Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Chemosphere ; : 142759, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969218

RESUMEN

Currently, the use of natural adsorbent for the elimination of pollutants, such as heavy metals, from water has been extensively investigated. However, the low adsorption capacity of these natural adsorbent has led researchers towards the use of synthetic surfactants, which can themselves be environmental pollutants. In this research, an investigation was conducted to examine the impact of a surfactant obtained from the Seidlitzia rosmarinus plant on the adsorption properties of Pumpkin seed shell (PSS), a natural adsorbent. As a result, a modified version of PSS, known as Functionalized Pumpkin seed shell (FPSS), was developed, and the effect of these two adsorbents on the elimination of Pb2+ has been investigated. FESEM, EDS, FTIR, and BET analyses were conducted to get detailed information of the adsorbent. Additionally, the effects of contact time, dosage of the adsorbent, pH of the solution, and temperature on the adsorbent were studied. The experimental data was fitted using Langmuir, Freundlich, Temkin, and Jovanovic isotherms. The PSS adsorbent was fitted with the Temkin isotherm, showing an adsorption capacity of 160.80 mg g-1, while the FPSS adsorbent was fitted with the Jovanovic isotherm, exhibiting an adsorption capacity of 553.57 mg g-1. Furthermore, kinetic modeling results indicated that the data for these adsorbents follow pseudo-second-order kinetics. Finally, the impact of coexisting ions and reusability was examined, with the FPSS adsorbent outperforming PSS. Therefore, the investigation of all these aspects demonstrated that the use of this natural surfactant significantly improves the performance of the adsorbent.

2.
Int J Biol Macromol ; 273(Pt 1): 133066, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866294

RESUMEN

To counteract the increasing severity of water pollution and purify water sources, wastewater treatment materials are essential. In particular, it is necessary to improve the bonding strength between the adsorption material and the substrate in a long-term humid environment, and resist the invasion of microorganisms to prolong the service life. In this study, an amyloid-like aggregation method of lysozyme catalyzed by microbial transglutaminase (mTGase). Lysozyme self-assembles into an amyloid-like phase-transited lysozyme (PTL) in the presence of a reducing agent. Simultaneously, mTGase catalyzes acyl transfer reactions within lysozyme molecules or between lysozyme and keratin molecules, and driving PTL assembly on the wool fiber (TG-PTL@wool). This process enhances the grafting amount and fastness of PTL on the wool. Moreover, the tensile strength of wool fabric increased to 523 N. TG-PTL@wool achieves a 97.32 % removal rate of heavy metals, maintaining a removal rate of over 95 % after 5 cycles. TG-PTL@wool has excellent antibacterial property (99 %), and it remains above 90 % after 50 times of circulating washing. This study proved that mTGase can enhance the amyloid aggregation of lysozyme and enhance the bonding strength between PTL coating and substrate. Moreover, TG-PTL@wool provides a sustainable, efficient and cleaner solution for removing heavy metals from water.


Asunto(s)
Metales Pesados , Muramidasa , Aguas Residuales , Metales Pesados/química , Aguas Residuales/química , Animales , Muramidasa/química , Muramidasa/aislamiento & purificación , Muramidasa/metabolismo , Transglutaminasas/química , Transglutaminasas/metabolismo , Transglutaminasas/aislamiento & purificación , Lana/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/química , Adsorción , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/aislamiento & purificación , Proteínas Amiloidogénicas/metabolismo , Fibra de Lana , Agregado de Proteínas , Amiloide/química
3.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893368

RESUMEN

Agricultural residue-activated carbon and biochar, inexpensive and environmentally friendly adsorbent materials, have recently received significant research attention. This study investigated the potential use of oak cupules in activated carbon form to remove widespread heavy metals (Pb2+, Cu2+, and Ni2+) from wastewater. The oak-activated carbon was prepared from oak cupules and activated with phosphoric acid. Oak-activated carbon was characterized using FTIR, BET analysis, energy-dispersive X-ray spectrometry (EDS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The Freundlich, Langmuir, and Temkin isotherm models were used to assess the equilibrium data. The impact of various parameters, including pH effect, temperature, adsorbent dose, and contact time, was estimated. The Freundlich model was the most agreeable with Pb2+ adsorption by oak-based activated carbon, and Langmuir was more compatible with Cu2+ and Ni2+. Under optimum conditions, the average maximum removal was 63% Pb2+, 60% Cu2+, and 54% Ni2+ when every ion was alone in the aqueous solution. The removal was enhanced to 98% Pb2+, 72% Cu2+, and 60% Ni2+ when found as a mixture. The thermodynamic model revealed that the adsorption of ions by oak-based activated carbon is endothermic. The pseudo-second-order kinetic best describes the adsorption mechanism in this study; it verifies chemical sorption as the rate-limiting step in adsorption mechanisms. The oak-activated carbon was effective in removing Pb2+, Cu2+, and Ni2+ from wastewater and aqueous solutions.

