Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Bone ; : 117306, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39490885

RESUMEN

BACKGROUND: The risk of fractures is increased in persons with type 1 diabetes (T1D) and assessment of bone health has been included in the 2024 updated Standards of Care by The American Diabetes Association (ADA). Previous studies have found that in T1D bone metabolism, mineral content, microstructure, and strength diverge from that of persons without diabetes. However, a clear description of a T1D bone phenotype has not yet been established. We investigated bone mechanical properties and microstructure in T1D compared with healthy controls. For the potential future introduction of additional bone measures in the clinical fracture risk assessment, we aimed to assess any potential associations between various measures related to bone indices in subjects with T1D. METHODS: We studied human bone indices in a clinical cross-sectional setup including 111 persons with early-onset T1D and 37 sex- and age-matched control persons. Participants underwent hip and spine DXA scans for bone mineral density (BMD) of the femoral neck (FN), total hip (TH), and lumbar spine (LS), and TBS evaluation, microindentation of the tibial shaft for Bone Material Strength index (BMSi), and high-resolution periphery quantitative computed tomography (HRpQCT) of the distal radius and tibia for volumetric BMD (vBMD) and structural measures of trabecular and cortical bone. Results are reported as means with (standard deviation) or (95 % confidence intervals (CI)), medians with [interquartile range], and differences are reported with (95 % CI). RESULTS: The study included 148 persons aged 20 to 75 years with a median age of 43.2 years. The T1D group who had all been diagnosed with T1D before the age of 18 years demonstrated values of HbA1c ranging from 39 to 107 mmol/mol and a median HbA1c of 57 mmol/mol. The BMD did not differ between groups (the mean difference in FN-BMD was 0.026 g/cm2 (-0.026; 0.079), p = 0.319) and the median BMSi was comparable in the two groups (79.2 [73.6; 83.8] in the T1D group compared with 77.9 [70.5, 86.1] in the control group). Total and trabecular vBMD (Tb.vBMD), cortical thickness (Ct.Th), and trabecular thickness (Tb.Th) of both radius and tibia were lower in participants with T1D. The mean Tb.vBMD at the radius was 143.6 (38.5) mg/cm3 in the T1D group and 171.5 (37.7) mg/cm3 in the control group, p < 0.001. The mean Ct. Thd of the radius was 0.739 mm (0.172) in the T1D group and 0.813 (0.188) in the control group, p = 0.044. Crude linear regressions revealed limited agreement between BMSi and Tb.vBMD (p = 0.010, r2 = 0.040 at the radius and p = 0.008, r2 = 0.040 at the tibia and between BMSi and the estimated failure load (FL) at the tibia (p < 0.001, r2 = 0.090). There were no significant correlations between BMSi and Ct.Th. TBS correlated with Tb.vBMD at the radius (p = 0.008, r2 = 0.044) and the tibia (p = 0.001, r2 = 0.069), and with the estimated FL at the distal tibia (p = 0.038, r2 = 0.026). CONCLUSION: In this study, we examined the bones of persons with well-controlled, early-onset T1D. Compared with sex- and age-matched healthy control persons, we found reduced total and trabecular vBMD, as well as decreased trabecular and cortical thickness. These results suggest that a debut of T1D before reaching peak bone mass negatively impacts bone microarchitecture. No differences in areal BMD or BMSi were observed. Although the variations in total hip BMD reflect some variation in the vBMD, the reduction in trabecular bone mineral density was not captured by the DXA scan. Consequently, fracture risk may be underestimated when relying on DXA, and further research into fracture risk assessment in T1D is warranted.

2.
Methods Mol Biol ; 2805: 171-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008182

RESUMEN

Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.


Asunto(s)
Riñón , Animales , Ratones , Riñón/embriología , Riñón/citología , Fenómenos Biomecánicos , Organogénesis , Embrión de Mamíferos/citología , Embrión de Mamíferos/fisiología
3.
Materials (Basel) ; 17(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38591549

RESUMEN

This research focuses on analysing the 18Ni300 maraging steel produced through laser powder bed fusion. Specifically, it aims to examine the phase components using X-ray diffraction, the microstructure through scanning electron microscopy, and the hardness of the different structures present in the manufactured material. The primary goal is to meticulously analyse the material and its microstructures. By doing so, a correlation between the hardness and each structure type, be it cellular or columnar, can be established. This will allow us to pinpoint any defects in the material before any surface chemical treatment is carried out and facilitate a thorough examination of its microstructure. A consistent pattern emerges across the samples through systematic measurement of microhardness distribution in various locations and detailed examination of the structure. The findings of the study reveal that the hardness of cellular and columnar structures exhibits a significant variation based on the location of the measurement about cell boundaries. The hardness value is notably higher in the combination of cellular and multiple layers, as the data indicate.

