) was negatively related to range sizes. High aerobic exercise capacity, aiding mobility such as running and dispersal, and high sustained energy provisioning, aiding reproductive effort such as pregnancy, lactation and natal dispersal, can facilitate the establishment of large mammalian geographic ranges. Consequently, the pace of organismal physiological processes can shape important ecological and biodiversity patterns by setting limits to species' range sizes.


Asunto(s)
Metabolismo Basal , Mamíferos , Animales , Regulación de la Temperatura Corporal , Metabolismo Energético , Filogenia
10.
Fish Physiol Biochem ; 47(1): 109-120, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33211244

RESUMEN

In order to evaluate the effects of acute temperature exposure on the swimming performance of rainbow trout (Oncorhynchus mykiss), the critical swimming speed (Ucrit) and oxygen consumption rates (MO2) were determined at different temperatures (13.2, 18.4, and 22.5 °C). The Ucrit and MO2 of different body mass (109.44, 175.74, and 249.42 g) fish were also obtained at 13.4 °C. The Ucrit first increased as the temperature increased from 13.2 to 15.2 °C, which was calculated to be the optimal temperature for the Ucrit, and then decreased with increasing temperature. The optimal swimming speed (Uopt) showed a similar trend to the Ucrit. At a given swimming speed, the MO2 and cost of transport (COT) were significantly higher at 22.5 than at 13.2 °C, suggesting the energy utilization efficiency decreased with increasing temperature. The absolute values of Ucrit and Uopt increased as the body mass increased from 109.44 to 249.42 g, whereas the relative values decreased. Although not statistically significant, the maximum metabolic rate (MMR) tended to increase with temperature but decrease with body mass. Results can be of value in understanding the behavioral and physiological response of rainbow trout to acute temperature change.


Asunto(s)
Oncorhynchus mykiss/fisiología , Natación/fisiología , Temperatura , Animales , Metabolismo Energético , Consumo de Oxígeno , Agua
11.
J Exp Biol ; 223(Pt 12)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32376709

RESUMEN

The capacity to extract oxygen from the environment and transport it to respiring tissues in support of metabolic demand reportedly has implications for species' thermal tolerance, body size, diversity and biogeography. Here, we derived a quantifiable linkage between maximum and basal metabolic rate and their oxygen, temperature and size dependencies. We show that, regardless of size or temperature, the physiological capacity for oxygen supply precisely matches the maximum evolved demand at the highest persistently available oxygen pressure and this is the critical PO2  for the maximum metabolic rate, Pcrit-max For most terrestrial and shallow-living marine species, Pcrit-max is the current atmospheric pressure, 21 kPa. Any reduction in oxygen partial pressure from current values will result in a calculable decrement in maximum metabolic performance. However, oxygen supply capacity has evolved to match demand across temperatures and body sizes and so does not constrain thermal tolerance or cause the well-known reduction in mass-specific metabolic rate with increasing body mass. The critical oxygen pressure for resting metabolic rate, typically viewed as an indicator of hypoxia tolerance, is, instead, simply a rate-specific reflection of the oxygen supply capacity. A compensatory reduction in maintenance metabolic costs in warm-adapted species constrains factorial aerobic scope and the critical PO2  to a similar range, between ∼2 and 6, across each species' natural temperature range. The simple new relationship described here redefines many important physiological concepts and alters their ecological interpretation.


Asunto(s)
Hipoxia , Oxígeno , Adaptación Fisiológica , Animales , Consumo de Oxígeno , Presión Parcial , Temperatura
12.
Physiol Biochem Zool ; 93(3): 243-254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32293978

RESUMEN

Both laboratory and field respirometry are rapidly growing techniques to determine animal performance thresholds. However, replicating protocols to estimate maximum metabolic rate (MMR) between species, populations, and individuals can be difficult, especially in the field. We therefore evaluated seven different exercise treatments-four laboratory methods involving a swim tunnel (critical swim speed [Ucrit], Ucrit postswim fatigue, maximum swim speed [Umax], and Umax postswim fatigue) and three field-based chasing methods (3-min chase with 1-min air exposure, 3-min chase with no air exposure, and chase to exhaustion)-in adult coho salmon (Oncorhynchus kisutch) as a case study to determine best general practices for measuring and quantifying MMR in fish. We found that all seven methods were highly comparable and that chase treatments represent a valuable field alternative to swim tunnels. Moreover, we caution that the type of test and duration of measurement windows used to calculate MMR can have significant effects on estimates of MMR and statistical power for each approach.