4.
Sci Rep ; 14(1): 14238, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902389

RESUMEN

Municipal solid waste compost, the circular economy's closed-loop product often contains excessive amounts of toxic heavy metals, leading to market rejection and disposal as waste material. To address this issue, the study develops a novel approach based on: (i) utilizing plant-based biodegradable chelating agent, L-glutamic acid, N,N-diacetic acid (GLDA) to remediate heavy metals from contaminated MSW compost, (ii) comparative assessment of GLDA removal efficiency at optimal conditions with conventional nonbiodegradable chelator EDTA, and (iii) enhanced pre- and post-leaching to evaluate the mobility, toxicity, and bioavailability of heavy metals. The impact of treatment variables, such as GLDA concentration, pH, and retention time, on the removal of heavy metals was investigated. The process was optimized using response surface methodology to achieve the highest removal effectiveness. The findings indicated that under optimal conditions (GLDA concentration of 150 mM, pH of 2.9, retention time for 120 min), the maximum removal efficiencies were as follows: Cd-90.32%, Cu-81.96%, Pb-91.62%, and Zn-80.34%. This process followed a pseudo-second-order kinetic equation. Following GLDA-assisted leaching, the geochemical fractions were studied and the distribution highlighted Cd, Cu, and Pb's potential remobilization in exchangeable fractions, while Zn displayed integration with the compost matrix. GLDA-assisted leaching and subsequent fractions illustrated transformation and stability. Therefore, this process could be a sustainable alternative for industrial applications (agricultural fertilizers and bioenergy) and social benefits (waste reduction, urban landscaping, and carbon sequestration) as it has controlled environmental footprints. Hence, the proposed remediation strategy, chemically assisted leaching, could be a practical option for extracting heavy metals from MSW compost, thereby boosting circular economy.

5.
Bioresour Technol ; 402: 130803, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734263

RESUMEN

An ionic liquid (IL, [DMAPA]HSO4) was prepared to facilitate the removal of heavy metals by hydrothermal carbonization (HTC) in sewage sludge (SS) and to obtain a positive energy recovery (ER, (Energyoutput/Energyinput - 1) > 0). The results found that the removal efficiencies of the Fe, Mn, Zn, Co, and Cd from SS exceeded 75 % with positive ER (6 %) at 20 wt% IL dosage (IL:SS). IL promoted the HTC reactions of proteins and polysaccharides to produce fixed carbon and small molecule polymers. The process mainly relies on IL to catalyze the dehydration and graphitization of SS and to destroy the heavy metal binding sites such as carboxyl and hydroxyl groups. Additionally, IL aids in constructing the macropore structures in hydrochar, thereby facilitating the release of heavy metals and water during the HTC process. This discovery holds promise for removing heavy metals from SS by one-pot HTC processes with positive energy recovery.


Asunto(s)
Líquidos Iónicos , Metales Pesados , Aguas del Alcantarillado , Metales Pesados/química , Aguas del Alcantarillado/química , Líquidos Iónicos/química , Catálisis , Carbono/química , Carbón Orgánico/química , Contaminantes Químicos del Agua , Temperatura , Purificación del Agua/métodos , Frío
6.
Bioresour Technol ; 404: 130913, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821426

RESUMEN

This work proposes an advanced biochar material (ß-CD@SiBC) for controllable transformation of specific silicon (Si) forms through endogenous Si activation and functional group introduction for efficient cadmium (Cd) immobilization and removal. The maximum adsorption capacity of ß-CD@SiBC for Cd(II) reached 137.6 mg g-1 with a remarkable removal efficiency of 99 % for 200 mg L-1Cd(II). Moreover, the developed ß-CD@SiBC flow column exhibited excellent performance at the environmental Cd concentration, with the final concentration meeting the environmental standard for surface water quality (0.05 mg L-1). The remediation mechanism of ß-CD@SiBC could be mainly attributed to mineral precipitation and ion exchange, which accounted for 42 % and 29 % of the remediation effect, respectively, while functional group introduction enhanced its binding stability with Cd. Overall, this work proposes the role and principle of transformation of Si forms within biochar, providing new strategies for better utilizing endogenous components in biomass.


