Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.812
Filtrar
1.
J Fish Biol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228148

RESUMEN

Bioenergetics models are powerful tools used to address a range of questions in fish biology. However, these models are rarely informed by free-swimming activity data, introducing error. To quantify the costs of activity in free-swimming fish, calibrations produced from standardized laboratory trials can be applied to estimate energy expenditure from sensor data for specific tags and species. Using swim tunnel respirometry, we calibrated acceleration sensor-equipped transmitting tags to estimate the aerobic metabolic rates (MO2) of lake trout (Salvelinus namaycush) at three environmentally relevant temperatures. Aerobic and swim performance were also assessed. Like other calibrations, we found strong relationships between MO2 and acceleration or swimming speed, and jackknife validations and data simulations suggest that our models accurately predict metabolic costs of activity in adult lake trout (~5% algebraic error and ~20% absolute error). Aerobic and swim performance metrics were similar to those reported in other studies, but their critical swimming speed was lower than expected. Additionally, lake trout exhibited a wide aerobic scope, suggesting that the avoidance of waters ≥15°C may be related to selection for optimal growing temperatures. The ability to quantify the free-swimming energetic costs of activity will advance our understanding of lake trout ecology and may yield improvements to bioenergetics model.

2.
World J Gastrointest Surg ; 16(8): 2474-2483, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220071

RESUMEN

BACKGROUND: This study was to investigate the application value of whole-body dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in recurrent anastomotic tumors of digestive tract after gastric and esophageal cancer surgery. Postoperative patients with gastric and esophageal cancer have a high risk of tumor recurrence, and traditional imaging methods have certain limitations in early detection of recurrent tumors. Whole-body dynamic 18F-FDG PET/CT imaging, due to its high sensitivity and specificity, can provide comprehensive information on tumor metabolic activity, which is expected to improve the early diagnosis rate of postoperative recurrent tumors, and provide an important reference for clinical treatment decision-making. AIM: To investigate the clinical value of whole-body dynamic 18F-FDG PET/CT imaging in differentiating anastomotic recurrence and inflammation after the operation of upper digestive tract tumors. METHODS: A retrospective analysis was performed on 53 patients with upper digestive tract tumors after operation and systemic dynamic 18F-FDG PET/CT imaging indicating abnormal FDG uptake by anastomosis, including 29 cases of gastric cancer and 24 cases of esophageal cancer. According to the follow-up results of gastroscopy and other imaging examinations before and after PET/CT examination, the patients were divided into an anastomotic recurrence group and anastomotic inflammation group. Patlak multi-parameter analysis software was used to obtain the metabolic rate (MRFDG), volume of distribution maximum (DVmax) of anastomotic lesions, and MRmean and DVmean of normal liver tissue. The lesion/background ratio (LBR) was calculated by dividing the MRFDG and DVmax of the anastomotic lesion by the MRmean and DVmean of the normal liver tissue, respectively, to obtain LBR-MRFDG and LBR-DVmax. An independent sample t test was used for statistical analysis, and a receiver operating characteristic curve was used to analyze the differential diagnostic efficacy of each parameter for anastomotic recurrence and inflammation. RESULTS: The dynamic 18F-FDG PET/CT imaging parameters MRFDG, DVmax, LBR-MRFDG, and LBR-DVmax of postoperative anastomotic lesions in gastric cancer and esophageal cancer showed statistically significant differences between the recurrence group and the inflammatory group (P < 0.05). The parameter LBR-MRFDG showed good diagnostic efficacy in differentiating anastomotic inflammation from recurrent lesions. In the gastric cancer group, the area under the curve (AUC) value was 0.935 (0.778, 0.993) when the threshold was 1.83, and in the esophageal cancer group, the AUC value was 1. When 86 is the threshold, the AUC value is 0.927 (0.743, 0.993). CONCLUSION: Whole-body dynamic 18F-FDG PET/CT imaging can accurately differentiate the diagnosis of postoperative anastomotic recurrence and inflammation of gastric cancer and esophageal cancer and has the potential to be an effective monitoring method for patients with upper digestive tract tumors after surgical treatment.

