Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1438019, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149419

RESUMEN

The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.


Asunto(s)
Anopheles , Melaninas , Oocistos , Plasmodium berghei , Esporozoítos , Animales , Anopheles/parasitología , Anopheles/inmunología , Plasmodium berghei/inmunología , Oocistos/metabolismo , Melaninas/metabolismo , Esporozoítos/inmunología , Esporozoítos/metabolismo , Mosquitos Vectores/parasitología , Mosquitos Vectores/inmunología , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/inmunología , Malaria/inmunología , Malaria/parasitología , Silenciador del Gen , Inmunidad Innata , Femenino
2.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38853990

RESUMEN

The malaria-causing parasites have to complete a complex infection cycle in the mosquito vector that also involves attack by the insect's innate immune system, especially at the early stages of midgut infection. However, Anopheles immunity to the late Plasmodium sporogonic stages, such as oocysts, has received little attention as they are considered to be concealed from immune factors due to their location under the midgut basal lamina and for harboring an elaborate cell wall comprising an external layer derived from the basal lamina that confers self-properties to an otherwise foreign structure. Here, we investigated whether Plasmodium berghei oocysts and sporozoites are susceptible to melanization-based immunity in Anopheles gambiae. Silencing of the negative regulator of melanization response, CLIPA14, increased melanization prevalence without significantly increasing the numbers of melanized oocysts, while co-silencing CLIPA14 with CLIPA2, a second negative regulator of melanization, resulted in a significant increase in melanized oocysts and melanization prevalence. Only late-stage oocysts were found to be melanized, suggesting that oocyst rupture was a prerequisite for melanization-based immune attack, presumably due to the loss of the immune-evasive features of their wall. We also found melanized sporozoites inside oocysts and in the hemocoel, suggesting that sporozoites at different maturation stages are susceptible to melanization. Silencing the melanization promoting factors TEP1 and CLIPA28 rescued oocyst melanization in CLIPA2/CLIPA14 co-silenced mosquitoes. Interestingly, silencing of CTL4, that protects early stage ookinetes from melanization, had no effect on oocysts and sporozoites, indicating differential regulation of immunity to early and late sporogonic stages. Similar to previous studies addressing ookinete stage melanization, the melanization of Plasmodium falciparum oocysts was significantly lower than that observed for P. berghei. In summary, our results provide conclusive evidence that late sporogonic malaria parasite stages are susceptible to melanization, and we reveal distinct regulatory mechanisms for ookinete and oocyst melanization.

3.
Drug Discov Ther ; 18(3): 194-198, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38925960

RESUMEN

Staphylococcus aureus, a Gram-positive bacterium, causes inflammatory skin diseases, such as atopic dermatitis, and serious systemic diseases, such as sepsis. In the skin and nasal environment, peptidoglycan (PGN)-degrading enzymes, including lysozyme and lysostaphin, affects S. aureus PGN. However, the effects of PGN-degrading enzymes on the acute innate immune-inducing activity of S. aureus have not yet been investigated. In this study, we demonstrated that PGN-degrading enzymes induce acute silkworm hemolymph melanization by S. aureus. Insoluble fractions of S. aureus treated with lysozyme, lysostaphin, or both enzymes, were prepared. Melanization of the silkworm hemolymph caused by the injection of these insoluble fractions was higher than that of S. aureus without enzyme treatment. These results suggest that structural changes in S. aureus PGN caused by PGN-degrading enzymes affect the acute innate immune response in silkworms.


Asunto(s)
Bombyx , Hemolinfa , Inmunidad Innata , Muramidasa , Peptidoglicano , Staphylococcus aureus , Animales , Staphylococcus aureus/efectos de los fármacos , Hemolinfa/metabolismo , Peptidoglicano/farmacología , Muramidasa/metabolismo , Inmunidad Innata/efectos de los fármacos , Melaninas/metabolismo
4.
Avian Pathol ; : 1-13, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38845537

RESUMEN

RESEARCH HIGHLIGHTS: Galleria mellonella larvae are a viable model for determining APEC pathogenicity.Larval disease score is the main variable for determining APEC pathogenicity.Response variables should be evaluated up to 24 h post-inoculation.

