Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Eur J Med Chem ; 280: 116918, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366253

RESUMEN

The interaction between menin and MLL1 protein plays an important role in AML with MLL rearrangement and NPM1 mutation. Blocking the formation of menin-MLL complex can inhibit proliferation and induce differentiation in these cancer subtypes. In development of anticancer drugs, irreversible inhibitors are gaining spotlight as they may have better activities than the reversible analogs. Therefore, we designed and developed a novel series of covalent menin inhibitors. Among these compounds, 37 emerges as a selective and potent inhibitor of MLL fusion protein-expressing leukemic cells. The cellular study indicates 37 has a distinct mechanism of action, in both reducing menin protein levels and downregulating MEN1 transcription. This effect of 37 is not involved in proteasomal degradation, and may directly affect the synthesis of menin protein, which offers a significant advantage in addressing acquired resistance to menin inhibitors. Further study showed that compound 37 has prolonged anti-leukemic action and exhibits promising in vivo efficacy, making it a valuable probe for further menin-MLL interaction studies.

2.
Front Endocrinol (Lausanne) ; 15: 1467882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371924

RESUMEN

Multiple Endocrine Neoplasia type 1 (MEN1) is a rare genetic disease, characterized by co-occurrence of several lesions of the endocrine system. In MEN1, the pathogenic MEN1 gene mutations lead to the Abnormal expression of menin, a critical tumor suppressor protein. We here reported a case of a 14-year-old male with insulinoma and primary hyperparathyroidism. Genetic testing demonstrated a novel heterozygote variant c.587delA of MEN1, resulting in the substitution of the 196th amino acid, changing from glutamic acid to glycine, followed by a frameshift translation of 33 amino acids. An identical variant was identified in the proband's father, who was further diagnosed with hyperparathyroidism. To the best of our knowledge, this is the first report of MEN1 syndrome caused by the c.587delA MEN1 variant. Observations indicated that, despite sharing the same MEN1 gene change, family members exhibited diverse clinical phenotypes. This underscored the presence of genetic anticipation within the familial context.


Asunto(s)
Mutación de Línea Germinal , Neoplasia Endocrina Múltiple Tipo 1 , Linaje , Proteínas Proto-Oncogénicas , Humanos , Neoplasia Endocrina Múltiple Tipo 1/genética , Masculino , Adolescente , Proteínas Proto-Oncogénicas/genética , Insulinoma/genética , Insulinoma/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología
3.
Genes (Basel) ; 15(9)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39336822

RESUMEN

The protein menin is encoded by the MEN1 gene and primarily serves as a nuclear scaffold protein, regulating gene expression through its interaction with and regulation of chromatin modifiers and transcription factors. While the scope of menin's functions continues to expand, one area of growing investigation is the role of menin in cancer. Menin is increasingly recognized for its dual function as either a tumor suppressor or a tumor promoter in a highly tumor-dependent and context-specific manner. While menin serves as a suppressor of neuroendocrine tumor growth, as seen in the cancer risk syndrome multiple endocrine neoplasia type 1 (MEN1) syndrome caused by pathogenic germline variants in MEN1, recent data demonstrate that menin also suppresses cholangiocarcinoma, pancreatic ductal adenocarcinoma, gastric adenocarcinoma, lung adenocarcinoma, and melanoma. On the other hand, menin can also serve as a tumor promoter in leukemia, colorectal cancer, ovarian and endometrial cancers, Ewing sarcoma, and gliomas. Moreover, menin can either suppress or promote tumorigenesis in the breast and prostate depending on hormone receptor status and may also have mixed roles in hepatocellular carcinoma. Here, we review the rapidly expanding literature on the role and function of menin across a broad array of different cancer types, outlining tumor-specific differences in menin's function and mechanism of action, as well as identifying its therapeutic potential and highlighting areas for future investigation.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Expert Rev Hematol ; 17(10): 679-686, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39110722

