Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 14(1): e1523, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193640

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) heavily relies on oxidative phosphorylation (OXPHOS) and exhibits distinct mitochondrial metabolic reprogramming. Up to now, the evolutionary pattern of somatic mitochondrial DNA (mtDNA) mutations in EOC tissues and their potential roles in metabolic remodelling have not been systematically elucidated. METHODS: Based on a large somatic mtDNA mutation dataset from private and public EOC cohorts (239 and 118 patients, respectively), we most comprehensively characterised the EOC-specific evolutionary pattern of mtDNA mutations and investigated its biological implication. RESULTS: Mutational profiling revealed that the mitochondrial genome of EOC tissues was highly unstable compared with non-cancerous ovary tissues. Furthermore, our data indicated the delayed heteroplasmy accumulation of mtDNA control region (mtCTR) mutations and near-complete absence of mtCTR non-hypervariable segment (non-HVS) mutations in EOC tissues, which is consistent with stringent negative selection against mtCTR mutation. Additionally, we observed a bidirectional and region-specific evolutionary pattern of mtDNA coding region mutations, manifested as significant negative selection against mutations in complex V (ATP6/ATP8) and tRNA loop regions, and potential positive selection on mutations in complex III (MT-CYB). Meanwhile, EOC tissues showed higher mitochondrial biogenesis compared with non-cancerous ovary tissues. Further analysis revealed the significant association between mtDNA mutations and both mitochondrial biogenesis and overall survival of EOC patients. CONCLUSIONS: Our study presents a comprehensive delineation of EOC-specific evolutionary patterns of mtDNA mutations that aligned well with the specific mitochondrial metabolic remodelling, conferring novel insights into the functional roles of mtDNA mutations in EOC tumourigenesis and progression.


Asunto(s)
ADN Mitocondrial , Neoplasias Ováricas , Femenino , Humanos , ADN Mitocondrial/genética , Carcinoma Epitelial de Ovario/genética , Mutación/genética , Neoplasias Ováricas/genética , Estrés Oxidativo
2.
Mol Cell Endocrinol ; 578: 112063, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37678603

RESUMEN

Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.

3.
Front Endocrinol (Lausanne) ; 14: 1153909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234801

RESUMEN

Background: Accumulating evidence suggests that anoikis plays a crucial role in the onset and progression of pancreatic cancer (PC) and pancreatic neuroendocrine tumors (PNETs); nevertheless, the prognostic value and molecular characteristics of anoikis in cancers are yet to be determined. Materials and methods: We gathered and collated the multi-omics data of several human malignancies using the TCGA pan-cancer cohorts. We thoroughly investigated the genomics and transcriptomics features of anoikis in pan-cancer. We then categorized a total of 930 patients with PC and 226 patients with PNETs into distinct clusters based on the anoikis scores computed through single-sample gene set enrichment analysis. We then delved deeper into the variations in drug sensitivity and immunological microenvironment between the various clusters. We constructed and validated a prognostic model founded on anoikis-related genes (ARGs). Finally, we conducted PCR experiments to explore and verify the expression levels of the model genes. Results: Initially, we identified 40 differentially expressed anoikis-related genes (DE-ARGs) between pancreatic cancer (PC) and adjacent normal tissues based on the TCGA, GSE28735, and GSE62452 datasets. We systematically explored the pan-cancer landscape of DE-ARGs. Most DE-ARGs also displayed differential expression trends in various tumors, which were strongly linked to favorable or unfavorable prognoses of patients with cancer, especially PC. Cluster analysis successfully identified three anoikis-associated subtypes for PC patients and two anoikis-associated subtypes for PNETs patients. The C1 subtype of PC patients showed a higher anoikis score, poorer prognosis, elevated expression of oncogenes, and lower level of immune cell infiltration, whereas the C2 subtype of PC patients had the exact opposite characteristics. We developed and validated a novel and accurate prognostic model for PC patients based on the expression traits of 13 DE-ARGs. In both training and test cohorts, the low-risk subpopulations had significantly longer overall survival than the high-risk subpopulations. Dysregulation of the tumor immune microenvironment could be responsible for the differences in clinical outcomes between low- and high-risk groups. Conclusions: These findings provide fresh insights into the significance of anoikis in PC and PNETs. The identification of subtypes and construction of models have accelerated the progress of precision oncology.