5.
Mol Biol Rep ; 51(1): 713, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824247

RESUMEN

BACKGROUND: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts. METHODS AND RESULTS: Recombinant PrtS was produced in Escherichia coli. Efficient inhibition of PrtS activity by photorin, a recently discovered emfourin-like protein inhibitor from P. laumondii, was demonstrated. The Galleria mellonella was utilized to examine the insect toxicity of PrtS and the impact of PrtS on hemolymph proteins in vitro. The insect toxicity of PrtS is reduced compared to protease homologues from non-pathogenic bacteria and is likely not essential for the infection process. However, using proteomic analysis, potential PrtS targets have been identified in the hemolymph. CONCLUSIONS: The spectrum of identified proteins indicates that the function of PrtS is to modulate the insect immune response. Further studies of PLPs' biological role in the PrtS and P. laumondii model must clarify the details of PrtS interaction with the insect immune system during bacterial infection.


Asunto(s)
Mariposas Nocturnas , Péptido Hidrolasas , Photorhabdus , Animales , Mariposas Nocturnas/microbiología , Péptido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hemolinfa/metabolismo , Proteómica/métodos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Microbiol Spectr ; 12(8): e0044224, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38869282

RESUMEN

Cryptococcus neoformans is a fungal pathogen that causes cryptococcosis primarily in immunocompromised patients, such as those with HIV/AIDS. One survival mechanism of C. neoformans during infection is melanin production, which catalyzed by laccase and protects fungal cells against immune attack. Hence, the comparative assessment of laccase activity is useful for characterizing cryptococcal strains. We serendipitously observed that culturing C. neoformans with food coloring resulted in degradation of some dyes with phenolic structures. Consequently, we investigated the color changes for the food dyes metabolized by C. neoformans laccase and by using this effect explored the development of a colorimetric assay to measure laccase activity. We developed several versions of a food dye-based colorimetric laccase assay that can be used to compare the relative laccase activities between different C. neoformans strains. We found that phenolic color degradation was glucose-dependent, which may reflect changes in the reduction properties of the media. Our food color-based colorimetric assay has several advantages, including lower cost, irreversibility, and not requiring constant monitoring , over the commonly used 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay for determining laccase activity. This method has potential applications to bioremediation of water pollutants in addition to its use in determining laccase virulence factor expression.IMPORTANCECryptococcus neoformans is present in the environment, and while infection is common, disease occurs mostly in immunocompromised individuals. C. neoformans infection in the lungs results in symptoms like pneumonia, and consequently, cryptococcal meningitis occurs if the fungal infection spreads to the brain. The laccase enzyme catalyzes the melanization reaction that serves as a virulence factor for C. neoformans. Developing a simple and less costly assay to determine the laccase activity in C. neoformans strains can be useful for a variety of procedures ranging from studying the relative virulence of cryptococci to environmental pollution studies.


Asunto(s)
Cryptococcus neoformans , Colorantes de Alimentos , Lacasa , Humanos , Colorimetría/métodos , Criptococosis/microbiología , Criptococosis/diagnóstico , Cryptococcus neoformans/enzimología , Colorantes de Alimentos/metabolismo , Proteínas Fúngicas/metabolismo , Lacasa/metabolismo , Fenoles/metabolismo
7.
Environ Toxicol ; 39(9): 4360-4371, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38760990

RESUMEN

The primary function of the skin is to form a mechanical, permeability, antimicrobial, and ultraviolet radiation barrier, which is essential for maintaining physiological homeostasis. Our previous studies demonstrated that cutaneous pigmentation could promote skin barrier function in addition to providing anti-ultraviolet irradiation defense. The present study aimed to develop a new regimen that enhances skin barrier function by regulating skin pigmentation using low-concentration imiquimod. Results showed that topical application of low-concentration imiquimod effectively induced skin hyperpigmentation in the dorsal skin and external ear of mice without inducing inflammatory cell infiltration. An in vitro study also revealed that low-concentration imiquimod did not induce any cytotoxic effects on melanoma cells but triggered excessive melanin synthesis. In coculture systems, low-concentration imiquimod was noted to increase tyrosinase activity in a broader cellular context, revealing the potential role of neighboring cells in melanin production. The next-generation sequencing result indicated that PKCη and Dnm3 might regulate melanin synthesis and release during imiquimod treatment. Overall, our study presents new insights into the regulation of melanin production by low-concentration imiquimod, both in a mice model and cultured cells. Furthermore, our study highlights the potential benefits of imiquimod in promoting melanin synthesis without causing skin disruptions or inducing inflammation, validating its potential to serve as a method for enhancing skin barrier functions by regulating the epidermal melanization reaction.