3.
NMR Biomed ; : e5260, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254055

RESUMEN

Isoflurane is one of the most widely used anesthetic agents in rodent imaging studies. However, the impact of isoflurane on brain metabolism has not been fully characterized to date, primarily due to a scarcity of noninvasive technologies to quantitatively measure the brain's metabolic rate in vivo. In this study, using noncontrast MRI techniques, we dynamically measured cerebral metabolic rate of oxygen (CMRO2) under varying doses of isoflurane anesthesia in mice. Concurrently, systemic parameters of heart and respiration rates were recorded alongside CMRO2. Additionally, electroencephalogram (EEG) recording was used to identify changes in neuronal activities under the same anesthetic regimen employed in the MRI experiments. We found suppression of the CMRO2 by isoflurane in a dose-dependent manner, concomitant with a diminished high-frequency EEG activity. The degree of metabolic suppression by isoflurane was strongly correlated with the respiration rate, which offers a potential approach to calibrate CMRO2 measurements. Furthermore, the metabolic level associated with neural responses of the somatosensory and motor cortices in mice was estimated as 308.2 µmol/100 g/min. These findings may facilitate the integration of metabolic parameters into future studies involving animal disease models and anesthesia usage.

4.
J Exp Biol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234663

RESUMEN

Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely due to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.

5.
Curr Neuropharmacol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39150032

RESUMEN

Many features of major depressive disorder are mirrored in rodent models of psychological stress. These models have been used to examine the relationship between the activation of the hypo- thalamic-pituitary axis in response to stress, the development of oxidative stress and neuroinflamma- tion, the dominance of cholinergic neurotransmission and the associated increase in REM sleep pres- sure. Rodent models have also provided valuable insights into the impairment of glycolysis and brain glucose utilization by the brain under stress, the resulting decrease in brain energy production and the reduction in glutamate/GABA -glutamine cycling. The rapidly acting antidepressants, scopolamine, ketamine and ECT, all raise extracellular glutamate and scopolamine and ketamine have specifically been shown to increase glutamate/GABA-glutamine cycling in men and rodents with corresponding short-term relief of depression. The nightly use of gammahydroxybutyrate (GHB) may achieve more permanent results and may even act prophylactically to prevent the development or recurrence of de- pression. GHB is a GABAB agonist and restores the normal balance between cholinergic and mono- aminergic neurotransmission by inhibiting cholinergic neurotransmission. It relieves REM sleep pres- sure. GHB's metabolism generates NADPH, a key antioxidant cofactor. Its metabolism also generates succinate, the tricarboxylic acid cycle intermediate, to provide energy to the cell and to synthesize glu- tamate. In both animals and man, GHB increases the level of brain glutamate.

6.
J Cereb Blood Flow Metab ; : 271678X241276386, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39161251

RESUMEN

Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) can be measured using arterial spin labeling (ASL) and quantitative susceptibility mapping (QSM) sequences, respectively. ASL and QSM sequences were performed on 13 healthy participants and 46 patients with unilateral or bilateral Middle cerebral artery (MCA) occlusion. M1-M3 and M4-M6 correspond to anterior, lateral, and posterior MCA territories within the insular ribbon and centrum semiovale, respectively. In patients with unilateral MCA occlusion, significant decreases in CBF were observed in the lesions in M1, M3, M5 and M6 regions, as well as in the contralateral M3 and M5 regions. The OEF of the lesion in the M1-M4 and M6 regions, and the contralateral M1-M3 regions were significantly higher. Additionally, the cerebral metabolic rate of oxygen (CMRO2) in the lesions of the M3 and M6 regions, and the contralateral M3 region, were significantly lower compared to the corresponding regions of healthy participants. For patients with bilateral MCA occlusion, the CMRO2 in the left M5 region and the right M3 and M6 regions were significantly lower than that in the corresponding regions of healthy participants. In conclusion, abnormal hemodynamics occur in the contralateral hemisphere of patients with unilateral MCA occlusion.

