RESUMEN
Despite ferritin's critical role in regulating cellular and systemic iron levels, our understanding of the structure and assembly mechanism of isoferritins, discovered over eight decades ago, remains limited. Unveiling how the composition and molecular architecture of hetero-oligomeric ferritins confer distinct functionality to isoferritins is essential to understanding how the structural intricacies of H and L subunits influence their interactions with cellular machinery. In this study, ferritin heteropolymers with specific H to L subunit ratios were synthesized using a uniquely engineered plasmid design, followed by high-resolution cryo-electron microscopy analysis and deep learning-based amino acid modeling. Our structural examination revealed unique architectural features during the self-assembly mechanism of heteropolymer ferritins and demonstrated a significant preference for H-L heterodimer formation over H-H or L-L homodimers. Unexpectedly, while dimers seem essential building blocks in the protein self-assembly process, the overall mechanism of ferritin self-assembly is observed to proceed randomly through diverse pathways. The physiological significance of these findings is discussed including how ferritin microheterogeneity could represent a tissue-specific adaptation process that imparts distinctive tissue-specific functions to isoferritins.
Asunto(s)
Ferritinas , Multimerización de Proteína , Humanos , Ferritinas/química , Ferritinas/metabolismo , Ferritinas/genética , Modelos Moleculares , Microscopía por CrioelectrónRESUMEN
In a bioprospection for new antivirals, we tested nonribosomally biosynthesized polypeptide antibiotics in MDCK II cells for their actions on influenza A and B viruses (IAV/IBV). Only tolypin, a mixture of closely related 16-residue peptaibiotics from the fungus Tolypocladium inflatum IE 1897, showed promising activity. It was selected for further investigation and structural characterization by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HR-MS/MS) and ultrahigh performance liquid chromatography coupled to in-source collision-induced dissociation tandem mass spectrometry (UHPLC-isCID-HR-MS/MS), revealing 12 partially co-eluting individual peptides that were fully sequenced. Since tolypin-related efrapeptins are potent inhibitors of F1/Fo-ATPase, we screened tolypin for its toxicity against MDCK II cells and larvae of the greater wax moth Galleria mellonella. We found that a nontoxic concentration of tolypin (1 µg/mL) reduced the titer of two IBV strains by 4-5 log values, and that of an H3N2 strain by 1-2 log values, but the H1N1pdm strain was not affected. The higher concentrations of tolypin were cytostatic to MDCK II cells, shifted their metabolism from oxidative phosphorylation to glycolysis, and induced paralysis in G. mellonella, supporting the inhibition of F1/Fo-ATPase as the mode of action. Our results lay the foundations for future work to investigate the interplay between viral replication and cellular energy metabolism, as well as the development of drugs that target host factors.
Asunto(s)
Antivirales , Virus de la Influenza B , Animales , Antivirales/farmacología , Antivirales/química , Perros , Células de Riñón Canino Madin Darby , Virus de la Influenza B/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/virología , Virus de la Influenza A/efectos de los fármacos , Espectrometría de Masas en Tándem , Hypocreales/química , Relación Estructura-Actividad , Larva/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Peptaiboles/farmacología , Peptaiboles/química , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacosRESUMEN
BACKGROUND: Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS: We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS: Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS: Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.
Asunto(s)
Albúminas , Glicoproteínas , Glicosilación , Animales , Bovinos , Humanos , Albúminas/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Glicopéptidos/metabolismo , Glicopéptidos/química , Glicoproteínas/metabolismo , Glicoproteínas/química , Datos de Secuencia Molecular , Espectrometría de Masas en TándemRESUMEN
We present a novel approach to characterize and quantify microheterogeneity and microphase separation in computer simulations of complex liquid mixtures. Our post-processing method is based on local density fluctuations of the different constituents in sampling spheres of varying size. It can be easily applied to both molecular dynamics (MD) and Monte Carlo (MC) simulations, including periodic boundary conditions. Multidimensional correlation of the density distributions yields a clear picture of the domain formation due to the subtle balance of different interactions. We apply our approach to the example of force field molecular dynamics simulations of imidazolium-based ionic liquids with different side chain lengths at different temperatures, namely 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-3-methylimidazolium chloride, which are known to form distinct liquid domains. We put the results into the context of existing microheterogeneity analyses and demonstrate the advantages and sensitivity of our novel method. Furthermore, we show how to estimate the configuration entropy from our analysis, and we investigate voids in the system. The analysis has been implemented into our program package TRAVIS and is thus available as free software.