Asunto(s)
Adenoma de Células de los Islotes Pancreáticos , Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendocrinos/genética , Anoicis/genética , Medicina de Precisión , Neoplasias Pancreáticas/genética , Microambiente Tumoral/genética , Neoplasias Pancreáticas
4.
FEBS J ; 289(17): 5198-5217, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35213938

RESUMEN

Cell culture conditions highly influence cell metabolism in vitro. This is relevant for preclinical assays, for which fibroblasts are an interesting cell model, with applications in regenerative medicine, diagnostics and therapeutic development for personalized medicine, and the validation of ingredients for cosmetics. Given these cells' short lifespan in culture, we aimed to identify the best cell culture conditions and promising markers to study mitochondrial health and stress in normal human dermal fibroblasts (NHDF). We tested the effect of reducing glucose concentration in the cell medium from high glucose (HGm) to a more physiological level [low glucose medium (LGm)], or its complete removal and replacement by galactose [medium that forces oxidative phosphorylation (OXPHOSm)], always in the presence of glutamine and pyruvate. We have demonstrated that only with OXPHOSm was it possible to observe the selective inhibition of mitochondrial adenosine triphosphate (ATP) production. This reliance on mitochondrial ATP was accompanied by changes in oxygen consumption rate and extracellular acidification rate, oxidation of citric acid cycle substrates, fatty acids, lactate, and other substrates, increased mitochondrial network extension and polarization, the increased protein content of voltage-dependent anion channel (VDAC) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha and changes in several key transcripts related to energy metabolism. LGm did not promote significant metabolic changes in NHDF, although mitochondrial network extension and VDAC protein content were increased compared to HGm-cultured cells. Our results indicate that short-term adaptation to OXPHOSm is ideal for studying mitochondrial health and stress in NHDF.


Asunto(s)
Glucosa , Mitocondrias , Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Fibroblastos/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa
5.
Trends Cell Biol ; 32(5): 391-405, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34836781

RESUMEN

Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Mutación/genética , Fosforilación Oxidativa
6.
Artículo en Inglés | MEDLINE | ID: mdl-34300048

RESUMEN

Due to the need for continuous work, the heart uses up to 8% of the total energy expenditure. Due to the relatively low adenosine triphosphate (ATP) storage capacity, the heart's work is dependent on its production. This is possible due to the metabolic flexibility of the heart, which allows it to use numerous substrates as a source of energy. Under normal conditions, a healthy heart obtains approximately 95% of its ATP by oxidative phosphorylation in the mitochondria. The primary source of energy is fatty acid oxidation, the rest of the energy comes from the oxidation of pyruvate. A failed heart is characterised by a disturbance in these proportions, with the contribution of individual components as a source of energy depending on the aetiology and stage of heart failure. A unique form of cardiac dysfunction is sepsis-induced cardiomyopathy, characterised by a significant reduction in energy production and impairment of cardiac oxidation of both fatty acids and glucose. Metabolic disorders appear to contribute to the pathogenesis of cardiac dysfunction and therefore are a promising target for future therapies. However, as many aspects of the metabolism of the failing heart remain unexplained, this issue requires further research.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Sepsis , Adenosina Trifosfato , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Corazón , Insuficiencia Cardíaca/etiología , Humanos , Miocardio/metabolismo , Oxidación-Reducción
7.
Biomolecules ; 11(3)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799732

RESUMEN

Histamine is a highly pleiotropic biogenic amine involved in key physiological processes including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors, which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a very complex network that connect many metabolic processes important for homeostasis, including nitrogen and energy metabolism. This review brings together and analyses the current information on the relationships of the "histamine system" with other important metabolic modules in human physiology, aiming to bridge current information gaps. In this regard, the molecular characterization of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes a promising research field for future biomedical advances.