7.
J Therm Biol ; 124: 103941, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39163749

RESUMEN

The responses of organisms to climate change are mediated primarily by its impact on their metabolic rates, which, in turn, drive various biological and ecological processes. Although there have been numerous seminal studies on the sensitivity of metabolic rate to temperature, little is empirically known about how this rate responds to seasonal temperature ranges and beyond under conservative IPCC climate change scenarios. Here, we measured the SMR of the aquatic amphipod, Gammarus insensibilis, which served as our subject species, with body masses ranging from 0.20 to 7.74 mg ash free weight. We assessed the response of the SMR across nine temperature levels ranging from 12 to 30.2 °C. These temperatures match seasonal temperature norms, with an incremental increase of 0.6-1.2 °C above each seasonal baseline, as projected for the years 2040 and 2100 under the modest climate change scenarios. Overall, our findings showed that the effect of temperature on SMR varies with body mass, as indicated by a negative size-temperature interaction, with larger conspecifics exhibiting less sensitivity to temperature changes than smaller ones. From the cold to warm season, the SMR increased by an average of 14% °C-1, with increases of 18.4% °C-1 in smaller individuals and 11.4% °C-1 in larger ones. The SMR of smaller individuals peaked at a 0.6 °C increase from the current summer baseline (15.08% °C-1, Q10 = 4.2), while in larger ones it peaked with a 1.2 °C increase beyond autumn temperatures (14.9% °C-1, Q10 = 3.9). However, at temperatures reflecting global warming that exceed summer temperatures, the SMR of larger individuals levelled off, while that of smaller ones continued to increase. Overall, our findings suggest that smaller-sized individuals have a broader thermal window for SMR performance, while the SMR of larger-sized ones will become increasingly constrained at summer temperatures as those summer temperatures become hotter.

8.
Ecol Evol ; 14(8): e70134, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119176

RESUMEN

Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.

9.
Arch Dermatol Res ; 316(8): 553, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172247

RESUMEN

Prior evidence suggests that altered energy metabolism plays a crucial role in the development of fibrotic diseases. Recent research indicates that systemic sclerosis (SSc) patients have potentially benefited from energy management, implying that basal metabolic rate (BMR), a vital energy metabolic parameter, may be related to SSc. However, the causal effect of BMR on SSc remains unknown. Thus, we aimed to elucidate the causal links between BMR and SSc. Based on summary statistics from the genome-wide association studies (GWAS) database, two-sample Mendelian randomization (MR) was applied to explore causality between BMR and SSc. The causal relationships were assessed employing inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Meanwhile, several sensitivity analyses were carried out to ensure the robustness of the findings. There was an underlying genetic association of BMR on SSc (OR = 0.505, 95% CI: 0.272-0.936, P = 0.030). Moreover, no significant causal effect between SSc and BMR was observed in the reverse MR analysis (OR = 0.999, 95% CI: 0.997-1.001, P = 0.292). According to the sensitivity analysis, the presence of heterogeneity and genetic pleiotropy was not detected. Our findings, derived from a genetic perspective, provide robust evidence of a causal connection between BMR and SSc. To verify these results and clarify the potential mechanisms, further research is warranted.


Asunto(s)
Metabolismo Basal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/epidemiología , Metabolismo Basal/genética
10.
J Therm Biol ; 123: 103934, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39111060

RESUMEN

Temperature significantly impacts ectotherm physiology, with thermal tolerance and metabolic traits typically varying with latitude across species ranges. The drivers of this variation remain unclear, however, despite obvious consequences for population persistence and conservation in the face of ongoing global change. This study explored local adaptation and phenotypic plasticity of metabolic rates and thermal limits in the supratidal rockpool beetle Ochthebius lejolisii. Using populations from localities at different ends of the species range that experience contrasting thermal variability, we simultaneously tested two of the major paradigms of spatial physiological ecology: metabolic cold adaptation (MCA) and the climatic variability hypothesis (CVH). Reciprocal acclimation was conducted under spring temperature regimes of both localities, incorporating local diurnal variation. Metabolic rates were measured by closed respirometry, and thermal tolerance limits estimated through thermography. In line with MCA, the higher-latitude population (colder climate) showed higher metabolic rates and temperature coefficients (Q10s) at lower temperatures than the lower-latitude population. As predicted by the CVH, the lower-latitude population (more variable climate) showed higher upper thermal tolerance but only the higher-latitude population was able to acclimate upper thermal limits. This result suggests trade-offs between physiological thermal limits and thermal plasticity in this species. A limited acclimation capacity could make populations on Mediterranean coasts especially vulnerable in the face of projected increases in extreme temperatures under ongoing climate change.