RESUMEN
The solvatochromic characteristics of methyl red were examined in several aqueous solutions from pure water, with methanol, ethanol, propanol, acetonitrile, and dioxane. In order to explain the preferred solvation of the probe azo dye in the binary mixed solvents, the solvent exchange model of Bosch and Roses was used to evaluate the association between the empirical solvent polarity scale (ET) values of MR and solvent composition. Non-linear solvatochromism of methyl red was noted in all aqueous mixtures containing methanol, ethanol, propanol, acetonitrile, and dioxane. In addition to calculating the local mole fraction of each solvent composition in the cybotactic area of the probe, the impact of the solvating shell composition on the preferential solvation of the solute dye was examined in terms of both solvent-solvent and solute-solvent interactions. The local mole fraction of each solvent composition in the cybotactic region of the probe was also calculated. The results indicated that the MR solvation shell was thoroughly saturated with the solvent complex S12 in the following order: dioxane > ethanol > methanol > acetonitrile > propanol. Data from the binary systems were analyzed with KAT parameters using a multi-model; in aqueous methanol and ethanol solutions, the hydrogen acidity was more responsible for the spectral shift, whereas in aqueous acetonitrile and dioxane solutions, the basicity has a greater influence.
RESUMEN
Lactoferrin is a highly glycosylated protein, which have important biological functions in the growth and development of neonates. However, the glycoforms and glycosylation sites differed between species. The aim of the study was to identify the glycosylation profile (including glycosites, glycan structures, and glycoforms) of purified lactoferrin from human and animal (cow, goat, sheep) milk by using site-specific glycoproteomics technique. In total, a number of 89 N-glycans were identified in human and animal milk lactoferrin. We identified three N-glycosites with 23 different compositions of N-glycans in cow lactoferrin (CLF), four distinctive N-glycosites with 34 dissimilar N-glycan compositions in goat lactoferrin (GLF), five N-glycosites with 57 different N-glycan compositions in sheep lactoferrin (SLF), while five unique N-glycosites with 50 different N-glycan compositions were ascertained in human lactoferrin (HLF). HLF had the most complex glycan, while animal lactoferrin had the most high-mannose glycoforms. The results of this study further our understanding of lactoferrin differences between human and animal milk, which can provide a perspective on the analysis of differences in functional characteristics.
Asunto(s)
Lactoferrina , Leche , Bovinos , Femenino , Recién Nacido , Animales , Humanos , Ovinos , Leche/química , Lactoferrina/química , Glicosilación , Polisacáridos/química , Cabras/metabolismoRESUMEN
The solvatochromic dye Laurdan is widely used in sensing the lipid packing of both model and biological membranes. The fluorescence emission maximum shifts from about 440 nm (blue channel) in condensed membranes (So) to about 490 nm (green channel) in the liquid-crystalline phase (Lα). Although the fluorescence intensity based generalized polarization (GP) is widely used to characterize lipid membranes, the fluorescence lifetime of Laurdan, in the blue and the green channel, is less used for that purpose. Here we explore the correlation between GP and fluorescence lifetimes by spectroscopic measurements on the So and Lα phases of large unilamellar vesicles of DMPC and DPPC. A positive correlation between GP and the lifetimes is observed in each of the optical channels for the two lipid phases. Microfluorimetric determinations on giant unilamellar vesicles of DPPC and DOPC at room temperature are performed under linearly polarized two-photon excitation to disentangle possible subpopulations of Laurdan at a scale below the optical resolution. Fluorescence intensities, GP and fluorescence lifetimes depend on the angle between the orientation of the linear polarization of the excitation light and the local normal to the membrane of the optical cross-section. This angular variation depends on the lipid phase and the emission channel. GP and fluorescence intensities in the blue and green channel in So and in the blue channel in Lα exhibit a minimum near 90o. Surprisingly, the intensity in the green channel in Lα reaches a maximum near 90o. The fluorescence lifetimes in the two optical channels also reach a pronounced minimum near 90o in So and Lα, apart from the lifetime in the blue channel in Lα where the lifetime is short with minimal angular variation. To our knowledge, these experimental observations are the first to demonstrate the existence of a bent conformation of Laurdan in lipid membranes, as previously suggested by molecular dynamics calculations.