Asunto(s)
Imiquimod , Melaninas , Animales , Humanos , Ratones , Epidermis/efectos de los fármacos , Epidermis/metabolismo , Hiperpigmentación/tratamiento farmacológico , Melaninas/metabolismo , Ratones Endogámicos C57BL , Monofenol Monooxigenasa/metabolismo , Piel/efectos de los fármacos , Piel/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Línea Celular , Femenino
8.
Methods Mol Biol ; 2775: 257-268, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758323

RESUMEN

Melanin is a complex dark pigment synthetized by the phenoloxidase enzyme laccase in Cryptococcus neoformans. In vitro, this enzyme oxidizes exogenous catecholamines to produce melanin that may be secreted or incorporated into the fungal cell wall. This pigment has multiple roles in C. neoformans virulence during its interaction with different hosts and probably also in protecting fungal cells in the environment against predation and oxidative and radiation stresses, among others. However, it is important to note that laccase also has melanin-independent roles in C. neoformans interactions with host cells. In this chapter, we describe a quantitative laccase assay and a method for evaluating the kinetics of melanin production in C. neoformans colonies.


Asunto(s)
Cryptococcus neoformans , Lacasa , Melaninas , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/enzimología , Lacasa/metabolismo , Melaninas/biosíntesis , Melaninas/metabolismo , Pruebas de Enzimas/métodos
9.
Mycoses ; 67(4): e13724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584320

RESUMEN

OBJECTIVE: This study aims to assess the clinical characteristics of sporotrichosis in low-endemic areas of China, including the prevalence geography, genotypic traits of patients, clinical manifestations, and strain virulence and drug sensitivities. The objective is to improve the currently used clinical management strategies for sporotrichosis. METHODS: Retrospective data were collected from patients diagnosed with sporotrichosis through fungal culture identification. The isolates from purified cultures underwent identification using CAL (Calmodulin) gene sequencing. Virulence of each strain was assessed using a Galleria mellonella (G. mellonella) larvae infection model. In vitro susceptibility testing against commonly used clinical antifungal agents for sporotrichosis was conducted following CLSI criteria. RESULTS: In our low-endemic region for sporotrichosis, the majority of cases (23) were observed in middle-aged and elderly women with a history of trauma, with a higher incidence during winter and spring. All clinical isolates were identified as Sporothrix globosa (S. globosa). The G. mellonella larvae infection model indicated independent and dose-dependent virulence among strains, with varying toxicity levels demonstrated by the degree of melanization of the G. mellonella. Surprisingly, lymphocutaneous types caused by S. globosa exhibited lower in vitro virulence but were more common in affected skin. In addition, all S.globosa strains displayed high resistances to fluconazole, while remaining highly susceptible to terbinafine, itraconazole and amphotericin B. CONCLUSION: Given the predominance of elderly women engaged in agricultural labour in our region, which is a low-epidemic areas, they should be considered as crucial targets for sporotrichosis monitoring. S. globosa appears to be the sole causative agent locally. However, varying degrees of melanization in larvae were observed among these isolates, indicating a divergence in their virulence. Itraconazole, terbinafine and amphotericin B remain viable first-line antifungal options for treating S.globosa infection.


Asunto(s)
Sporothrix , Esporotricosis , Anciano , Persona de Mediana Edad , Humanos , Femenino , Itraconazol/farmacología , Itraconazol/uso terapéutico , Esporotricosis/microbiología , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Terbinafina/uso terapéutico , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Sporothrix/genética , China/epidemiología
10.
J Cosmet Dermatol ; 23(8): 2750-2756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38664985