Asunto(s)
Frío , Escarabajos , Animales , Escarabajos/fisiología , Aclimatación , Termotolerancia
11.
J Therm Biol ; 124: 103943, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39151217

RESUMEN

Mangrove habitats can serve as nursery areas for sharks and rays. Such environments can be thermally dynamic and extreme; yet, the physiological and behavioural mechanisms sharks and rays use to exploit such habitats are understudied. This study aimed to define the thermal niche of juvenile mangrove whiprays, Urogymnus granulatus. First, temperature tolerance limits were determined via the critical thermal maximum (CTMax) and minimum (CTMin) of mangrove whiprays at summer acclimation temperatures (28 °C), which were 17.5 °C and 39.9 °C, respectively. Then, maximum and routine oxygen uptake rates (MO2max and MO2routine, respectively), post-exercise oxygen debt, and recovery were estimated at current (28 °C) and heatwave (32 °C) temperatures, revealing moderate temperature sensitivities (i.e., Q10) of 2.4 (MO2max) and 1.6 (MO2routine), but opposing effects on post-exercise oxygen uptake. Finally, body temperatures (Tb) of mangrove whiprays were recorded using external temperature loggers, and environmental temperatures (Te) were recorded using stationary temperature loggers moored in three habitat zones (mangrove, reef flat, and reef crest). As expected, environmental temperatures varied between sites depending on depth. Individual mangrove whiprays presented significantly lower Tb relative to Te during the hottest times of the day. Electivity analysis showed tagged individuals selected temperatures from 24.0 to 37.0 °C in habitats that ranged from 21.1 to 43.5 °C. These data demonstrate that mangrove whiprays employ thermotaxic behaviours and a thermally insensitive aerobic metabolism to thrive in thermally dynamic and extreme habitats. Tropical nursery areas may, therefore, offer important thermal refugia for young rays. However, these tropical nursery areas could become threatened by mangrove and coral habitat loss, and climate change.

12.
Front Neurol ; 15: 1410525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139771

RESUMEN

Recently, the role of high-concentration oxygen therapy in cerebral hemorrhage has been extensively discussed. This review describes the research progress in high-concentration oxygen therapy after cerebral hemorrhage. High-concentration oxygen therapy can be classified into two treatment methods: hyperbaric and normobaric high-concentration oxygen therapy. Several studies have reported that high-concentration oxygen therapy uses the pathological mechanisms of secondary ischemia and hypoxia after cerebral hemorrhage as an entry point to improve cerebral oxygenation, metabolic rate, cerebral edema, intracranial pressure, and oxidative stress. We also elucidate the mechanisms by which molecules such as Hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor, and erythropoietin (EPO) may play a role in oxygen therapy. Although people are concerned about the toxicity of hyperoxia, combined with relevant literature, the evidence discussed in this article suggests that as long as the duration, concentration, pressure, and treatment interval of patients with cerebral hemorrhage are properly understood and oxygen is administered within the treatment window, it can be effective to avoid hyperoxic oxygen toxicity. Combined with the latest research, we believe that high-concentration oxygen therapy plays an important positive role in injuries and outcomes after cerebral hemorrhage, and we recommend expanding the use of normal-pressure high-concentration oxygen therapy for cerebral hemorrhage.