Asunto(s)
Cadmio , Carbón Orgánico , Silicio , Contaminantes Químicos del Agua , Cadmio/química , Carbón Orgánico/química , Silicio/química , Adsorción , Purificación del Agua/métodos , Restauración y Remediación Ambiental/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38727970

RESUMEN

Simple and efficient removal of Pb(II) ion from aqueous solution through adsorption has accelerated the development of many new composites to improve this popular method. In this study, the composites of graphene oxide (GO), zeolitic imidazolate framework-8 (ZIF-8), and magnetic materials were synthesized via coprecipitation method utilizing a different molar ratio between FeCl2 and FeCl3 of 1:0.5, 2:1, 3:1.5, and 4:2. The ZIF-8/GO was prepared via room temperature synthesis method prior to its further modification with magnetic materials for ease of separation. It was observed that the MZIF-8/GO2 of molar ratio 2:1 showed the best performance in adsorbing Pb(II) ion. As confirmed by FESEM image, it appeared to be ZIF-8 particles that have grown all over the GO platform and overlayed with Fe3O4 granular-shaped particles. The MZIF-8/GO2 successfully achieved 99% removal of Pb(II) within 10 min. The optimum values obtained for the initial concentration of Pb (II) were 100 mg/L, pH of 4 to 6, and adsorbent dosage used was 10 mg. The Langmuir isotherm and the pseudo-second-order kinetic model were deemed suitable to evaluate the adsorption of Pb(II) using MZIF-8/GO2. Results showed that MZIF-8GO2 achieved a maximum adsorption capacity of 625 mg/g of Pb(II) adsorption. All parent materials demonstrated a good synergistic effects, while exhibiting a significant contribution in providing active sites for Pb(II) adsorption. Therefore, this ternary composite of MZIF-8/GO2 is expected to be a promising adsorbent for Pb(II) adsorption from aqueous solution with an added value of ease of post phase separation using external magnetic field.

8.
Heliyon ; 10(10): e31358, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813235

RESUMEN

The present study focused on the investigation of the performance of a Moving Bed Bioreactor coupled with a Membrane Bioreactor (MBBR-MBR) on a small scale for textile wastewater treatment. The parameters examined in this study included the removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total suspended solids (TSS), turbidity, color, and heavy metals (HM). The two reactors were operated consecutively and maintained aerobic conditions. The idea is to reduce the pollutant load significantly through the activity of microorganism attached to the biofilm covered carriers in MBBR and successive membrane filtration. The system demonstrated a favorable outcome even in a smaller hydraulic retention time (HRT) of 1 day, which presents a significant advantage in terms of cost and space saving. The removal effectiveness of COD attained a maximum of 92 %, BOD reached a maximum of 95 %, and the color removal performance obtained a removal efficiency of 87 %. Furthermore, the treatment showed remarkable efficiency in removing up to 100 % of TSS and 96 % of turbidity. Additionally, an evaluation was conducted on the elimination of heavy metals, including Zinc (Zn), Lead (Pb), Chromium (Cr), and Iron (Fe). The efficacy of removing these HMs was found to exceed 85 %. All these favorable outcomes contribute to the improvement of effluent quality, mitigation of contamination hazards, and fouling reduction.

9.
Environ Sci Pollut Res Int ; 31(25): 36551-36576, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755474

RESUMEN

Among the many heavy metal pollution treatment agents, carbonate materials show strong flexibility and versatility by virtue of their high adsorption capacity for heavy metals and the characteristics of multiple and simple modification methods. It shows good potential for development. This review summarizes the application of carbonate materials in the treatment of heavy metal pollution according to the research of other scholars. It mainly relates to the application of surface-modified, activated, and nano-sized carbonate materials in the treatment of heavy metal pollution in water. Natural carbonate minerals and composite carbonate minerals solidify and stabilize heavy metals in soil. Solidification of heavy metals in hazardous waste solids is by MICP. There are four aspects of calcium carbonate oligomers curing heavy metals in fly ash from waste incineration. The mechanism of treating heavy metals by carbonate in different media was discussed. However, in the complex environment where multiple types of pollutants coexist, questions on how to maintain the efficient processing capacity of carbonate materials and how to use MICP to integrate heavy metal fixation and seepage prevention in solid waste base under complex and changeable natural environment deserve our further consideration. In addition, the use of carbonate materials for the purification of trace radioactive wastewater and the safe treatment of trace radioactive solid waste are also worthy of further exploration.