Asunto(s)
Oncorhynchus kisutch , Consumo de Oxígeno , Animales , Peces , Natación , Fatiga
13.
Biology (Basel) ; 8(4)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744192

RESUMEN

Changes in environmental salinity challenge fish homeostasis and may affect physiological performance, such as swimming capacity and metabolism, which are important for foraging, migration, and escaping predators in the wild. The effects of salinity stress on physiological performance are largely species specific, but may also depend on intra-specific differences in physiological capabilities of sub-populations. We measured critical swimming speed (Ucrit) and metabolic rates during swimming and at rest at salinities of 0 and 10 in European perch (Perca fluviatilis) from a low salinity tolerance population (LSTP) and a high salinity tolerance population (HSTP). Ucrit of LSTP was significantly reduced at a salinity of 10 yet was unaffected by salinity change in HSTP. We did not detect a significant cost of osmoregulation, which should theoretically be apparent from the metabolic rates during swimming and at rest at a salinity of 0 compared to at a salinity of 10 (iso-osmotic). Maximum metabolic rates were also not affected by salinity, indicating a modest tradeoff between respiration and osmoregulation (osmo-respiratory compromise). Intra-specific differences in effects of salinity on physiological performance are important for fish species to maintain ecological compatibility in estuarine environments, yet render these sub-populations vulnerable to fisheries. The findings of the present study are therefore valuable knowledge in conservation and management of estuarine fish populations.

14.
J Comp Physiol B ; 189(3-4): 463-470, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30874899

RESUMEN

It is well established that the nutrient and energy requirements of birds increase substantially during moult, but it is not known if these increased demands affect their aerobic capacity. We quantified the absolute aerobic scope of house and Spanish sparrows, Passer domesticus and P. hispaniolensis, respectively, before and during sequential stages of their moult period. The absolute aerobic scope (AAS) is the difference between maximum metabolic rate (MMR) during peak locomotor activities and minimum resting metabolic rate (RMRmin), thus representing the amount of aerobic power above that committed to maintenance needs available for other activities. As expected, RMRmin increased over the moult period by up to 40 and 63% in house and Spanish sparrows, respectively. Surprisingly, the maximum metabolic rates also decreased during moult in both species, declining as much as 25 and 38% compared with pre-moult values of house and Spanish sparrows, respectively. The concurrent changes in RMRmin and MMR during moult resulted in significant decreases in AAS, being up to 32 and 47% lower than pre-moult levels of house and Spanish sparrows, respectively, during moult stages having substantial feather replacement. We argue that the combination of reduced flight efficiency due to loss of wing feathers and reduced aerobic capacity places moulting birds at greater risk of predation. Such performance constraints likely contribute to most birds temporally separating moult from annual events requiring peak physiological capacity such as breeding and migration.


Asunto(s)
Metabolismo Energético/fisiología , Muda/fisiología , Consumo de Oxígeno/fisiología , Gorriones/fisiología , Animales , Actividad Motora/fisiología , Gorriones/clasificación , Especificidad de la Especie
15.
J Therm Biol ; 80: 164-171, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30784482

RESUMEN

One way to understand ecological patterns of species is to determine their physiological diversity on a large geographic and/or temporal scales, in a context of hierarchical biodiversity framework. In particular, macrophysiological studies analyze how environmental factors affect the physiology and therefore the distribution of species. Subterranean species are an excellent model for evaluating the large-scale effects of ambient temperature (Ta) conditions on thermal physiology and distribution, due to their extensive use of burrows that provide a relatively thermal stable environment. Species belonging to the genus Ctenomys are all subterranean and endemic of South America. Cold induced maximum metabolic rate (MMR), basal metabolic rate (BMR) and non shivering thermogenesis (NST) were analyzed, as well as the expression of uncoupled proteins (UCP) in brown adipose tissue (BAT). Biogeographical variables appear to have no effect MMR experimentally induced by cold condition within Ctenomys. Also, mechanisms of heat production are species-specific, varying from a combination of ST and NST to a complete use of shivering mechanisms. This pattern is correlated at tissue level, since species that use only ST show a smaller interscapular BAT patch, not detectable presence of UCP1 and low COX activity. Thus, other factors, including body mass, that constrain cold induced MMR could affect thermogenic variability among Ctenomys. In the evolutionary timescale, if low O2 levels of burrows impose a ceiling in cold induced MMR, and ST is enhanced due to species-specific life history traits, such as digging effort, then the observed differences among Ctenomys species might be explained.