13.
J Hazard Mater ; 477: 135316, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098202

RESUMEN

We use the sentinel mangrove crab, Minuca rapax, as a model to investigate the effects of metallic settleable particulate matter (SePM) on wetland. Multiple levels of energetic responses, including (i) metabolic rate and energy budget, (ii) oxidative stress, and (iii) behavioral response by righting time, were assessed as well as the metal and metalloid content in crabs exposed to 0, 0.1 and 1 g.L-1 of SePM, under emerged and submerged conditions over five days, simulating the rigors of the intertidal habitat. Al, Fe, Mn, Cr, and Y exhibited a concentration-dependent increase. Metal concentrations were higher in submerged crabs due to the continuous ingestion of SePM and direct exposure through gills. Exposure concentration up to 1 g.L-1 decreased metabolic rate and enzymatic activities, reduced assimilation efficiency and energy for maintenance, and induces a slower response to righting time, probably by metal effects on nervous system and energy deficits. In conclusion, SePM exposure affects the redox status and physiology of M. rapax depending on he submersion regime and SePM concentration. The disruption to the energy budget and the lethargic behavior in M. rapax exposed to SePM implies potential ecological alterations in the mangrove ecosystem with unknown consequences for the local population.


Asunto(s)
Conducta Animal , Braquiuros , Metabolismo Energético , Material Particulado , Animales , Metabolismo Energético/efectos de los fármacos , Braquiuros/efectos de los fármacos , Braquiuros/metabolismo , Material Particulado/toxicidad , Conducta Animal/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Humedales , Metales/toxicidad , Contaminantes Atmosféricos/toxicidad
14.
Interact J Med Res ; 13: e56035, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172506

RESUMEN

BACKGROUND: Metabolically associated fatty liver disease (MAFLD) insidiously affects people's health, and many models have been proposed for the evaluation of liver fibrosis. However, there is still a lack of noninvasive and sensitive models to screen MAFLD in high-risk populations. OBJECTIVE: The purpose of this study was to explore a new method for early screening of the public and establish a home-based tool for regular self-assessment and monitoring of MAFLD. METHODS: In this cross-sectional study, there were 1758 eligible participants in the training set and 200 eligible participants in the testing set. Routine blood, blood biochemistry, and FibroScan tests were performed, and body composition was analyzed using a body composition instrument. Additionally, we recorded multiple factors including disease-related risk factors, the Forns index score, the hepatic steatosis index (HSI), the triglyceride glucose index, total body water (TBW), body fat mass (BFM), visceral fat area, waist-height ratio (WHtR), and basal metabolic rate. Binary logistic regression analysis was performed to explore the potential anthropometric indicators that have a predictive ability to screen for MAFLD. A new model, named the MAFLD Screening Index (MFSI), was established using binary logistic regression analysis, and BFM, WHtR, and TBW were included. A simple rating table, named the MAFLD Rating Table (MRT), was also established using these indicators. RESULTS: The performance of the HSI (area under the curve [AUC]=0.873, specificity=76.8%, sensitivity=81.4%), WHtR (AUC=0.866, specificity=79.8%, sensitivity=80.8%), and BFM (AUC=0.842, specificity=76.9%, sensitivity=76.2%) in discriminating between the MAFLD group and non-fatty liver group was evaluated (P<.001). The AUC of the combined model including WHtR, HSI, and BFM values was 0.900 (specificity=81.8%, sensitivity=85.6%; P<.001). The MFSI was established based on better performance at screening MAFLD patients in the training set (AUC=0.896, specificity=83.8%, sensitivity=82.1%) and was confirmed in the testing set (AUC=0.917, specificity=89.8%, sensitivity=84.4%; P<.001). CONCLUSIONS: The novel MFSI model was built using WHtR, BFM, and TBW to screen for early MAFLD. These body parameters can be easily obtained using a body fat scale at home, and the mobile device software can record specific values and perform calculations. MFSI had better performance than other models for early MAFLD screening. The new model showed strong power and stability and shows promise in the area of MAFLD detection and self-assessment. The MRT was a practical tool to assess disease alterations in real time.

15.
Conserv Physiol ; 12(1): coae047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086758

RESUMEN

Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.