RESUMEN

BACKGROUND: In Eastern culture, a fair complexion is the standard of beauty, leading to appearance-related distress among women with darker skin or facial pigmentation. Women seek whitening cosmetics to enhance their skin tone or correct their pigmentation, but their safety and effectiveness are paramount factors to consider. In this study, we evaluated the safety and whitening effects of a compound formula denoted as TEST comprising astaxanthin, nicotinamide, arbutin, and tranexamic acid. METHODS: Primary skin irritation and skin-whitening efficacy were examined. Three qualified melanization areas were treated with TEST, 7% ascorbic acid, or a blank. Skin color, the individual type angle (ITA°), and the melanin index (MI) were compared among treatment areas. RESULTS: TEST did not induce a skin response and exhibited a significantly higher ITA° than the blank, while no significant difference was observed with that of 7% ascorbic acid. Furthermore, the MI of TEST was significantly reduced posttreatment. CONCLUSIONS: TEST could be integrated into spot-fading and skin-whitening cosmeceuticals or functional cosmetics.


Asunto(s)
Arbutina , Ácido Ascórbico , Melaninas , Niacinamida , Preparaciones para Aclaramiento de la Piel , Pigmentación de la Piel , Rayos Ultravioleta , Adulto , Femenino , Humanos , Arbutina/farmacología , Arbutina/administración & dosificación , Ácido Ascórbico/farmacología , Ácido Ascórbico/administración & dosificación , Melaninas/metabolismo , Niacinamida/farmacología , Piel/efectos de los fármacos , Piel/efectos de la radiación , Piel/metabolismo , Preparaciones para Aclaramiento de la Piel/farmacología , Preparaciones para Aclaramiento de la Piel/administración & dosificación , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Xantófilas/farmacología , Xantófilas/administración & dosificación
11.
Insects ; 15(3)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38535357

RESUMEN

Endoparasitoids are insects that develop within other insects, employing unique strategies to enhance their offspring's survival. They inject polydnavirus and/or venom into their hosts along with eggs, effectively suppressing the host's immune system. Polydnavirus from Braconidae and Ichneumonidae wasps can integrate into the host's genome to express viral genes using the host's transcription systems. However, the ability of parasitoids without polydnavirus to manipulate host gene expression remains unclear. Lysine acetylation (LysAc), a post-translational modification critical for gene regulation, is hypothesized to be used by endoparasitoids lacking polydnavirus. We utilized the Chalcidoidea wasp Tetrastichus brontispae, which lacks polydnavirus, as an idiobiont endoparasitoid model to test this hypothesis, with pupae of the nipa palm hispid beetle Octodonta nipae as the host. Parasitism by T. brontispae resulted in the reduced expression of histone deacetylase Rpd3 and elevated levels of LysAc modification at histones H3.3K9 and H3.3K14 through proteomics and LysAc modification omics. The knockdown of Rpd3 increased the expression level of OnPPAF1 and OnPPO involved in the phenoloxidase cascade, leading to melanization in the host body whereby it resembled a mummified parasitized pupa and ultimately causing pupa death. This study enhances our understanding of how endoparasitoids employ histone acetylation to regulate immunity-related genes, offering valuable insights into their survival strategies.

12.
Insect Mol Biol ; 33(3): 270-282, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38329162

RESUMEN

Insects rely on their innate immune system to eliminate pathogenic microbes. As a system component, cytokines transmit intercellular signals to control immune responses. Growth-blocking peptide (GBP) is a member of the stress-responsive peptide family of cytokines found in several orders of insects, including Drosophila. However, the physiological role of GBP in defence against pathogens is not thoroughly understood. In this study, we explored the functions of GBP in a lepidopteran pest, Ostrinia furnacalis. Injection of recombinant O. furnacalis GBP (OfGBP) precursor (proGBP) and chemically synthesised GBP significantly induced the transcription of antimicrobial peptides (AMPs) and other immunity-related genes including immune deficiency (IMD) and Dorsal. The level of OfGBP mRNA was upregulated after bacterial infection. Knockdown of OfGBP expression led to a decrease in IMD, Relish, MyD88 and Dorsal mRNA levels. OfGBP induced phenoloxidase activity and affected hemocyte behaviours in O. furnacalis larvae. In summary, GBP is a potent cytokine, effectively regulating AMP synthesis, melanization response and cellular immunity to eliminate invading pathogens.