Asunto(s)
Histamina/metabolismo , Neovascularización Fisiológica , Biología de Sistemas , Animales , Redes Reguladoras de Genes , Humanos , Receptores Histamínicos/metabolismo , Transducción de Señal
8.
Metabolism ; 114: 154400, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058853

RESUMEN

OBJECTIVE: Dyslipidaemia is a major risk factor for myocardial infarction that is known to correlate with atherosclerosis in the coronary arteries. We sought to clarify whether metabolic alterations induced by dyslipidaemia in cardiomyocytes collectively constitute an alternative pathway that escalates myocardial injury. METHODS: Dyslipidaemic apolipoprotein E and low-density lipoprotein receptor (ApoE/LDLR) double knockout (ApoE-/-/LDLR-/-) and wild-type C57BL/6 (WT) mice aged six months old were studied. Cardiac injury under reduced oxygen supply was evaluated by 5 min exposure to 5% oxygen in the breathing air under electrocardiogram (ECG) recording and with the assessment of troponin I release. To address the mechanisms LC/MS was used to analyse the cardiac proteome pattern or in vivo metabolism of stable isotope-labelled substrates and HPLC was applied to measure concentrations of cardiac high-energy phosphates. Furthermore, the effect of blocking fatty acid use with ranolazine on the substrate preference and cardiac hypoxic damage was studied in ApoE-/-/LDLR-/- mice. RESULTS: Hypoxia induced profound changes in ECG ST-segment and troponin I leakage in ApoE-/-/LDLR-/- mice but not in WT mice. The evaluation of the cardiac proteomic pattern revealed that ApoE-/-/LDLR-/- as compared with WT mice were characterised by coordinated increased expression of mitochondrial proteins, including enzymes of fatty acids' and branched-chain amino acids' oxidation, accompanied by decreased expression levels of glycolytic enzymes. These findings correlated with in vivo analysis, revealing a reduction in the entry of glucose and enhanced entry of leucine into the cardiac Krebs cycle, with the cardiac high-energy phosphates pool maintained. These changes were accompanied by the activation of molecular targets controlling mitochondrial metabolism. Ranolazine reversed the oxidative metabolic shift in ApoE-/-/LDLR-/- mice and reduced cardiac damage induced by hypoxia. CONCLUSIONS: We suggest a novel mechanism for myocardial injury in dyslipidaemia that is consequent to an increased reliance on oxidative metabolism in the heart. The alterations in the metabolic pattern that we identified constitute an adaptive mechanism that facilitates maintenance of metabolic equilibrium and cardiac function under normoxia. However, this adaptation could account for myocardial injury even in a mild reduction of oxygen supply.


Asunto(s)
Aterosclerosis/metabolismo , Dislipidemias/metabolismo , Metabolismo Energético/fisiología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Electrocardiografía , Ratones , Ratones Noqueados , Receptores de LDL/genética , Receptores de LDL/metabolismo , Troponina I/metabolismo
9.
J Mol Med (Berl) ; 98(10): 1397-1414, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827258

RESUMEN

Cancer cells are able to rewire their metabolism in order to support and allow rapid proliferation, continuous growth, and survival in hostile conditions, such as acidosis and hypoxia. Lactate is the final product of anaerobic glycolysis in several organisms being considered during most of the last century a dead-end waste product. In cancer context, the majority of studies on lactate have focused on its production rather than on its consumption. However, lactate has been currently proposed as a unique source of energy, a signalling molecule, and a target for cancer therapy. Cancer cells are capable of importing lactate and utilising it for energetic purposes. Indeed, lactate is a crucial substrate that fuels the oxidative metabolism of oxygenated cancer cells. In this review, we discuss the role of lactate as a key molecule in carcinogenesis, acting as a fuel for cancer cell survival, growth, and proliferation, and we describe potential therapeutic approaches to target lactate metabolism in cancer.


Asunto(s)
Metabolismo Energético , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Animales , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Glucólisis , Humanos , Mitocondrias/metabolismo , Oxidación-Reducción , Transducción de Señal
10.
Adv Exp Med Biol ; 1219: 311-333, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130706

RESUMEN

Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Humanos , Inmunoterapia , Neoplasias Pulmonares/patología , Terapia Molecular Dirigida , Microambiente Tumoral
11.
Cell Calcium ; 86: 102155, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31911235

RESUMEN

During development, disease or in response to changes in local environmental and/or nutrient supply, cellular metabolism is substantially remodeled. Reduced mitochondrial Ca2+ uptake was recently reported to induce metabolic remodeling, which through stimulating alterations in the epigenome causes changes in gene expression associated with fibroblast to myofibroblast differentiation.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Epigenoma , Fibrosis , Humanos , Modelos Biológicos , Miofibroblastos/metabolismo , Miofibroblastos/patología
12.
Free Radic Biol Med ; 147: 220-230, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31883976