Asunto(s)
Lauratos , Liposomas Unilamelares , Membrana Celular , Lauratos/análisis , Lauratos/química , 2-Naftilamina/química , Colorantes Fluorescentes/química , Polarización de FluorescenciaRESUMEN
Skeletal muscle repair relies on heterogeneous populations of satellite cells (SCs). The mechanisms that regulate SC homeostasis and state transition during activation are currently unknown. Here, we investigated the emerging role of non-genetic micro-heterogeneity, i.e., intrinsic cell-to-cell variability of a population, in this process. We demonstrate that micro-heterogeneity of the membrane protein CRIPTO in mouse-activated SCs (ASCs) identifies metastable cell states that allow a rapid response of the population to environmental changes. Mechanistically, CRIPTO micro-heterogeneity is generated and maintained through a process of intracellular trafficking coupled with active shedding of CRIPTO from the plasma membrane. Irreversible perturbation of CRIPTO micro-heterogeneity affects the balance of proliferation, self-renewal, and myogenic commitment in ASCs, resulting in increased self-renewal in vivo. Our findings demonstrate that CRIPTO micro-heterogeneity regulates the adaptative response of ASCs to microenvironmental changes, providing insights into the role of intrinsic heterogeneity in preserving stem cell population diversity during tissue repair.
Asunto(s)
Células Satélite del Músculo Esquelético , Animales , Ratones , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Células MadreRESUMEN
Three-dimensional bioprinting is an evolving versatile technique for biomedical applications. Ideal bioinks have complex micro-environment that mimic human tissue, allow for good printing quality and provide high cell viability after printing. Here we present two strategies for enhancing gelatin-based bioinks heterogeneity on a 1-100µm length scale resulting in superior printing quality and high cell viability. A thorough spatial and micro-mechanical characterization of swollen hydrogel heterogeneity was done using multiple particle tracking microrheology. When poly(vinyl alcohol) is added to homogeneous gelatin gels, viscous inclusions are formed due to micro-phase separation. This phenomenon leads to pronounced slip and superior printing quality of complex 3D constructs as well as high human hepatocellular carcinoma (HepG2) and normal human dermal fibroblast (NHDF) cell viability due to reduced shear damage during extrusion. Similar printability and cell viability results are obtained with gelatin/nanoclay composites. The formation of polymer/nanoclay clusters reduces the critical stress of gel fracture, which facilitates extrusion, thus enhancing printing quality and cell viability. Targeted introduction of micro-heterogeneities in bioinks through micro-phase separation is an effective technique for high resolution 3D printing of complex constructs with high cell viability. The size of the heterogeneities, however, has to be substantially smaller than the desired feature size in order to achieve good printing quality.
Asunto(s)
Bioimpresión , Gelatina , Humanos , Supervivencia Celular , Hidrogeles , Impresión Tridimensional , Bioimpresión/métodos , Ingeniería de Tejidos/métodos , Andamios del TejidoRESUMEN
The interaction between the receptor-binding domain (RBD) of the spike glycoprotein of SARS-CoV-2 and the peptidase domain of the human angiotensin-converting enzyme 2 (ACE2) allows the first specific contact at the virus-cell interface making it the main target of neutralizing antibodies. Here, we show a unique and cost-effective protocol using Drosophila S2 cells to produce both RBD and soluble human ACE2 peptidase domain (shACE2) as thermostable proteins, purified via Strep-tag with yields >40 mg L-1 in a laboratory scale. Furthermore, we demonstrate its binding with KD values in the lower nanomolar range (independently of Strep-tag removal) and its capability to be blocked by serum antibodies in a competition ELISA with Strep-Tactin-HRP as a proof-of-concept. In addition, we assess the capacity of RBD to bind native dimeric ACE2 overexpressed in human cells and its antigen properties with specific serum antibodies. Finally, for completeness, we analyzed RBD microheterogeneity associated with glycosylation and negative charges, with negligible effect on binding either with antibodies or shACE2. Our system represents an accessible and reliable tool for designing in-house surrogate virus neutralization tests (sVNTs), enabling the rapid characterization of neutralizing humoral responses elicited against vaccines or infection, especially in the absence of facilities to conduct virus neutralization tests. Moreover, our biophysical and biochemical characterization of RBD and shACE2 produced in S2 cells lays the groundwork for adapting to different variants of concern (VOCs) to study humoral responses elicited against different VOCs and vaccine formulations.
Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animales , Humanos , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Drosophila/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/químicaRESUMEN
Myocardial infarction (MI) leading to heart failure contributes to almost 85% of deaths associated with CVDs. MI results from plaque formation in the coronary artery which leads to a lack of oxygen and nutrients in the myocardium. To date, stenting is a widely used gold-standard technique to maintain the proper blood flow through coronary circulation in the myocardium. Bare metal stents (BMS) and drug-eluting stents (DES) are majorly used in implantation. However, BMS and DES both can induce neointima formation by depositing excessive collagens in the coronary arteries leading to restenosis. Identification and quantitative analysis of site-specific post-translational modifications (PTMs) of deposited COL1A1 from neointima ECM are not known. Applying our in-house workflow, we re-analyzed a previously published mass-spectrometry data set to comprehensively map site-specific prolyl-hydroxylation, lysyl hydroxylation, and O-glycosylation sites in COL1A1 from neointima ECM. Furthermore, we quantitated the occupancy level of 9 3-hydroxyproline (3-HyP) sites, 2 hydroxylysine sites, and glycosylation microheterogeneity on 6 lysine sites of COL1A1. Although the total level of COL1A1 was decreased in DES-induced neointima, the occupancy levels of 2 3-HyP sites (P872, and P881) and 2 HyK (K435 and K768) sites of COL1A1 were significantly (p < 0.05) elevated in DES-induced neointima compared to BMS-induced neointima. We also found O-glycosylation to be significantly elevated on 3 lysine sites (K573, K339, and K and K849) of COL1A1 in DES-induced neointima compared to BMS-induced neointima. Taken together, our first comprehensive PTM analysis of COL1A1 reflected significant site-specific alterations that may play a very important role in the ECM remodeling during stent-induced neointima formation in MI patients. SIGNIFICANCE: The knowledge about site-specific post-translational modifications (PTMs) of collagen 1 deposited in the neointima ECM during the post-stenting restenosis process is absent. Here for the first time, we report the altered levels of COL1A1 PTMs during metal stent and drug-eluting stent-induced neointima formation. Our study showcases a novel ECM remodeling through site-specific collagen PTMs during stent-induced restenosis.
Asunto(s)
Reestenosis Coronaria , Stents Liberadores de Fármacos , Infarto del Miocardio , Humanos , Neointima , Lisina , Resultado del Tratamiento , Stents , Procesamiento Proteico-PostraduccionalRESUMEN
Neisseria meningitidis exhibits a general O-linked protein glycosylation system in which pili and other extracytoplasmic proteins are glycosylated. To investigate glycan antigenicity in humans and the significance of high glycan diversity on immune escape mechanisms, we exploited serogroup A meningococcal strains and serum samples obtained from laboratory-confirmed Ethiopian patients with meningococcal disease. The 37 meningococcal isolates were sequenced, and their protein glycosylation (pgl) genotypes and protein glycosylation phenotypes were investigated in detail. An insertion sequence (IS1655) element in pglH reduced glycan variability in the majority of isolates, while phase variation strengthened glycan variability and microheterogeneity. Homologous recombination events within the pgl genes were identified in eight of the 37 isolates, and the phenotypic consequences ranged from none detected to altered glycoforms in two of the isolates in which the whole pgl locus was exchanged. Immunoblotting of sera against a complete panel of glycan-expressing mutant strains demonstrated that most of these patient sera had IgG antibodies against various neisserial protein glycan antigens. Furthermore, using a bactericidal assay comparing a wild-type meningococcal A strain and a glycosylation-null variant strain, we showed that these protein glycan antigens interfere with bactericidal killing by antibodies in patient sera. Altogether, we were largely able to link pgl genotype with glycosylation phenotype. Our study reveals that protein glycans seem to contribute to the ability of N. meningitidis to resist the bactericidal activity of human serum, possibly by masking protein epitopes important for bactericidal killing and thus protection against meningococcal disease. IMPORTANCE Bacterial meningitis is a serious global health problem, and one of the major causative organisms is Neisseria meningitidis. Extensive variability in protein glycan structure and antigenicity is due to phase variation of protein glycosylation genes and polymorphic gene content and function. The exact role(s) of glycosylation in Neisseria remains to be determined, but increasing evidence, supported by this study, suggests that glycan variability can be a strategy to escape the human immune system. The complexity of the O-linked protein glycosylation system requires further studies to fully comprehend how these bacteria utilize variation in pgl genes to produce such high glycoform diversity and to evade the human immune response.
Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis , Humanos , Glicosilación , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas Bacterianas/metabolismo , Serogrupo , Polisacáridos/metabolismo , Vacunas Meningococicas/metabolismoRESUMEN
Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.
Asunto(s)
Cresta Neural , Células Madre , Animales , Diferenciación Celular/genética , VertebradosRESUMEN
During embryonic development, nerve-associated Schwann cell precursors (SCPs) give rise to chromaffin cells of the adrenal gland via the "bridge" transient stage, according to recent functional experiments and single cell data from humans and mice. However, currently existing data do not resolve the finest heterogeneity of developing chromaffin populations. Here we took advantage of deep SmartSeq2 transcriptomic sequencing to expand our collection of individual cells from the developing murine sympatho-adrenal anlage and uncover the microheterogeneity of embryonic chromaffin cells and their corresponding developmental paths. We discovered that SCPs on the splachnic nerve show a high degree of microheterogeneity corresponding to early biases towards either Schwann or chromaffin terminal fates. Furthermore, we found that a post-"bridge" population of developing chromaffin cells gives rise to persisting oxygen-sensing chromaffin cells and the two terminal populations (adrenergic and noradrenergic) via diverging differentiation paths. Taken together, we provide a thorough identification of novel markers of adrenergic and noradrenergic populations in developing adrenal glands and report novel differentiation paths leading to them.
Asunto(s)
Células Cromafines , Glándulas Suprarrenales , Adrenérgicos , Animales , Diferenciación Celular/fisiología , Femenino , Humanos , Ratones , Norepinefrina , Oxígeno , EmbarazoRESUMEN
The evaluation of the protein glycosylation states of samples of aflibercept obtained from three different regions was conducted by site-specific N-linked glycan microheterogeneity profiling. Glycopeptide-based nano-LC MSMS mapping of tryptic-digested samples of each aflibercept lot provided site-specific information about glycan microheterogeneity on each of the five N-glycosylation sites (two sites in the VEGFR-1 region, two sites in the VEGFR-2 region, and one site in the human IgG Fc region). Next, the glycopeptide-mapping results obtained from the three different aflibercept lots were compared to evaluate the similarity between the samples. Three aflibercept lots showed a high degree of similarity in glycan composition, fucosylation level, sialylation level, and branching, when all five N-glycosylation sites were assessed together as a group. On the other hand, noticeable variations between lots in the glycan types and sialylation levels on the two sites of the VEGFR-2 domain were observed when each of the five N-glycosylation sites were assessed using the glycopeptide-based method. The presence of N-glycolylneuraminic acid (NeuGc) glycans, which may mediate adverse immune reactions in antibody therapeutics, were also detected on the sites of VEGFR1 and VEGFR2 domains, but not on the IgG Fc domain site. These results imply that analyses of the glycosylation profiles of fusion proteins containing multiple N-glycosylation sites, such as aflibercept, being done as a part of quality control for the therapeutics manufacturing process or for biosimilar development, can be done with a more applicable outcome by assessing each site separately.