Asunto(s)
Roedores/fisiología , Termogénesis , Animales , Metabolismo Energético , Especificidad de la Especie , Temperatura
16.
Artículo en Inglés | MEDLINE | ID: mdl-29223611

RESUMEN

Metabolic rate has been linked to growth, reproduction, and survival at the individual level and is thought to have far reaching consequences for the ecology and evolution of organisms. However, metabolic rates must be consistent (i.e. repeatable) over at least some portion of the lifetime in order to predict their longer-term effects on population dynamics and how they will respond to selection. Previous studies demonstrate that metabolic rates are repeatable under constant conditions but potentially less so in more variable environments. We measured the standard (=minimum) metabolic rate, maximum metabolic rate, and aerobic scope (=interval between standard and maximum rates) in juvenile brown trout (Salmo trutta) after 5weeks acclimation to each of three consecutive test temperatures (10, 13, and then 16°C) that simulated the warming conditions experienced throughout their first summer of growth. We found that metabolic rates are repeatable over a period of months under changing thermal conditions: individual trout exhibited consistent differences in all three metabolic traits across increasing temperatures. Initial among-individual differences in metabolism are thus likely to have significant consequences for fitness-related traits over key periods of their life history.


Asunto(s)
Aclimatación , Metabolismo Energético , Temperatura , Trucha/metabolismo , Animales , Tamaño Corporal , Ingestión de Alimentos , Reproducibilidad de los Resultados , Estaciones del Año , Trucha/crecimiento & desarrollo , Trucha/fisiología
17.
Front Physiol ; 8: 654, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919865

RESUMEN

Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis) could generate differences in basal (BMR) and maximum metabolic rates (Msum), as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW) or tap (fresh) water (TW) and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase) in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC) and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA). The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA) to whole organism traits (e.g., metabolic rates). We propose that the physiological changes observed in Z. capensis acclimated to saltwater could be common phenomena in birds and likely explain selection of prey containing little salt and habitats associated with low salinity.

18.
Exp Gerontol ; 98: 70-79, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28803134

RESUMEN

Variation in lifespans is an intriguing phenomenon, but how metabolic rate influence this variation remains unclear. High aerobic capacity can result in health benefits, but also in increased oxidative damage and accelerated ageing. We tested these contradictory predictions using bank voles (Myodes=Clethrionomys glareolus) from lines selected for high swim-induced aerobic metabolism (A), which had about 50% higher maximum metabolic rate and a higher basal and routine metabolic rates, than those from unselected control lines (C). We measured sprint speed (VSmax), forced-running maximum metabolic rate (VO2run), maximum long-distance running speed (VLmax), running speed at VO2run (VVO2), and respiratory quotient at VO2run (RQ) at three age classes (I: 3-5, II: 12-14, III: 17-19months), and analysed survivorship. We asked if ageing, understood as the age-related decline of the performance traits, differs between the A and C lines. At age class I, voles from A lines had 19% higher VO2run, and 12% higher VLmax, but tended to have 19% lower VSmax, than those from C lines. RQ was nearly 1.0 for both A and C lines. The pattern of age-related changes differed between the lines mainly between age classes I and II, but not in older animals. VSmax increased by 27% in A lines and by 10% in C lines between age class I and II, but between classes II and III, it increased by 16% in both selection directions. VO2run decreased by 7% between age class I and II in A lines only, but in C lines it remained constant across all age classes. VLmax decreased by 8% and VVO2 by 12% between age classes II and III, but similarly in both selection directions. Mortality was higher in A than in C lines only between the age of 1 and 4months. The only trait for which the changes in old animals differed between the lines was RQ. In A lines, RQ increased between age classes II and III, whereas in C lines such an increase occurred between age classes I and II. Thus, we did not find obvious effects of selection on the pattern of ageing. However, the physiological performance and mortality of bank voles remained surprisingly robust to ageing, at least until the age of 17-19months, similar to the maximum lifespan under natural conditions. Therefore, it is possible that the selection could affect the pattern of ageing in even older individuals when symptoms of senility might be more profound.