RESUMEN

The AMP-activated protein kinase (AMPK)/Sucrose-nonfermenting serine-threonine protein kinase 1 (Snf1) plays an important role in metabolic remodelling in response to energy stress. However, the role of AMPK/Snf1 in responding to other environmental stresses and metabolic remodelling in microorganisms was unclear. Heat stress (HS), which is one important environmental factor, could induce the production of reactive oxygen species and the accumulation of ganoderic acids (GAs) in Ganoderma lucidum. Here, the functions of AMPK/Snf1 were analysed under HS condition in G. lucidum. We observed that Glsnf1 was rapidly and strongly activated when G. lucidum was exposed to HS. HS significantly increased intracellular H2O2 levels (by approximately 1.6-fold) and decreased the dry weight of G. lucidum (by approximately 45.6%). The exogenous addition of N-acetyl-l-cysteine (NAC) and ascorbic acid (VC), which function as ROS scavengers, partially inhibited the HS-mediated reduction in biomass. Adding the AMPK/Snf1 inhibitor compound C (20 µM) under HS conditions increased the H2O2 content (by approximately 2.3-fold of that found in the strain without HS treatment and 1.5-fold of that found in the strain under HS treatment without compound C) and decreased the dry weight of G. lucidum (an approximately 28.5% decrease compared with that of the strain under HS conditions without compound C). Similar results were obtained by silencing the Glsnf1 gene. Further study found that Glsnf1 meditated metabolite distribution from respiration to glycolysis, which is considered a protective mechanism against oxidative stress. In addition, Glsnf1 negatively regulated the biosynthesis of GA by removing ROS. In conclusion, our results suggest that Glsnf1-mediated metabolic remodelling is involved in heat stress adaptability and the biosynthesis of secondary metabolites in G. lucidum.


Asunto(s)
Reishi , Triterpenos , Adaptación Psicológica , Respuesta al Choque Térmico , Peróxido de Hidrógeno , Metabolismo Secundario
13.
J Proteomics ; 194: 49-59, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30597313

RESUMEN

Anoxygenic photosynthetic bacteria thrive under diverse habitats utilising an extended range of inorganic/organic compounds under different growth modes. Although they display incredible metabolic flexibility, their responses and adaptations to changing carbon regimes is largely unexplored. In the present study, we employed iTRAQ-based global proteomic profiling and physiological studies to uncover the adaptive strategies of a phototrophic bacterium, Rubrivivax benzoatilyticus JA2 to glucose. Strain JA2 displayed altered growth rates, reduced cell size and progressive loss of pigmentation when grown on glucose compared to malate under photoheterotrophic condition. A ten-fold increase in the saturated to unsaturated fatty acid ratio of glucose-grown cells indicates a possible membrane adaptation. Proteomic profiling revealed extensive metabolic remodelling in the glucose-grown cells wherein signal-transduction, selective-transcription, DNA-repair, transport and protein quality control processes were up-regulated to cope with the changing milieu. Proteins involved in DNA replication, translation, electron-transport, photosynthetic machinery were down-regulated possibly to conserve the energy. Glycolysis/gluconeogenesis, TCA cycle and pigment biosynthesis were also down-regulated. The cell has activated alternative energy metabolic pathways viz., fatty acid ß-oxidation, glyoxylate, acetate-switch and Entner-Doudoroff pathways. Overall, the present study deciphered the molecular/metabolic events associated with glucose-grown cells of strain JA2 and also unraveled how a carbon source modulates the metabolic phenotypes. SIGNIFICANCE: Anoxygenic photosynthetic bacteria (APB) exhibit incredible metabolic flexibility leading to diverse phenotypes. They thrive under diverse habitat using an array of inorganic/organic compounds as carbon sources, yet their metabolic adaptation to varying carbon regime is mostly unexplored. Present study uncovered the proteomic insights of the cellular responses of strain JA2 to changing carbon sources viz. malate and glucose under photoheterotrophic conditions. Our study suggests that carbon source can also determine the metabolic fate of the cells and reshape the energy dynamics of APB. Here, for the first time study highlighted the plausible carbon source (glucose) mediated regulation of photosynthesis in APB. The study sheds light on the plausible cellular events and adaptive metabolic strategies employed by strain JA2 in presence of non-preferred carbon source. It also revealed new insights into the metabolic plasticity of APB to the changing milieu.