Asunto(s)
Carbonatos , Metales Pesados , Carbonatos/química , Adsorción
10.
Chemosphere ; 355: 141884, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575083

RESUMEN

Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua
11.
Environ Res ; 252(Pt 2): 118940, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626871

RESUMEN

Constructed wetlands for wastewater treatment pose challenges related to long-term operational efficiency and greenhouse gas emissions on a global scale. This study investigated the impact of adding peat, humic acid, and biochar into the substrates of constructed wetlands and focused on Cr, and Ni removal, greenhouse gas emissions, and microbial communities in constructed wetlands. Biochar addition treatment achieved the highest removal efficiencies for total Cr (99.96%), Cr (VI) (100%), and total Ni (91.04%). Humic acid and biochar addition both significantly increased the heavy metal content in wetland plant Leersia hexandra and substrates of constructed wetlands. Further analysis of microbial community proportions by high-throughput sequencing revealed that biochar and humic acid treatments enhanced Cr and Ni removal efficiency by increasing the abundance of Bacteroidetes, Geobacter and Ascomycota. Humic acid addition treatment reduced CO2 emissions by decreasing the abundance of Bacteroidetes and increasing that of Basidiomycota. Peat treatment decreased CH4 emissions by reducing the abundance of the Bacteroidetes. Biochar treatment increased the abundance of the Firmicutes, Bacteroidetes, Proteobacteria as well as Basidiomycota, resulting in reduced N2O emissions. Biochar and humic acid treatments efficiently removed heavy metals from wastewater and mitigated greenhouse gas emissions in constructed wetlands by modifying the microbial communities.


Asunto(s)
Cromo , Gases de Efecto Invernadero , Níquel , Humedales , Níquel/análisis , Gases de Efecto Invernadero/análisis , Cromo/análisis , Carbón Orgánico/química , Carbono/análisis , Sustancias Húmicas/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
12.
J Hazard Mater ; 470: 134115, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626676

RESUMEN

EDTA has been widely utilized as a chelating agent in soil heavy metal remediation, due to its strong coordination capability. Electrochemical deposition is a promising avenue to treat soil washing effluent. However, the impact of advanced electrochemical techniques on EDTA remains incompletely understood. Herein, we present a pioneering approach, utilizing a dual-chamber electrolytic cell and alternating current (AC) power supply. This approach achieves concurrent removal of M-EDTA while efficiently recovering heavy metal and recycling EDTA. Results demonstrate AC displays superior heavy metal removal capability for Cu, Pb, and Cd compare to direct current (DC), with EDTA decomposition mainly occurring in the anolyte. Substituting DC with AC and employing the dual-chamber electrolytic cell significantly enhances EDTA recovery efficiency from 47% to an impressive 96.8%. XPS and Raman spectra reveal an enhanced oxidative surface of the graphite anode under AC, which diminishes the decomposition of EDTA. Long-term experiments validate that this strategy boosts EDTA cyclability to 20 cycles with an outstanding 84% recovery efficiency and negligible electrode corrosion, surpassing the 8 cycles under the traditional strategy. This study innovatively combines cell design and electrochemical techniques, remarkably improving the reusability of EDTA and anode, offering valuable insights for chelate-related applications.

13.
Heliyon ; 10(6): e27616, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38515701

RESUMEN

Among the several treatment options, electrokinetic (EK) remediation is recognized as an effective technique for the removal of heavy metals from low-permeability porous matrices. However, most of the EK decontamination research reported was performed on linear configuration systems at a laboratory scale. In this study, a series of experiments were performed on a pilot-scale system where the electrodes were arranged in a hexagonal configuration, to assess the improvement of the EK process in the removal of inorganic contaminants from sediments dredged in the harbor of Piombino, Italy. HNO3 was used as acid conditioning and both pH effect and treatment duration time were investigated. Sediment characterization and metal fractionation were also presented, in order to understand how the bioavailability of metals affects the process efficiency. The increase in pH due to the buffering capacity of the sediment in the sections close to the cathode favored the precipitation and accumulation of metals. However, the results highlighted that longer treatment times, combined with an efficient pH reduction, can improve treatment performance, resulting in high removal efficiencies for all the target metals considered (a percentage removal greater than 50% was reached for Cd, Ni, Pb, Cu and Zn). Compared to different EK configuration systems, the hexagonal configuration arrangement applied in our study provides better results for the remediation of dredged marine sediment.