RESUMEN

INTRODUCTION: Children receiving treatment for acute myeloid leukemia (AML) are at high risk of invasive fungal disease (IFD). Evidence from pediatric studies support the efficacy of antifungal prophylaxis in reducing the burden of IFD in children receiving therapy for AML, yet existing antifungal agents have specific limitations and comparative data to inform the optimal prophylactic approach are lacking. AREAS COVERED: This review summarizes the epidemiology of invasive fungal disease (IFD) and current antifungal prophylaxis recommendations for children with acute myeloid leukemia (AML). Challenges with currently available antifungal agents and considerations related to the changing landscape of AML therapy are reviewed. A keyword search was conducted to identify pediatric studies regarding IFD and antifungal prophylaxis in children with AML up to December 2023. EXPERT OPINION: Children undergoing treatment for AML are recommended to receive antifungal prophylaxis to reduce risk of IFD, with tolerability, pharmacokinetics, feasibility of administration, and drug interactions all factors that require consideration in this context. With increased use of novel targeted agents for AML therapy, together with the development of new antifungal agents, data from well-designed clinical studies to optimize prophylactic approaches will be essential to limit the burden of IFD in this vulnerable cohort.


Asunto(s)
Antifúngicos , Infecciones Fúngicas Invasoras , Leucemia Mieloide Aguda , Humanos , Antifúngicos/uso terapéutico , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/tratamiento farmacológico , Niño , Infecciones Fúngicas Invasoras/prevención & control , Infecciones Fúngicas Invasoras/etiología
5.
Immunology ; 173(2): 258-273, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39011567

RESUMEN

The commitment to specific T lymphocytes (T cell) lineages is governed by distinct transcription factors, whose expression is modulated through epigenetic mechanisms. Unravelling these epigenetic mechanisms that regulate T cell differentiation and function holds significant importance for understanding T cells. Menin, a multifunctional scaffolding protein, is implicated in various cellular processes, such as cell proliferation, cell cycle control, DNA repair and transcriptional regulation, primarily through epigenetic mechanisms. Existing research indicates Menin's impact on T cell differentiation and function, while a comprehensive and systematic review is currently lacking to consolidate these findings. In the current review, we have highlighted recent studies on the role of Menin in T cell differentiation and function, focusing mainly on its impact on the memory Th2 maintenance, Th17 differentiation and maintenance, CD4+ T cell senescence, and effector CD8+ T cell survival. Considering Menin's crucial function in maintaining effector T cell function, the potential of inhibiting Menin activity in mitigating inflammatory diseases associated with excessive T cell activation has also been emphasised.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Proteínas Proto-Oncogénicas , Humanos , Diferenciación Celular/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Activación de Linfocitos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Senescencia Celular/inmunología , Linfocitos T CD8-positivos/inmunología
6.
J Hematol Oncol ; 17(1): 52, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39026311

RESUMEN

Recent developments in menin inhibitors for relapsed or refractory acute myeloid leukemia (AML) were highlighted at the 2023 ASH Annual Meeting. Notably, revumenib showed promising efficacy, achieving a 100% ORR when combined with decitabine/cedazuridine and venetoclax. These findings underscore the potential of menin inhibitors in transforming AML treatment, particularly in genetically defined subgroups, offering hope for improved patient outcomes. Ongoing studies, like KOMET-008, further explore the synergistic potential of menin inhibitors in combination regimens, shaping future AML management strategies.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas , Humanos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteínas Proto-Oncogénicas/antagonistas & inhibidores
7.
Curr Probl Cancer ; 51: 101118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968834

RESUMEN

To date, mounting evidence have shown that patients with multiple endocrine neoplasia type 1 (MEN1) may face an increased risk for breast carcinogenesis. The product of the MEN1 gene, menin, was also indicated to be an important regulator in breast cancer signaling network. Menin directly interacts with MLL, EZH2, JunD, NF-κB, PPARγ, VDR, Smad3, ß-catenin and ERα to modulate gene transcriptions leading to cell proliferation inhibition. Moreover, interaction of menin-FANCD2 contributes to the enhancement of BRCA1-mediated DNA repair mechanism. Ectopic expression of menin causes Bax-, Bak- and Caspase-8-dependent apoptosis. However, despite numbers of menin inhibitors were exploited in other cancers, data on the usage of menin inhibitors in breast cancer treatment remain limited. In this review, we focused on the menin associated signaling pathways and gene transcription regulations, with the aim of elucidating its molecular mechanisms and of guiding the development of novel menin targeted drugs in breast cancer therapy.