Asunto(s)
Burkholderiales/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Proteómica , Transducción de Señal/efectos de los fármacos
14.
Cardiovasc Res ; 115(3): 530-545, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165480

RESUMEN

AIMS: Cardiac hypertrophy is characterized by a shift in metabolic substrate utilization, but the molecular events underlying the metabolic remodelling remain poorly understood. We explored metabolic remodelling and mitochondrial dysfunction in cardiac hypertrophy and investigated the cardioprotective effects of choline. METHODS AND RESULTS: The experiments were conducted using a model of ventricular hypertrophy by partially banding the abdominal aorta of Sprague Dawley rats. Cardiomyocyte size and cardiac fibrosis were significantly increased in hypertrophic hearts. In vitro cardiomyocyte hypertrophy was induced by exposing neonatal rat cardiomyocytes to angiotensin II (Ang II) (10-6 M, 24 h). Choline attenuated the mito-nuclear protein imbalance and activated the mitochondrial-unfolded protein response (UPRmt) in the heart, thereby preserving the ultrastructure and function of mitochondria in the context of cardiac hypertrophy. Moreover, choline inhibited myocardial metabolic dysfunction by promoting the expression of proteins involved in ketone body and fatty acid metabolism in response to pressure overload, accompanied by the activation of sirtuin 3/AMP-activated protein kinase (SIRT3-AMPK) signalling. In vitro analyses demonstrated that SIRT3 siRNA diminished choline-mediated activation of ketone body metabolism and UPRmt, as well as inhibition of hypertrophic signals. Intriguingly, serum from choline-treated abdominal aorta banding models (where ß-hydroxybutyrate was increased) attenuated Ang II-induced myocyte hypertrophy, which indicates that ß-hydroxybutyrate is important for the cardioprotective effects of choline. CONCLUSION: Choline attenuated cardiac dysfunction by modulating the expression of proteins involved in ketone body and fatty acid metabolism, and induction of UPRmt; this was likely mediated by activation of the SIRT3-AMPK pathway. Taken together, these results identify SIRT3-AMPK as a key cardiac transcriptional regulator that helps orchestrate an adaptive metabolic response to cardiac stress. Choline treatment may represent a new therapeutic strategy for optimizing myocardial metabolism in the context of hypertrophy and heart failure.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Colina/farmacología , Metabolismo Energético/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Sirtuinas/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Fibrosis , Hipertrofia Ventricular Izquierda/enzimología , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Cuerpos Cetónicos/metabolismo , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2579-2589, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29730342

RESUMEN

Acute viral myocarditis (VM), characterised by leukocyte infiltration and dysfunction of the heart, is an important cause of sudden cardiac death in young adults. Unfortunately, to date, the pathological mechanisms underlying cardiac failure in VM remain incompletely understood. In the current study, we investigated if acute VM leads to cardiac metabolic rewiring and if this process is driven by local inflammation. Transcriptomic analysis of cardiac biopsies from myocarditis patients and a mouse model of VM revealed prominent reductions in the expression of a multitude of genes involved in mitochondrial oxidative energy metabolism. In mice, this coincided with reductions in high-energy phosphate and NAD levels, as determined by Imaging Mass Spectrometry, as well as marked decreases in the activity, protein abundance and mRNA levels of various enzymes and key regulators of cardiac oxidative metabolism. Indicative of fulminant cardiac inflammation, NF-κB signalling and inflammatory cytokine expression were potently induced in the heart during human and mouse VM. In cultured cardiomyocytes, cytokine-mediated NF-κB activation impaired cardiomyocyte oxidative gene expression, likely by interfering with the PGC-1 (peroxisome proliferator-activated receptor (PPAR)-γ co-activator) signalling network, the key regulatory pathway controlling cardiomyocyte oxidative metabolism. In conclusion, we provide evidence that acute VM is associated with extensive cardiac metabolic remodelling and our data support a mechanism whereby cytokines secreted primarily from infiltrating leukocytes activate NF-κB signalling in cardiomyocytes thereby inhibiting the transcriptional activity of the PGC-1 network and consequently modulating myocardial energy metabolism.