14.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475395

RESUMEN

Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.

15.
Bioengineering (Basel) ; 11(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38391631

RESUMEN

This study investigated the synergistic integration of clean technologies, specifically anaerobic digestion (AD) and struvite precipitation, to enhance nutrient recovery from chicken manure (CM). The batch experiments were conducted using (i) anaerobically digested CM digestate, referred to as raw sample (RS), (ii) filtered digestate sample (FS), and (iii) a synthetically prepared control sample (CS). The research findings demonstrated that the initial ammonia concentration variations did not significantly impact the struvite precipitation yield in the RS and FS, showcasing the materials inertness process's robustness to changing ammonia concentrations. Notably, the study revealed that the highest nitrogen (N) recovery, associated with 86% and 88% ammonia removal in the CS and FS, was achieved at pH 11, underscoring the efficiency of nutrient recovery. The RS achieved the highest nitrogen recovery efficiency at pH 10, at 86.3%. In addition, the research highlighted the positive impact of reducing heavy metal levels (Zn, Cu, Pb, Ni, Cd, Cr and Fe) and improving the composition of the microbial community in the digestate. These findings offer valuable insights into sustainable manure and nutrient management practices, emphasizing the potential benefits for the agricultural sector and the broader circular economy. Future research directions include economic viability assessments, regulatory compliance evaluations, and knowledge dissemination to promote the widespread adoption of these clean technologies on a larger scale. The study marks a significant step toward addressing the environmental concerns associated with poultry farming and underscores the potential of integrating clean technologies for a more sustainable agricultural future.

16.
Food Sci Biotechnol ; 33(2): 287-295, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38222907

RESUMEN

Exposure to heavy metals in water and food poses a significant threat to human well-being, necessitating the efficient removal of these contaminants. The process of urban development exacerbates heavy metal pollution, thereby increasing risks to both human health and ecosystems. Heavy metals have the capacity to enter the food chain, undergo bioaccumulation and magnify, ultimately resulting in adverse effects on human health. Therefore, implementing effective pollution control measures and adopting sustainable practices are crucial for mitigating exposure and associated health risks. Various innovative approaches, including adsorption, ion exchange, and electrochemical technology, are currently being actively investigated to cope with the issue of heavy metal contamination. These innovative methods offer benefits such as efficient recycling, cost-effectiveness and environmental friendliness. In this review, we summarize recent advances for removing heavy metals from water, soil and food, providing valuable guidance for environmental engineers and researchers seeking to address contamination challenges.

17.
J Environ Manage ; 351: 119912, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176381

RESUMEN

An Acinetobacter calcoaceticus strain HM12 capable of heterotrophic nitrification-aerobic denitrification (HN-AD) under nutrient-poor conditions was isolated, with an ammonia nitrogen (NH4+-N) removal efficiency of 98.53%. It can also remove heavy metals by microbial induced calcium precipitation (MICP) with a Ca2+ removal efficiency of 75.91%. Optimal conditions for HN-AD and mineralization of the strain were determined by kinetic analysis (pH = 7, C/N = 2.0, Ca2+ = 70.0 mg L-1, NH4+-N = 5.0 mg L-1). Growth curves and nitrogen balance elucidated nitrogen degradation pathways capable of converting NH4+-N to gaseous nitrogen. The analysis of the bioprecipitation showed that Zn2+ and Cd2+ were removed by the MICP process through co-precipitation and adsorption (maximum removal efficiencies of 93.39% and 80.70%, respectively), mainly ZnCO3, CdCO3, ZnHPO4, Zn3(PO4)2 and Cd3(PO4)2. Strain HM12 produces humic and fulvic acids to counteract the toxicity of pollutants, as well as aromatic proteins to increase extracellular polymers (EPS) and promote the biomineralization process. This study provides a experimental evidence for the simultaneous removal of multiple pollutants from nutrient-poor waters.