16.
J Nucl Med ; 65(9): 1349-1356, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39142828

RESUMEN

In oncologic PET, the SUV and standardized uptake ratio (SUR) of a viable tumor generally increase during the postinjection period. In contrast, the net influx rate (Ki ), which is derived from dynamic PET data, should remain relatively constant. Uptake-time-corrected SUV (cSUV) and SUR (cSUR) have been proposed as uptake-time-independent, static alternatives to Ki Our primary aim was to quantify the intrascan repeatability of Ki , SUV, cSUV, SUR, and cSUR among malignant lesions on PET/CT. An exploratory aim was to assess the ability of cSUR to estimate Ki Methods: This prospective, single-center study enrolled adults undergoing standard-of-care oncologic PET/CT. SUV and Ki images were reconstructed from dynamic PET data obtained before (∼35-50 min after injection) and after (∼75-90 min after injection) standard-of-care imaging. Tumors were manually segmented. Quantitative metrics were extracted. cSUVs and cSURs were calculated for a 60-min postinjection reference uptake time. The magnitude of the intrascan test-retest percent change (test-retest |%Δ|) was calculated. Coefficients of determination (R 2) and intraclass correlation coefficients (ICC) were also computed. Differences between metrics were assessed via the Wilcoxon signed-rank test (α, 0.05). Results: This study enrolled 78 subjects; 41 subjects (mean age, 63.8 y; 24 men) with 116 lesions were analyzed. For both tracers, SUVmax and maximum SUR (SURmax) had large early-to-late increases (i.e., poor intrascan repeatability). Among [18F]FDG-avid lesions (n = 93), there were no differences in intrascan repeatability (median test-retest |%Δ|; ICC) between the maximum Ki (Ki ,max) (13%; 0.97) and either the maximum cSUV (cSUVmax) (12%, P = 0.90; 0.96) or the maximum cSUR (cSURmax) (13%, P = 0.67; 0.94). For DOTATATE-avid lesions (n = 23), there were no differences in intrascan repeatability between the Ki ,max (11%; 0.98) and either the cSUVmax (13%, P = 0.41; 0.98) or the cSURmax (11%, P = 0.08; 0.94). The SUVmax, cSUVmax, SURmax, and cSURmax were all strongly correlated with the Ki ,max for both [18F]FDG (R 2, 0.81-0.92) and DOTATATE (R 2, 0.88-0.96), but the cSURmax provided the best agreement with the Ki ,max across early-to-late time points for [18F]FDG (ICC, 0.69-0.75) and DOTATATE (ICC, 0.90-0.91). Conclusion: Ki ,max, cSUVmax, and cSURmax had low uptake time dependence compared with SUVmax and SURmax The Ki ,max can be predicted from cSURmax.


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Femenino , Persona de Mediana Edad , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Anciano , Factores de Tiempo , Reproducibilidad de los Resultados , Adulto , Fluorodesoxiglucosa F18 , Transporte Biológico , Estudios Prospectivos , Procesamiento de Imagen Asistido por Computador/métodos , Trazadores Radiactivos , Anciano de 80 o más Años , Radiofármacos/farmacocinética
17.
Ecol Evol ; 14(8): e70159, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39193169

RESUMEN

The evolutionary patterns of the mitochondrial genome are influenced by both adaptive and nonadaptive forces, with their contributions varying among taxa. There appears to be a correlation linking mutagenesis and latitude, which could be due to differences in metabolic rates. These discrepancies in metabolic rates exhibit a positive connection with mutation pressure. On this basis, we hypothesise that nonadaptive forces play a role in the differences in mutation rates observed along latitudinal gradients. In this study, we selected widely distributed carnivores as representatives of mammals to test our hypothesis. We examined the correlations between the dN/dS ratio (ω), as well as the substitution rates (dS and dN), of 13 PCGs in the mtDNA of 122 carnivores, and the latitude and climatic factors. We found that taxa distributed in higher latitudes tend to have higher substitution rates, but not ω values indicating selective pressure. Notably, dN shows a strong positive correlation with dS, although dS is primarily influenced by mutation pressure, while dN is also influenced by effective population size (N e ). Phylogenetic generalised least squares (PGLS) regression analyses showed that both substitution rates were correlated with climatic factors representing the temperature, precipitation and variability of climate. Based on our findings, we propose that the mutations are primarily influenced by nonadaptive forces (mutation pressure). This forms the fundamental premise for natural selection and speciation. Moreover, the correlation between substitution rates and latitudinal distribution and climate, which are outcomes of nonadaptive factors, can aid in comprehending the global distribution of species diversity.

