Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31795, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38832280

RESUMEN

Exploring the chemical processes and factors influencing the stability of the blue color derived from anthocyanins is a crucial objective in agricultural and food chemistry research. The ability of these compounds to bind with metals could potentially stabilize anthocyanins extracted from plant-based foods or enable modifying their hues for application as natural food colorants. This study had two core objectives - first, to extract and identify the major anthocyanin pigments responsible for iris flower coloration. Second, to selectively complex purified iris anthocyanins with aluminum (Al3+) and copper (Cu2+) ions, probing the coordination chemistry underlying synthetic metalloanthocyanin formation. Fresh iris flowers were collected and anthocyanins extracted using an optimized acidic solution. After separation, anthocyanins were complexed with metals Al3+ and Cu2+ at pH 5-6 to understand better the evolution of blue and green colors in anthocyanin-metal chelates. Characterization of anthocyanins and their metal complexes utilized UV-visible spectrometry, colorimetry (L\* a\*b\* values), FTIR spectroscopy, and LC-MS. Metal complexation of anthocyanins exhibited bathochromic shifts of visible absorption maxima from 538 to 584 nm for Al-complex and 538-700 nm for Cu-complex. Color changes were accompanied by decreased lightness (L\*, from 87 to 81) and color coefficients a\* (+5.4 to -6.8) and b\* (-12.2 to -4.8). LC-MS analysis identified five major anthocyanin aglycones: cyanidin (Cyd, m/z 289), delphinidin (Dpd, m/z 305), petunidin (Ptd, m/z 229), malvidin (Mv, m/z 329) and pelargonidin (m/z 273), along with various glycosylated derivatives. This work successfully isolated key iris anthocyanin pigments and elucidated their metal chelation interactions underlying expanded floral color production, bridging knowledge gaps about this underexplored genus.

2.
Biosci Biotechnol Biochem ; 86(10): 1349-1352, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-35983624

RESUMEN

A survey of metalloanthocyanin by in vivo visible spectrum and circular dichroism suggested that blue petals of Salvia macrophylla contain metalloanthocyanins. Chemical analysis of the purified blue pigment proved that the pigment in the petals is protodelphin, which is the same pigment present in the blue petals of Salvia patens composed of malonylawobanin, apigenin 7,4'-diglucosides and Mg2+.


Asunto(s)
Salvia , Antocianinas , Apigenina , Flores , Magnesio , Pigmentación
3.
Food Chem ; 221: 1088-1095, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27979063

RESUMEN

Colorants derived from nature are increasingly popular due to consumer demand. Anthocyanins are a class of naturally occurring pigments that produce red-purple-blue hues in nature, especially when interacting with metal ions and co-pigments. The role of various acylations of cyanidin (Cy) derivatives on color expression and stability of Al3+ and Fe3+ chelates in pH 6-7 were evaluated by spectrophotometry (380-700nm) and colorimetry (CIE-L∗a∗b∗) during dark, ambient storage (48h). Increased substitution generally increased λmax of Cy chelates: malonic acid monoacylationferulic-sinapic>sinapic-sinapic)>monoacylated (malonic≈sinapic>ferulic>p-coumaric).


Asunto(s)
Antocianinas/análisis , Quelantes/análisis , Metales/análisis , Acilación/fisiología , Antocianinas/metabolismo , Quelantes/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Colorimetría/métodos , Metales/metabolismo
4.
Food Chem ; 208: 26-34, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27132820

RESUMEN

In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)).


Asunto(s)
Antocianinas/química , Color , Acilación , Concentración de Iones de Hidrógeno , Iones/química
5.
Phytochemistry ; 94: 60-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23838627

RESUMEN

The blue petal color of the cornflower (Centaurea cyanus) is caused by protocyanin, a kind of metalloanthocyanin, which is a self-assembled supramolecular metal complex pigment. Protocyanin is composed of six molecules of anthocyanin, six molecules of flavone, one ferric ion, and one magnesium ion. The ferric ion is essential for blue color development. Here, we identify the vacuolar iron transporter gene (CcVIT) from the blue petals of C. cyanus and its function is identified and characterized. The CcVIT transcript was observed only in the petals. Its amino acid sequence is highly homologous to the Arabidopsis thaliana (AtVIT1) and Tulipa gesneriana (TgVit1) vacuolar iron transporters. Heterologous expression of the CcVIT gene in yeast indicated that the corresponding gene product transports ferrous ion into vacuoles. Analysis of purple mutant-line petals clarified that the anthocyanin and flavone components were the same as those found in plants with blue petals, but the amount of iron ions in the colored cells decreased, and consequently the amount of blue protocyanin was reduced. The CcVIT gene was expressed even in purple mutant petals, however, an amino acid substitution (A236E) occurred in that case. This change in the CcVIT gene sequence also resulted in loss of iron transport activity. The CcVIT protein thus plays a critical role in the blue coloration of cornflower petals.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Flores/metabolismo , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Transporte Biológico/genética , Proteínas de Transporte de Catión/clasificación , Proteínas de Transporte de Catión/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glicósidos/biosíntesis , Glicósidos/química , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Filogenia , Pigmentación/genética , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/química , Proteínas de Plantas/genética , Protoplastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...