Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Environ Health Res ; : 1-13, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36201749

RESUMEN

Owing to the importance of drug delivery, the synthesis of advanced nanomaterials for targeted drug delivery plays a considerable role in medical treatment. One of the most prominent nanomaterials is PIL, which is used as controlled anticancer drug delivery and significantly improves the half-life and antitumor effect. In this study, a stable and effective drug carrier containing silver nanoparticles was reported for the drug delivery with an antimicrobial effect, and the capability of the drug carrier . PILP was synthesized by radical polymerization, and silver nanoparticles were anchored into PIL voids by in-situ reduction, which developed the adsorption antimicrobial effect and capability of the drug carrier. The synthesized nanocomposite was characterized. The Ag-PILP nanocomposite showed antibacterial activityagainst both E. coli and S. aureus with a MIC of 256 µg/mL, and bactericidal activity against E. coli and S. aureus strains with a MBC of 256 and 512 µg/mL, respectively.

2.
Chemosphere ; 307(Pt 3): 135817, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35964725

RESUMEN

Magnesium ferrites (MgFe2O4) drew much attention in water treatment because of higher stability, magnetic properties, availability and higher safety. MgFe2O4 having different Fe and Mg ratios were synthesized through a simple one-step solvothermal method and applied for the removal of toxic arsenic oxyanions from water. Three different magnesium ferrites, MF0.1, MF0.2 and MF0.33, were synthesized using molar Mg and Fe ratio of 10:90, 20:80 and 33:67, respectively. The Mg and Fe ratio affected the physical and magnetic properties, surface area, crystallite size, pore diameter and magnetism, of magnesium ferrites, which were evidenced by the XRD, SEM-EDS, BET and VSM. Increasing Mg content reduced the pore size, pore volume and saturation magnetization but increased surface area and pHPZC. It was estimated that defective iron oxide, γ-Fe2O3 maghemite, had been formed with the magnesium ferrites, when the ratios of Mg and Fe were non-stoichiometric. The difference in characteristics of magnesium ferrites synthesized with three ratios of Mg and Fe affected arsenic adsorption capacity and the stability of adsorbed arsenic. Arsenic adsorption data followed Freundlich isotherm model and maximum As(III) and As(V) adsorption capacities were found to be 51.48, 100.53, 103.94 mg/g and 26.06, 43.44, 45.52 mg/g by MF0.1, MF0.2 and MF0.33, respectively. Fast adsorption of arsenic was confirmed by kinetic data which followed the Pseudo-2nd-order kinetic model. The MF0.33 having stoichiometric ratio of Mg and Fe showed higher adsorption capacity and stability for arsenic than the other two at neutral pH.


Asunto(s)
Arsénico , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arsénico/análisis , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Cinética , Magnesio , Compuestos de Magnesio , Contaminantes Químicos del Agua/análisis
3.
Nano Today ; 382021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33897805

RESUMEN

Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.

4.
Ecotoxicol Environ Saf ; 205: 111147, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32836157

RESUMEN

Mesoporous magnetic Fe3O4/g-C3N4 nanocomposites were synthesized by a facile precipitation method using deionized water as solution. And the prepared magnetic materials were characterized by mean of various detection methods. At the same time, the photocatalytic activity of the synthetic material as photocatalyst under visible light was tested by taking the degradation of rhodamine B in water as a mark. Results show that as-synthesized Fe3O4/g-C3N4 nanocomposites have high specific surface areas of about 5-10.5 times that of pure g-C3N4 and high saturation magnetizations, which can ensure the smooth recovery of used nanomaterials under the action of external magnetic field. The addition of Fe3O4 greatly extents the response range of g-C3N4 nanomaterials to visible light and reduces the recombination rate of photoinduced electron-hole pairs. Meanwhile, the photocatalytic activity of the synthetic materials increases so that the degradation ratio of rhodamine B in water reached 97.6% after 4 h visible light irradiation. Furthermore, prepared magnetic Fe3O4/g-C3N4 nanocomposites have also excellent stability so that the degradation ratio of rhodamine B was almost not reduce after 5 times of continuous reuse of photocatalyst. Free radical scavenging experiments shows that hydroxyl groups are the main free radicals of photocatalytic reaction, peroxyradicals and holes play the secondary role. Therefore, it can be predicted that the synthesized mesoporous magnetic Fe3O4/g-C3N4 nanomaterials will have a broad application prospect in environmental remediation.


Asunto(s)
Restauración y Remediación Ambiental , Luz , Nanocompuestos , Catálisis , Magnetismo , Rodaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...