Asunto(s)
Proteínas de Insectos , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/inmunología , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Larva/crecimiento & desarrollo , Larva/inmunología , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Hemocitos/metabolismo , Inmunidad Innata
13.
Methods Mol Biol ; 2766: 281-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38270888

RESUMEN

Photosensitivity disorder caused by sunlight, including ultraviolet (UV) rays, often occurs in connective tissue diseases such as lupus erythematosus. In addition, UVA (320-400 nM) and UVB (280-320 nM) trigger the progression of skin inflammation in the patients. Therefore, it is crucial to evaluate skin damage under UV exposure using experimental animals to clarify the relationship between connective tissue disease and photosensitivity disorder. In this chapter, our original protocol for evaluating UVA-dependent skin damage, which is known as photoaging via oxidative stress, is described.


Asunto(s)
Dermatitis , Lupus Eritematoso Sistémico , Trastornos por Fotosensibilidad , Animales , Humanos , Estrés Oxidativo , Rayos Ultravioleta/efectos adversos
14.
Pestic Biochem Physiol ; 198: 105704, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225099

RESUMEN

Insects possess an effective innate immunity that enables them to adapt to their intricate living environment and fend off various pathogens (or parasites). This innate immunity comprises both humoral and cellular immunity, which synergistically orchestrate immune responses. Hemocytin, a lectin with a distinctive structure, plays a crucial role in insect hemolymph immunity. Hemocytin is involved in the early immune response, facilitating processes such as coagulation, nodulation, and encapsulation in the hemolymph. It prevents hemolymph overflow and microbial pathogens invasion resulting from epidermal damage, and also aids in the recognition and elimination of invaders. However, the research on hemocytin is still limited. Our previous findings demonstrated that destruxin A effectively inhibits insect hemolymph immunity by interacting with hemocytin, suggesting that hemocytin could be a potential target for insecticides development. Therefore, it is crucial to gain a deeper understanding of hemocytin. This review integrates recent advancements in the study of the structure and function of insect hemocytin and also explores the potential of hemocytin as a target for insecticides. This review aims to enhance our comprehension of insect innate immunity and provide innovative ideas for the development of environmentally friendly pesticides.


Asunto(s)
Moléculas de Adhesión Celular , Insecticidas , Animales , Insecticidas/farmacología , Hemolinfa , Insectos , Inmunidad Innata , Hemocitos
15.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256210

RESUMEN

MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.


Asunto(s)
Lepidópteros , Metarhizium , MicroARNs , Animales , Metarhizium/genética , Lepidópteros/genética , Regiones no Traducidas 3' , Bioensayo , Larva/genética , MicroARNs/genética
16.
Microbes Infect ; 26(1-2): 105245, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37918462

RESUMEN

Serine protease cascades regulate important insect immune responses, including melanization and Toll pathway activation. In the context of melanization, central components of these cascades are clip domain serine proteases (CLIPs) including the catalytic, clip domain serine proteases (cSPs) and their non-catalytic homologs (cSPHs). Here, we define partially the structural hierarchy of An. gambiae cSPs of the CLIPB family, central players in melanization, and characterize their relative contributions to bacterial melanization and to mosquito susceptibility to bacterial infections. Using in vivo genetic analysis we show that the protease cascade branches downstream of the cSPs CLIPB4 and CLIPB17 into two branches one converging on CLIPB10 and the second on CLIPB8. We also show that the contribution of key cSPHs to melanization in vivo in response to diverse microbial challenges is more significant than any of the individual cSPs, possibly due to partial functional redundancy among the latter. Interestingly, we show that the key cSPH CLIPA8 which is essential for the efficient activation cleavage of CLIPBs in vivo is efficiently cleaved itself by several CLIPBs in vitro, suggesting that cSPs and cSPHs regulate signal amplification and propagation in melanization cascades by providing positive reinforcement upstream and downstream of each other.