Asunto(s)
Biosimilares Farmacéuticos , Glicopéptidos , Humanos , Inmunoglobulina G , Polisacáridos/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Receptor 2 de Factores de Crecimiento Endotelial VascularRESUMEN
N-glycosylation is an essential eukaryotic posttranslational modification that affects various glycoprotein properties, including folding, solubility, protein-protein interactions, and half-life. N-glycans are processed in the secretory pathway to form varied ensembles of structures, and diversity at a single site on a glycoprotein is termed 'microheterogeneity'. To understand the factors that influence glycan microheterogeneity, we hypothesized that local steric and electrostatic factors surrounding each site influence glycan availability for enzymatic modification. We tested this hypothesis via expression of reporter N-linked glycoproteins in N-acetylglucosaminyltransferase MGAT1-null HEK293 cells to produce immature Man5GlcNAc2 glycoforms (38 glycan sites total). These glycoproteins were then sequentially modified in vitro from high mannose to hybrid and on to biantennary, core-fucosylated, complex structures by a panel of N-glycosylation enzymes, and each reaction time course was quantified by LC-MS/MS. Substantial differences in rates of in vitro enzymatic modification were observed between glycan sites on the same protein, and differences in modification rates varied depending on the glycoenzyme being evaluated. In comparison, proteolytic digestion of the reporters prior to N-glycan processing eliminated differences in in vitro enzymatic modification. Furthermore, comparison of in vitro rates of enzymatic modification with the glycan structures found on the mature reporters expressed in WT cells correlated well with the enzymatic bottlenecks observed in vivo. These data suggest higher order local structures surrounding each glycosylation site contribute to the efficiency of modification both in vitro and in vivo to establish the spectrum of microheterogeneity in N-linked glycoproteins.
Asunto(s)
Glicoproteínas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Polisacáridos/química , Polisacáridos/metabolismo , GlicosilaciónRESUMEN
This chapter focuses on the application of capillary zone electrophoresis hyphenated with mass spectrometry (CZE-MS) for the characterization of monoclonal antibodies (mAbs). mAbs are complex molecules comprising different glycoforms and many other posttranslational modifications. In addition to this inherent microheterogeneity, misassembling of antibodies can take place during production contributing to their macroheterogeneity. CZE-MS is a versatile and powerful technique which has demonstrated high potential for the assessment of both micro- and macroheterogeneity of mAbs. In this chapter, technical and practical considerations for the characterization of mAbs by CZE-MS are described. CE-MS interfacing, capillary coatings for the prevention of mAb adsorption, and sample preparation considerations are covered in detail. The assessment of the macro- and microheterogeneity is discussed and exemplified through three different approaches involving analysis of intact, enzymatically digested, and reduced antibodies. The examples also illustrate the use of two commercially available interfacing techniques (i.e., sheath liquid and sheathless) as well as different types of capillary coatings (positively charged and neutral coatings).
Asunto(s)
Anticuerpos Monoclonales , Antineoplásicos Inmunológicos , Anticuerpos Monoclonales/química , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Procesamiento Proteico-Postraduccional , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
Cardiac fibrosis-mediated heart failure (HF) is one of the major forms of end-stage cardiovascular diseases (CVDs). Cardiac fibrosis is an adaptive response of the myocardium upon any insult/injury. Excessive deposition of collagen molecules in the extracellular matrix (ECM) is the hallmark of fibrosis. This fibrotic response initially protects the myocardium from ventricular rupture. Although in mammals this fibrotic response progresses towards scar-tissue formation leading to HF, some fishes and urodeles have mastered the art of cardiac regeneration following injury-mediated fibrotic response. Zebrafish have a unique capability to regenerate the myocardium after post-amputation injury. Following post-amputation, the ECM of the zebrafish heart undergoes extensive remodeling and deposition of collagen. Being the most abundant protein of ECM, collagen plays important role in the assembly and cell-matrix interactions. However, the mechanism of ECM remodeling is not well understood. Collagen molecules undergo heavy post-translational modifications (PTMs) mainly hydroxylation of proline, lysine, and glycosylation of lysine during biosynthesis. The critical roles of these PTMs are emerging in several diseases, embryonic development, cell behavior regulation, and cell-matrix interactions. The site-specific identification of these collagen PTMs in zebrafish heart ECM is not known. As these highly modified peptides are not amenable to mass spectrometry (MS), the site-specific identification of these collagen PTMs is challenging. Here, we have implemented our in-house proteomics analytical pipeline to analyze two ECM proteomics datasets (PXD011627, PXD010092) of the zebrafish heart during regeneration (post-amputation). We report the first comprehensive site-specific collagen PTM map of zebrafish heart ECM. We have identified a total of 36 collagen chains (19 are reported for the first time here) harboring a total of 95 prolyl-3-hydroxylation, 108 hydroxylysine, 29 galactosyl-hydroxylysine, and 128 glucosylgalactosyl-hydroxylysine sites. Furthermore, we comprehensively map the three chains (COL1A1a, COL1A1b, and COL1A2) of collagen I, the most abundant protein in zebrafish heart ECM. We achieved more than 95% sequence coverage for all the three chains of collagen I. Our analysis also revealed the dynamics of prolyl-3-hydroxylation occupancy oscillations during heart regeneration at these sites. Moreover, quantitative site-specific analysis of lysine-O-glycosylation microheterogeneity during heart regeneration revealed a significant (p < 0.05) elevation of site-specific (K1017) glucosylgalactosyl-hydroxylysine on the col1a1a chain. Taken together, these site-specific PTM maps and the dynamic changes of site-specific collagen PTMs in ECM during heart regeneration will open up new avenues to decode ECM remodeling and may lay the foundation to tinker the cardiac regeneration process with new approaches.