Asunto(s)
Envejecimiento/fisiología , Arvicolinae/fisiología , Metabolismo Energético , Tolerancia al Ejercicio , Factores de Edad , Envejecimiento/genética , Animales , Arvicolinae/genética , Metabolismo Energético/genética , Tolerancia al Ejercicio/genética , Femenino , Herencia , Patrón de Herencia , Longevidad , Masculino , Selección Genética , Natación
19.
Environ Toxicol Chem ; 36(10): 2722-2729, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28419542

RESUMEN

Nanosilver (nAg) has been incorporated into many consumer products, including clothing and washing machines, because of its antimicrobial properties. Consequently, the potential for its release into aquatic environments is of significant concern. Documented toxic effects on fish include altered gene expression, gill damage, and impaired gas exchange, as well as mortality at high nAg concentrations. The present study reports the effects of nAg on the metabolism of rainbow trout (Oncorhynchus mykiss). Fish were exposed to environmentally relevant concentrations (0.28 ± 0.02 µg/L) and higher (47.60 ± 5.13 µg/L) for 28 d, after which their standard metabolic rate (SMR), forced maximum metabolic rate (MMRf ), and spontaneous maximum metabolic rate (MMRs ) were measured. There was no effect observed in SMR, MMRf , or MMRs , suggesting that nAg is unlikely to directly affect fish metabolism. On average, MMRs tended to be greater than MMRf , and most MMRs occurred when room lighting increased. The timing of MMRf chase protocols was found to affect both MMRf and SMR estimates, in that chasing fish before respirometric experiments caused higher MMRf estimates and lower SMR estimates. Although compounded effects involving nAg and other environmental stressors remain unknown, the present study indicates that the tested range of nAg is unlikely to constrain fish metabolism. Environ Toxicol Chem 2017;36:2722-2729. © 2017 SETAC.


Asunto(s)
Branquias/metabolismo , Nanopartículas del Metal/química , Oncorhynchus mykiss/metabolismo , Plata/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Branquias/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Consumo de Oxígeno/efectos de los fármacos , Plata/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
20.
J Fish Biol ; 90(3): 819-833, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27981561

RESUMEN

The present study determined the blood plasma osmolality and oxygen consumption of the perch Perca fluviatilis at different salinities (0, 10 and 15) and temperatures (5, 10 and 20° C). Blood plasma osmolality increased with salinity at all temperatures. Standard metabolic rate (SMR) increased with salinity at 10 and 20° C. Maximum metabolic rate (MMR) and aerobic scope was lowest at salinity of 15 at 5° C, yet at 20° C, they were lowest at a salinity of 0. A cost of osmoregulation (SMR at a salinity of 0 and 15 compared with SMR at a salinity of 10) could only be detected at a salinity of 15 at 20° C, where it was 28%. The results show that P. fluviatilis have capacity to osmoregulate in hyper-osmotic environments. This contradicts previous studies and indicates intraspecific variability in osmoregulatory capabilities among P. fluviatilis populations or habitat origins. An apparent cost of osmoregulation (28%) at a salinity of 15 at 20° C indicates that the cost of osmoregulation in P. fluviatilis increases with temperature under hyperosmotic conditions and a power analysis showed that the cost of osmoregulation could be lower than 12·5% under other environmental conditions. The effect of salinity on MMR is possibly due to a reduction in gill permeability, initiated to reduce osmotic stress. An interaction between salinity and temperature on aerobic scope shows that high salinity habitats are energetically beneficial during warm periods (summer), whereas low salinity habitats are energetically beneficial during cold periods (winter). It is suggested, therefore, that the seasonal migrations of P. fluviatilis between brackish and fresh water is to select an environment that is optimal for metabolism and aerobic scope.


Asunto(s)
Osmorregulación/fisiología , Consumo de Oxígeno , Percas/sangre , Salinidad , Temperatura , Animales , Ecosistema , Ambiente , Agua Dulce , Branquias/fisiología , Concentración Osmolar , Ósmosis , Equilibrio Hidroelectrolítico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...