Asunto(s)
Neoplasias de la Mama , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas , Transducción de Señal , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Femenino , Transducción de Señal/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Animales
8.
Computation (Basel) ; 12(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38938622

RESUMEN

The prognosis of mixed-lineage leukemia (MLL) has remained a significant health concern, especially for infants. The minimal treatments available for this aggressive type of leukemia has been an ongoing problem. Chromosomal translocations of the KMT2A gene are known as MLL, which expresses MLL fusion proteins. A protein called menin is an important oncogenic cofactor for these MLL fusion proteins, thus providing a new avenue for treatments against this subset of acute leukemias. In this study, we report results using the structure-based drug design (SBDD) approach to discover potential novel MLL-mediated leukemia inhibitors from natural products against menin. The three-dimensional (3D) protein model was derived from Protein Databank (Protein ID: 4GQ4), and EasyModeller 4.0 and I-TASSER were used to fix missing residues during rebuilding. Out of the ten protein models generated (five from EasyModeller and I-TASSER each), one model was selected. The selected model demonstrated the most reasonable quality and had 75.5% of residues in the most favored regions, 18.3% of residues in additionally allowed regions, 3.3% of residues in generously allowed regions, and 2.9% of residues in disallowed regions. A ligand library containing 25,131 ligands from a Chinese database was virtually screened using AutoDock Vina, in addition to three known menin inhibitors. The top 10 compounds including ZINC000103526876, ZINC000095913861, ZINC000095912705, ZINC000085530497, ZINC000095912718, ZINC000070451048, ZINC000085530488, ZINC000095912706, ZINC000103580868, and ZINC000103584057 had binding energies of -11.0, -10.7, -10.6, -10.2, -10.2, -9.9, -9.9, -9.9, -9.9, and -9.9 kcal/mol, respectively. To confirm the stability of the menin-ligand complexes and the binding mechanisms, molecular dynamics simulations including molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) computations were performed. The amino acid residues that were found to be potentially crucial in ligand binding included Phe243, Met283, Cys246, Tyr281, Ala247, Ser160, Asn287, Asp185, Ser183, Tyr328, Asn249, His186, Leu182, Ile248, and Pro250. MI-2-2 and PubChem CIDs 71777742 and 36294 were shown to possess anti-menin properties; thus, this justifies a need to experimentally determine the activity of the identified compounds. The compounds identified herein were found to have good pharmacological profiles and had negligible toxicity. Additionally, these compounds were predicted as antileukemic, antineoplastic, chemopreventive, and apoptotic agents. The 10 natural compounds can be further explored as potential novel agents for the effective treatment of MLL-mediated leukemia.

9.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892207

RESUMEN

Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Leucemia Mieloide Aguda , Metiltransferasas , Proteína de la Leucemia Mieloide-Linfoide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogénicas , Humanos , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , Metiltransferasas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Sinergismo Farmacológico , Reordenamiento Génico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Mutación
10.
Biomark Res ; 12(1): 60, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858750

RESUMEN

Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.

11.
Rinsho Ketsueki ; 65(5): 353-361, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38825514

RESUMEN

For nearly 40 years, combination therapy with cytarabine and anthracycline has been the standard of care for acute myeloid leukemia (AML). The cytogenetics and molecular biology of AML are now understood, and the treatment of AML has undergone dramatic changes in Japan with the launch of drugs such as FLT3 inhibitors, Bcl2 inhibitors, and hypomethylating agents since 2018. However, AML remains very difficult to cure, with a high relapse rate. Here, we review novel agents that have not yet been approved in Japan (CPX-351, IDH inhibitors, menin inhibitors, and oral azacitidine) as potential treatments for AML, as well as therapeutic antibodies (BiTEs, DARTs, immune checkpoint inhibitors) currently under investigation in clinical trials or in development. These novel agents are being investigated not only as monotherapy but also as combination therapy with intensive chemotherapy or azacitidine/venetoclax. The new era of AML treatment is expected to support a variety of goals, including leukemic cell elimination, long-term remission, and improved quality of life.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Desarrollo de Medicamentos , Terapia Molecular Dirigida
12.
Br J Haematol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710595