Asunto(s)
Anopheles , Infecciones Bacterianas , Animales , Anopheles/genética , Anopheles/metabolismo , Anopheles/microbiología , Serina Proteasas , Serina Endopeptidasas/genética , Serina Endopeptidasas/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
17.
Insect Biochem Mol Biol ; 164: 104048, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056530

RESUMEN

Phenoloxidase (PO) catalyzed melanization and other insect immune responses are mediated by serine proteases (SPs) and their noncatalytic homologs (SPHs). Many of these SP-like proteins have a regulatory clip domain and are called CLIPs. In most insects studied so far, PO precursors are activated by a PAP (i.e., PPO activating protease) and its cofactor of clip-domain SPHs. Although melanotic encapsulation is a well-known refractory mechanism of mosquitoes against malaria parasites, it is unclear if a cofactor is required for PPO activation. In Anopheles gambiae, CLIPA4 is 1:1 orthologous to Manduca sexta SPH2; CLIPs A5-7, A12-14, A26, A31, A32, E6, and E7 are 11:4 orthologous to M. sexta SPH1a, 1b, 4, and 101, SPH2 partners in the cofactors. Here we produced proCLIPs A4, A6, A7Δ, A12, and activated them with CLIPB9 or M. sexta PAP3. A. gambiae PPO2 and PPO7 were expressed in Escherichia coli for use as PAP substrates. CLIPB9 was mutated to CLIPB9Xa by including a Factor Xa cleavage site. CLIPA7Δ was a deletion mutant with a low complexity region removed. After PAP3 or CLIPB9Xa processing, CLIPA4 formed a high Mr complex with CLIPA6, A7Δ or A12, which assisted PPO2 and PPO7 activation. High levels of specific PO activity (55-85 U/µg for PO2 and 1131-1630 U/µg for PO7) were detected in vitro, indicating that cofactor-assisted PPO activation also occurs in this species. The cleavage sites and mechanisms for complex formation and cofactor function are like those reported in M. sexta and Drosophila melanogaster. In conclusion, these data suggest that the three (and perhaps more) SPHI-II pairs may form cofactors for CLIPB9-mediated activation of PPOs for melanotic encapsulation in A. gambiae.


Asunto(s)
Anopheles , Manduca , Animales , Serina Proteasas/metabolismo , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Serina Endopeptidasas , Catecol Oxidasa/genética , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Monofenol Monooxigenasa , Manduca/metabolismo , Proteínas de Insectos/metabolismo , Hemolinfa
18.
Cell Tissue Res ; 395(2): 199-210, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087072

RESUMEN

Spatial transcriptomics is a technique that provides insight into gene expression profiles in tissue sections while retaining structural information. We have employed this method to study the pathological conditions related to red and melanized focal changes in farmed Atlantic salmon (Salmo salar). Our findings support a model where similar molecular mechanisms are involved in both red and melanized filet discolorations and genes associated with several relevant pathways show distinct expression patterns in both sample types. Interestingly, there appears to be significant cellular heterogeneity in the foci investigated when looking at gene expression patterns. Some of the genes that show differential spatial expression are involved in cellular processes such as hypoxia and immune responses, providing new insight into the nature of muscle melanization in Atlantic salmon.


Asunto(s)
Enfermedades de los Peces , Infecciones por Reoviridae , Salmo salar , Animales , Infecciones por Reoviridae/patología , Salmo salar/genética , Músculo Esquelético/patología , Perfilación de la Expresión Génica , Transcriptoma/genética , Enfermedades de los Peces/patología
19.
Front Immunol ; 14: 1330312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38124757

RESUMEN

Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.


Asunto(s)
Drosophila , Avispas , Animales , Drosophila melanogaster , Larva , Diferenciación Celular
20.
Arthropod Struct Dev ; 77: 101314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37925773

RESUMEN

The morphology of the immature stages of Utetes anastrephae (Hymenoptera: Braconidae), a native parasitoid of larvae of flies of the Neotropical genus Anastrepha (Diptera: Tephritidae), is shown. This study aimed to characterize the immature stages and morphological changes in the development of the koinobiont endoparasitoid in two species of larval hosts, Anastrepha obliqua and Anastrepha ludens. The definition of structures and morphological changes during development was made through daily microscopic observations and photographs of dissected hosts. The immature development of the parasitoid corresponds to a holometabolous insect with three well-defined stages: egg (two days), larva with three larval instars (approximately eight days), and pupa (six days). Similar development times were obtained in the two host species. Males and females completed their cycle in 17 and 18 days, respectively. During egg-first instar development, host antagonistic activity through melanization and encapsulation as mortality factors was evident and frequent only in A. obliqua. These results serve as basic knowledge for the use of this parasitoid in the biological control of fruit flies.


Asunto(s)
Himenópteros , Tephritidae , Femenino , Masculino , Animales , Larva , Pupa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...