Asunto(s)
Infecciones por Coxsackievirus/metabolismo , Enterovirus Humano B , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Proteínas Musculares/metabolismo , Miocarditis/metabolismo , FN-kappa B/metabolismo , Enfermedad Aguda , Animales , Infecciones por Coxsackievirus/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Miocarditis/patología , Miocarditis/virología , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo
16.
Cardiovasc Res ; 109(4): 527-41, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26786160

RESUMEN

Atrial fibrillation (AF) is the most common tachyarrhythmia in clinical practice. Over decades of research, a vast amount of knowledge has been gathered about the causes and consequences of AF related to cellular electrophysiology and features of the tissue structure that influence the propagation of fibrillation waves. Far less is known about the role of myocyte metabolism and tissue perfusion in the pathogenesis of AF. However, the rapid rates of electrical activity and contraction during AF must present an enormous challenge to the energy balance of atrial myocytes. This challenge can be met by scaling back energy demand and by increasing energy supply, and there are several indications that both phenomena occur as a result of AF. Still, there is ample evidence that these adaptations fall short of redressing this imbalance, which may represent a driving force for atrial electrical as well as structural remodelling. In addition, several 'metabolic diseases' such as diabetes, obesity, and abnormal thyroid function precipitate some well-known 'culprits' of the AF substrate such as myocyte hypertrophy and fibrosis, while some other AF risk factors, such as heart failure, affect atrial metabolism. This review provides an overview of metabolic and vascular alterations in AF and their involvement in its pathogenesis.


Asunto(s)
Fibrilación Atrial/patología , Fibrilación Atrial/fisiopatología , Atrios Cardíacos/patología , Sistema de Conducción Cardíaco/patología , Miocitos Cardíacos/patología , Animales , Fibrosis/patología , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Factores de Riesgo
17.
Cardiovasc Res ; 106(2): 249-60, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25750189

RESUMEN

AIMS: Left ventricular hypertrophy is an adaptive response of the heart to chronic mechanical overload and can lead to functional deterioration and heart failure. Changes in cardiac energy metabolism are considered as key to the hypertrophic remodelling process. The concurrence of obesity and hypertrophy has been associated with contractile dysfunction, and this work therefore aimed to investigate the in vivo structural, functional, and metabolic remodelling that occurs in the hypertrophied heart in the setting of a high-fat, high-sucrose, Western diet (WD). METHODS AND RESULTS: Following induction of cardiac hypertrophy through abdominal aortic banding, male Sprague Dawley rats were exposed to either a standard diet or a WD (containing 45% fat and 16% sucrose) for up to 14 weeks. Cardiac structural and functional characteristics were determined by CINE MRI, and in vivo metabolism was investigated using hyperpolarized (13)C-labelled pyruvate. Cardiac hypertrophy was observed at all time points, irrespective of dietary manipulation, with no evidence of cardiac dysfunction. Pyruvate dehydrogenase flux was unchanged in the hypertrophied animals at any time point, but increased incorporation of the (13)C label into lactate was observed by 9 weeks and maintained at 14 weeks, indicative of enhanced glycolysis. CONCLUSION: Hypertrophied hearts revealed little evidence of a switch towards increased glucose oxidation but rather an uncoupling of glycolytic metabolism from glucose oxidation. This was maintained under conditions of dietary stress provided by a WD but, at this compensated phase of hypertrophy, did not result in any contractile dysfunction.


Asunto(s)
Cardiomegalia/metabolismo , Metabolismo Energético/fisiología , Alimentación Animal , Animales , Aorta Abdominal/metabolismo , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Masculino , Oxidación-Reducción , Ratas Sprague-Dawley
18.
J Hepatol ; 59(4): 842-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23714158

RESUMEN

The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid ß-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.


Asunto(s)
Enfermedades de las Vías Biliares/metabolismo , Hepatopatías/metabolismo , Animales , Neoplasias de los Conductos Biliares/metabolismo , Enfermedades de las Vías Biliares/etiología , Carcinoma Hepatocelular/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colangiocarcinoma/metabolismo , Colecistitis/metabolismo , Colestasis/metabolismo , Progresión de la Enfermedad , Hígado Graso/metabolismo , Hepatitis B Crónica/metabolismo , Hepatitis C Crónica/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Hepatopatías/etiología , Hepatopatías/cirugía , Hepatopatías Alcohólicas/metabolismo , Neoplasias Hepáticas/metabolismo , Trasplante de Hígado , Metabolómica , Modelos Biológicos , Enfermedad del Hígado Graso no Alcohólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...