RESUMEN

The treatment of acute myeloid leukaemia (AML) has changed fundamentally in the last decade with many new targeted therapies entering clinics. Some of the most interesting agents under development are Menin inhibitors which interfere with the interaction of Menin with wild-type (wt) KMT2A or a KMT2A-fusion protein and thereby downregulate the leukaemic gene expression (MEIS1, PBX3, HOX) in NPM1 mutant or KMT2A-rearranged leukaemia. Other HOX and MEIS1 expressing leukaemias may also be sensitive to Menin inhibition. Following the encouraging results as monotherapy in refractory and relapsed AML, the combination of Menin inhibitors with chemotherapeutic agents and other targeted drugs is being investigated clinically.

13.
Adv Sci (Weinh) ; 11(24): e2307953, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582517

RESUMEN

FOXG1 syndrome is a developmental encephalopathy caused by FOXG1 (Forkhead box G1) mutations, resulting in high phenotypic variability. However, the upstream transcriptional regulation of Foxg1 expression remains unclear. This report demonstrates that both deficiency and overexpression of Men1 (protein: menin, a pathogenic gene of MEN1 syndrome known as multiple endocrine neoplasia type 1) lead to autism-like behaviors, such as social defects, increased repetitive behaviors, and cognitive impairments. Multifaceted transcriptome analyses revealed that Foxg1 signaling is predominantly altered in Men1 deficiency mice, through its regulation of the Alpha Thalassemia/Mental Retardation Syndrome X-Linked (Atrx) factor. Atrx recruits menin to bind to the transcriptional start region of Foxg1 and mediates the regulation of Foxg1 expression by H3K4me3 (Trimethylation of histone H3 lysine 4) modification. The deficits observed in menin deficient mice are rescued by the over-expression of Foxg1, leading to normalized spine growth and restoration of hippocampal synaptic plasticity. These findings suggest that menin may have a putative role in the maintenance of Foxg1 expression, highlighting menin signaling as a potential therapeutic target for Foxg1-related encephalopathy.


Asunto(s)
Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Proteínas del Tejido Nervioso , Proteínas Proto-Oncogénicas , Animales , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encefalopatías/genética , Encefalopatías/metabolismo , Conducta Animal , Masculino
14.
Cell Rep Med ; 5(5): 101510, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38614093

RESUMEN

Key gene mutations are essential for colorectal cancer (CRC) development; however, how the mutated tumor cells impact the surrounding normal cells to promote tumor progression has not been well defined. Here, we report that PIK3CA mutant tumor cells transmit oncogenic signals and result in malignant transformation of intestinal epithelial cells (IECs) via paracrine exosomal arachidonic acid (AA)-induced H3K4 trimethylation. Mechanistically, PIK3CA mutations sustain SGK3-FBW7-mediated stability of the cPLA2 protein, leading to the synthetic increase in AA, which is transported through exosome and accumulated in IECs. Transferred AA directly binds Menin and strengthens the interactions of Menin and MLL1/2 methyltransferase. Finally, the combination of VTP50469, an inhibitor of the Menin-MLL interaction, and alpelisib synergistically represses PDX tumors harboring PIK3CA mutations. Together, these findings unveil the metabolic link between PIK3CA mutant tumor cells and the IECs, highlighting AA as the potential target for the treatment of patients with CRC harboring PIK3CA mutations.


Asunto(s)
Ácido Araquidónico , Transformación Celular Neoplásica , Ensamble y Desensamble de Cromatina , Fosfatidilinositol 3-Quinasa Clase I , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Humanos , Ácido Araquidónico/metabolismo , Animales , Mutación/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Ensamble y Desensamble de Cromatina/genética , Ratones , Línea Celular Tumoral , Colon/patología , Colon/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Exosomas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Histonas/metabolismo , Histonas/genética
15.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610989