18.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39092456

RESUMEN

Respiratory plasticity is a beneficial response to chronic hypoxia in fish. Red drum, a teleost that commonly experiences hypoxia in the Gulf of Mexico, have shown respiratory plasticity following sublethal hypoxia exposure as juveniles, but implications of hypoxia exposure during development are unknown. We exposed red drum embryos to hypoxia (40% air saturation) or normoxia (100% air saturation) for 3 days post fertilization (dpf). This time frame encompasses hatch and exogenous feeding. At 3 dpf, there was no difference in survival or changes in size. After the 3-day hypoxia exposure, all larvae were moved and reared in common normoxic conditions. Fish were reared for ∼3 months and effects of the developmental hypoxia exposure on swim performance and whole-animal aerobic metabolism were measured. We used a cross design wherein fish from normoxia (N=24) were exercised in swim tunnels in both hypoxia (40%, n=12) and normoxia (100%, n=12) conditions, and likewise for hypoxia-exposed fish (n=10 in each group). Oxygen consumption, critical swim speed (Ucrit), critical oxygen threshold (Pcrit) and mitochondrial respiration were measured. Hypoxia-exposed fish had higher aerobic scope, maximum metabolic rate, and higher liver mitochondrial efficiency relative to control fish in normoxia. Interestingly, hypoxia-exposed fish showed increased hypoxia sensitivity (higher Pcrit) and recruited burst swimming at lower swim speeds relative to control fish. These data provide evidence that early hypoxia exposure leads to a complex response in later life.


Asunto(s)
Hipoxia , Consumo de Oxígeno , Natación , Animales , Natación/fisiología , Hipoxia/fisiopatología , Larva/crecimiento & desarrollo , Larva/fisiología
19.
Sci Total Environ ; 950: 175211, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39111423

RESUMEN

Squid species, as a burgeoning global food source, has garnered significant concerns due to expanding fisheries and little regulation. Elucidating the dynamics of squid fisheries and their biophysical coupling mechanisms is crucial for predicting spatiotemporal variations in squid fisheries and their sustainable management. Mesoscale eddies are discrete rotating oceanographic features that dominate local environmental variations and have been shown to modulate top predators. However, given controls of both predators and environmental factors, it remains unknown how eddies impact mid-trophic level species such as squids. Using satellite-based global squid fishery datasets, we showed an inverse latitudinal pattern of eddy-induced squid fisheries, where fishing activities are aggregated in (repelled from) cyclonic (anticyclonic) eddy cores in tropical waters and anticyclonic (cyclonic) eddy cores in temperate waters, and this pattern can be significantly enhanced with increasing eddy amplitude. Regarding solely the satellite-based global squid fisheries, eddy-induced environmental variations may generate a trade-off between food intake and energy expenditure, causing these oceanic squids to prefer cool cyclonic eddies in hot but food-limited waters, and warm anticyclonic eddies in nutritious but heat-limited waters. Given that eddy activity is projected to continuously enhance under global warming, our finding of eddy-driven bottom-up control for squid fisheries highlights an increasingly important hotspot for squid stock predictions and ecosystem-based ocean management in a changing climate.


Asunto(s)
Decapodiformes , Explotaciones Pesqueras , Animales , Ecosistema , Cadena Alimentaria , Calentamiento Global
20.
J Exp Biol ; 227(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092671

RESUMEN

In the context of slow-fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow-fast decision making and speed accuracy trade-off.


Asunto(s)
Encéfalo , Cognición , Metabolismo Energético , Fenotipo , Animales , Abejas/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Cognición/fisiología , Tamaño de los Órganos , Conducta Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...