Asunto(s)
Acinetobacter calcoaceticus , Contaminantes Ambientales , Metales Pesados , Amoníaco , Desnitrificación , Acinetobacter calcoaceticus/metabolismo , Calcio/metabolismo , Nitritos/metabolismo , Cinética , Cadmio , Aerobiosis , Nitrificación , Nitrógeno/análisis , Procesos Heterotróficos , Nutrientes
18.
Carbohydr Polym ; 328: 121749, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220317

RESUMEN

This study presents a novel and environmentally friendly method for producing cellulose microspheres (CM) with controllable morphology and size using electrostatic droplets. The traditional droplet method for CM production requires complex equipment and harmful reagents. In contrast, the proposed method offers a simple electrostatic droplet approach to fabricate CM10 at 10 kV, which exhibited a smaller volume, linear microscopic morphology, and a larger specific surface area, with a 36.60 % improvement compared to CM0 (prepared at 0 kV). CM10 also demonstrated excellent underwater structural stability, recovering in just 0.5 s, and exhibited the highest adsorption capacity for Cr(VI) at 190.16 mg/g, a 72.15 % improvement over CM0. This enhanced adsorption capacity can be attributed to the unique structure of CM10 and the introduction of more amino groups. Moreover, CM10 displayed good cyclic adsorption capacity and high dynamic adsorption efficiency, making it highly suitable for practical applications. CM10 exhibited remarkable adsorption capacity, stability, and practical value in treating Cr(VI) wastewater. This work proposes a simple and eco-friendly method for producing CM with excellent structural controllability and stability, providing an effective route for wastewater treatment.

19.
Water Environ Res ; 96(1): e10977, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38254264

RESUMEN

The construction of dominant algal species and bacterial strains in algal treatment technology was crucial for pollutant removal. In order to enhance the purification capability of microalgae toward heavy metals in water as well as biogas slurry and biogas, symbiotic systems were respectively constructed using Chlorella vulgaris and two different endogenous bacteria (microalgal endophytic bacteria S395-2 and plant endophytic bacteria BEB7). The results demonstrated that the endogenous bacteria (S395-2 and BEB7) effectively promote the growth, biomass yield, photosynthetic activity, and carbonic anhydrase activity of microalgae. Additionally, BEB7 exhibited superior promotion effects on microalgae compared to S395-2. Moreover, the BEB7-microalgae co-cultivation system not only efficiently removed heavy metals from water but also effectively purified the nutrients and CO2 in biogas slurry. The optimal effect was observed when the ratio of BEB7 to microalgae was 10:1. This study has established a solid theoretical foundation for the application of microalgae in pollutant purification. PRACTITIONER POINTS: Endogenous bacteria effectively promoted microalgal performance. The optimal ratio of BEB7 to microalgae was 10:1. Chlorella vulgaris-BEB7 showed the best removal performance.


Asunto(s)
Chlorella vulgaris , Contaminantes Ambientales , Metales Pesados , Microalgas , Biocombustibles , Bacterias , Nutrientes , Agua
20.
Ultrason Sonochem ; 103: 106773, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38244247

RESUMEN

The use of a resin to selectively separate thiomolybdate from a tungsten (W) feed solution is a well-known protocol for achieve high-purity W products; however, the regeneration of saturated resin is laborious. In this study, poly(diallyl dimethyl ammonium chloride) (PDADMA) was used to modify ultrasound-pretreated montmorillonite (Mt) for W and molybdenum (Mo) separation for the first time, and the resultant tetrathiomolybdate (MoS42-)-loaded composite was further tested to remove heavy metals instead of regeneration. Among the three variables of ultrasound pretreatment, that is, Mt concentration, ultrasound power, and treatment time, the Mt concentration exhibited the most significant influence followed by ultrasound power on the separation performance of W and Mo. Compared to the distance of the interlayer space and the surface charge of the modified Mt, the PDADMA content showed a closer correlation with the W/Mo separation coefficient. Assisted by Box-Behnken design, with Mt concentration of 6.9 g/L, ultrasound power of 593.8 W, and treatment time of 13.8 min, the composite with the greatest separation coefficient was obtained. The adsorption of Cu(II) on the optimal W/Mo separation-derived composite was ascribed to the formation of Cu-S complexes, while that of Pb(II) was attributed to complexation and surface precipitation. In contrast, ion exchange with the initially loaded anions, reduction by sulfide to Cr(III), and formation of Cr(III)-S complexes accounted for Cr(VI) removal. The adsorption of Cu(II) and Pb(II) equilibrated faster and showed higher acid-resistance than that of Cr(VI). The adsorption capacities for Cu(II), Pb(II), and Cr(VI) were 0.535, 1.398, and 0.882 mmol/g, respectively. Applying PDADMA to modify Mt as a reagent for W/Mo separation was feasible, and the derived composite was capable of removing cationic and anionic heavy metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...