RESUMEN

Inhibition of menin in acute myeloid leukemia (AML) harboring histone-lysine-N-methyltransferase 2A rearrangement (KMT2Ar) or the mutated Nucleophosmin gene (NPM1c) is considered a novel and effective treatment approach in these patients. However, rapid acquisition of resistance mutations can impair treatment success. In patients with elevated retinoic acid receptor alpha (RARA) expression levels, promising effects are demonstrated by the next-generation RARalpha agonist tamibarotene, which restores differentiation or induces apoptosis. In this study, the combination of revumenib and tamibarotene was investigated in various KMT2Ar or NPM1c AML cell lines and patient-derived blasts, focusing on the potential synergistic induction of differentiation or apoptosis. Both effects were analyzed by flow cytometry and validated by Western blot analysis. Synergy calculations were performed using viability assays. Regulation of the relevant key mediators for the MLL complex were quantified by RT-qPCR. In MV4:11 cells characterized by the highest relative mRNA levels of RARA, highly synergistic induction of apoptosis is demonstrated upon combination treatment. Induction of apoptosis by combined treatment of MV4:11 cells is accompanied by pronounced induction of the pro-apoptotic protein BAX and a synergistic reduction in CDK6 mRNA levels. In MOLM13 and OCI-AML3 cells, an increase in differentiation markers like PU.1 or a decreased ratio of phosphorylated to total CEBPA is demonstrated. In parts, corresponding effects were observed in patient-derived AML cells carrying either KMT2Ar or NPM1c. The impact of revumenib on KMT2Ar or NPM1c AML cells was significantly enhanced when combined with tamibarotene, demonstrating synergistic differentiation or apoptosis initiation. These findings propose promising strategies for relapsed/refractory AML patients with defined molecular characteristics.

16.
Hematol Rep ; 16(2): 244-254, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38651453

RESUMEN

Menin inhibitors are new and promising agents currently in clinical development that target the HOX/MEIS1 transcriptional program which is critical for leukemogenesis in histone-lysine N-methyltransferase 2A-rearranged (KMT2Ar) and in NPM1-mutated (NPM1mut) acute leukemias. The mechanism of action of this new class of agents is based on the disruption of the menin-KMT2A complex (consisting of chromatin remodeling proteins), leading to the differentiation and apoptosis of AML cells expressing KMT2A or with mutated NPM1. To date, this new class of drugs has been tested in phase I and II clinical trials, both alone and in combination with synergistic drugs showing promising results in terms of response rates and safety in heavily pre-treated acute leukemia patients. In this brief review, we summarize the key findings on menin inhibitors, focusing on the mechanism of action and preliminary clinical data on the treatment of acute myeloid leukemia with this promising new class of agents, particularly revumenib and ziftomenib.

17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167136, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38531483

RESUMEN

Farnesoid X receptor (FXR) improves the function of islets, especially in the setting of Roux-en-Y gastric bypass (RYGB). Here we investigated how FXR activation regulates ß-cell proliferation and explored the potential link between FXR signaling and the menin pathway in controlling E2F3 expression, a key transcription factor for controlling adult ß-cell proliferation. Stimulation with the FXR agonist GW4064 or chenodeoxycholic acid (CDCA) increased E2F3 expression and ß-cell proliferation. Consistently, E2F3 knockdown abolished GW4064-induced proliferation. Treatment with GW4064 increased E2F3 expression in ß-cells via enhancing Steroid receptor coactivator-1 (SRC1) recruitment, increasing the pro-transcriptional acetylation of histone H3 at the E2f3 promoter. GW4064 treatment also decreased the association between FXR and menin, leading to the induction of FXR-mediated SRC1 recruitment. Mimicking the impact of FXR agonists, RYGB also increased E2F3 expression and ß-cell proliferation in GK rats and SD rats. These findings unravel the crucial role of the FXR/menin signaling in epigenetically controlling E2F3 expression and ß-cell proliferation, a mechanism possibly underlying RYGB-induced ß-cell proliferation.