RESUMEN
Although the full primary structures of the alfa and beta subunits of reference r-hFSH-alfa and its biosimilars are identical, cell context-dependent differences in the expressing cell lines and manufacturing process can lead to variations in glycosylation profiles. In the present study, we compared the structural features of reference r-hFSH-alfa with those of five biosimilar preparations approved in different global regions outside Europe (Primapur®, Jin Sai Heng®, Follitrope®, Folisurge®, and Corneumon®) with respect to glycosylation, macro- and microheterogeneity, and other post-translational modifications and higher order structure. The mean proportion of N-glycosylation-site occupancy was highest in reference r-hFSH-alfa, decreasing sequentially in Primapur, Jin Sai Heng, Corneumon, Follisurge and Follitrope, respectively. The level of antennarity showed slightly higher complexity in Corneumon, Primapur and Follitrope versus reference r-hFSH-alfa, whereas Jin Sai Heng and Folisurge were aligned with reference r-hFSH-alfa across all N-glycosylation sites. Sialylation level was higher in Corneumon and Follitrope, but small differences were detected in other biosimilar preparations compared with reference r-hFSH-alfa. Jin Sai Heng showed higher levels of N-glyconeuramic acid than the other preparations. Minor differences in oxidation levels were seen among the different products. Therefore, in summary, we identified var ious differences in N-glycosylation occupancy, antennarity, sialylation and oxidation between reference r-hFSH-alfa and the biosimilar preparations analyzed.
Asunto(s)
Biosimilares Farmacéuticos , Hormona Folículo Estimulante Humana , Glicosilación , Humanos , Proteínas RecombinantesRESUMEN
For studying any event, measurement can never be enough; "control" is required. This means mere passive tracking of the event is insufficient and being able to manipulate it is necessary. To maximize this capability to exert control and manipulate, both spatial and temporal domains need to be jointly accounted for, which has remained an intractable problem at microscopic scales. Simultaneous control of dynamics and position of an observable event requires a holistic combination of spatial and temporal control principles, which gives rise to the field of spatiotemporal control. For this, we present a novel femtosecond pulse-shaping approach. We explain how to achieve spatiotemporal control by spatially manipulating the system through trapping and subsequently or simultaneously exerting temporal control using shaped femtosecond pulses. By leveraging ultrafast femtosecond lasers, the prospect of having temporal control of molecular dynamics increases, and it becomes possible to circumvent the relaxation processes at microscopic timescales. Optical trapping is an exemplary demonstration of spatial control that results in the immobilization of microscopic objects with radiation pressure from a tightly focused laser beam. Conventional single-beam optical tweezers use continuous-wave (CW) lasers for achieving spatial control through photon fluxes, but these lack temporal control knobs. We use a femtosecond high repetition rate (HRR) pulsed laser to bypass this lack of dynamical control in the time domain for optical trapping studies. From a technological viewpoint, the high photon flux requirement of stable optical tweezers necessitates femtosecond pulse shaping at HRR, which has been a barrier until the recent Megahertz pulse shaping developments. Finally, recognizing the theoretical distinction between tweezers with femtosecond pulses and CW lasers is of paramount interest. Non-linear optical (NLO) interactions must be included prima facie to understand pulsed laser tweezers in areas where they excel, like the two-photon-fluorescence-based detection. We show that our theoretical model can holistically address the common drawback of all tweezers. We are able to mitigate the effects of laser-induced heating by balancing this with femtosecond laser-induced NLO effects. An interesting side-product of HRR femtosecond-laser-induced thermal lens is the development of femtosecond thermal lens spectroscopy (FTLS) and its ability to provide sensitive molecular detection.