Asunto(s)
Proliferación Celular , Factor de Transcripción E2F3 , Epigénesis Genética , Células Secretoras de Insulina , Receptores Citoplasmáticos y Nucleares , Animales , Ratas , Proliferación Celular/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Factor de Transcripción E2F3/metabolismo , Factor de Transcripción E2F3/genética , Ratas Wistar , Histonas/metabolismo , Isoxazoles/farmacología , Transducción de Señal/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología
18.
J Physiol Biochem ; 80(2): 393-405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38427168

RESUMEN

Corticosterone (CORT) damages hippocampal neurons as well as induces neuroinflammation. The tricarboxylic acid cycle metabolite itaconate has an anti-inflammatory role. Necroptosis is a form of programmed cell death, also known as inflammatory cell death. Menin is a multifunctional scaffold protein, which deficiency aggravates neuroinflammation. In this study, we explored whether itaconate inhibits CORT-induced neuroinflammation as well as necroptosis and further investigated the mediatory role of Menin in this protective effect of itaconate by using an exposure of CORT to HT22 cells (a hippocampal neuronal cell line). The viability of HT22 cells was examined by the cell counting kit 8 (CCK-8). The morphology of HT22 cells was observed by transmission electron microscope (TEM). The expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) were evaluated by western blotting. The contents of inflammatory factors were detected by an enzyme-linked immunosorbent assay (ELISA) kit. Our results showed that CORT increases the contents of pro-inflammatory factors (IL-1ß, TNF-α) as well as decreases the contents of anti-inflammatory factors (IL-4, IL-10) in HT22 cells. We also found that CORT increases the expressions of necroptosis-related proteins (p-RIP1/RIP1, p-RIP3/RIP3, and p-MLKL/MLKL) and decreases the cell viability in HT22 cells, indicating that CORT induces necroptosis in HT22 cells. Itaconate improves CORT-induced neuroinflammation and necroptosis. Furthermore, itaconate upregulates the expression of Menin in CORT-exposed HT22 cells. Importantly, silencing Menin abolishes the antagonistic effect of itaconate on CORT-induced necroptosis and neuroinflammation. In brief, these results indicated that itaconate protects HT22 cells against CORT-induced neuroinflammation and necroptosis via upregulating Menin.


Asunto(s)
Corticosterona , Necroptosis , Proteínas Proto-Oncogénicas , Regulación hacia Arriba , Animales , Ratones , Antiinflamatorios/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Necroptosis/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Succinatos/farmacología , Regulación hacia Arriba/efectos de los fármacos
20.
Mol Neurobiol ; 61(10): 7369-7383, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38386135

RESUMEN

DNA damage is associated with hyperhomocysteinemia (HHcy) and neural tube defects (NTDs). Additionally, HHcy is a risk factor for NTDs. Therefore, this study examined whether DNA damage is involved in HHcy-induced NTDs and investigated the underlying pathological mechanisms involved. Embryonic day 9 (E9) mouse neuroectoderm cells (NE4C) and homocysteine-thiolactone (HTL, active metabolite of Hcy)-induced NTD chicken embryos were studied by Western blotting, immunofluorescence. RNA interference or gene overexpression techniques were employed to investigate the impact of Menin expression changes on the DNA damage. Chromatin immunoprecipitation-quantitative polymerase chain reaction was used to investigate the epigenetic regulation of histone modifications. An increase in γH2AX (a DNA damage indicator) was detected in HTL-induced NTD chicken embryos and HTL-treated NE4C, accompanied by dysregulation of phospho-Atr-Chk1-nucleotide excision repair (NER) pathway. Further investigation, based on previous research, revealed that disruption of NER was subject to the epigenetic regulation of low-expressed Menin-H3K4me3. Overexpression of Menin or supplementation with folic acid in HTL-treated NE4C reversed the adverse effects caused by high HTL. Additionally, by overexpressing the Mars gene, we tentatively propose a mechanism whereby HTL regulates Menin expression through H3K79hcy, which subsequently influences H3K4me3 modifications, reflecting an interaction between histone modifications. Finally, in 10 human fetal NTDs with HHcy, we detected a decrease in the expression of Menin-H3K4me3 and disorder in the NER pathway, which to some extent validated our proposed mechanism. The present study demonstrated that the decreased expression of Menin in high HTL downregulated H3K4me3 modifications, further weakening the Atr-Chk1-NER pathway, resulting in the occurrence of NTDs.


Asunto(s)
Daño del ADN , Histonas , Homocisteína , Defectos del Tubo Neural , Proteínas Proto-Oncogénicas , Animales , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Embrión de Pollo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Homocisteína/análogos & derivados , Ratones , Histonas/metabolismo , Epigénesis Genética/efectos de los fármacos , Reparación del ADN/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...