4.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674996

RESUMEN

The aim of this study is to investigate the influence of cross-linking and reinforcements in gelatin on the physico-mechanical properties of obtained composites. The gelatin-based composites cross-linked with citric acid (CA) were prepared: gelatin type B (GB) and ß-tricalcium phosphate (ß-TCP) and novel hybrid composite GB with ß-TCP and hydroxyapatite (HAp) particles, and their structure, thermal, and mechanical properties were compared with pure gelatin B samples. FTIR analysis revealed that no chemical interaction between the reinforcements and gelatin matrix was established during the processing of hybrid composites by the solution casting method, proving the particles had no influence on GB cross-linking. The morphological investigation of hybrid composites revealed that cross-linking with CA improved the dispersion of particles, which further led to an increase in mechanical performance. The microindentation test showed that the hardness value was increased by up to 449%, which shows the high potential of ß-TCP and HAp particle reinforcement combined with CA as a cross-linking agent. Furthermore, the reduced modulus of elasticity was increased by up to 288%. Results of the MTT assay on L929 cells have revealed that the hybrid composite GB-TCP-HA-CA was not cytotoxic. These results showed that GB cross-linked with CA and reinforced with different calcium phosphates presents a valuable novel material with potential applications in dentistry.

5.
J Mech Behav Biomed Mater ; 154: 106509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518513

RESUMEN

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.


Asunto(s)
Gelatina , Andamios del Tejido , Hidrogeles , Ingeniería de Tejidos , Metacrilatos
6.
Ann Anat ; 254: 152259, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492655

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a chronic and complicated degenerative disorder of joints, including several phenotypes. Type 2 diabetes mellitus (T2DM) is one of the major causes of OA. However, few studies on the mechanical behavior of diabetic cartilages have been conducted. METHODS: This study evaluated the microstructural, compositional, and mechanical properties of healthy and diabetic rat cartilages using scanning electronic microscopy, X-ray energy spectroscopy, histology staining, and microindentation tests. RESULTS: Our results indicated that the diabetic cartilages had a significantly higher elastic modulus and similar permeability (95%CI: 3.72-8.56 MPa and 3.16×10-6-1.83×10-5 mm4/N·s) compared to the healthy cartilages (95%CI: 0.741-3.58 MPa and 3.15×10-6-1.14×10-5 mm4/N·s). Their stress relaxation behaviors were similar regardless of the loading rate except for the stretching parameter under the fast loading. Furthermore, the stress relaxation behaviors of the diabetic cartilages were significantly affected by the loading rate, especially the equilibrium force ratio and time constant. These mechanical outcomes could be attributed to the increase of fibril diameters and calcium aggregation in the cartilage. CONCLUSIONS: This study deepens our understanding of how T2DM might facilitate OA in cartilages, which could contribute to the development of more scientific diagnosis and therapies for patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animales , Diabetes Mellitus Tipo 2/patología , Ratas , Diabetes Mellitus Experimental/patología , Masculino , Cartílago Articular/patología , Cartílago Articular/ultraestructura , Fenómenos Biomecánicos , Ratas Sprague-Dawley , Módulo de Elasticidad , Microscopía Electrónica de Rastreo , Estrés Mecánico , Osteoartritis/patología
7.
Cartilage ; : 19476035241235633, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501455

RESUMEN

OBJECTIVE: To investigate whether and how a single traumatic impact changes the mechanical properties of talar articular cartilage. DESIGN: A marble was placed on the joint surface and a weight was dropped on both medial and lateral caprine talus to create a well-defined single focal impact. The mechanical properties of intact and impacted talar cartilage were measured with a micro-indenter. Elastic (storage) and viscous (loss) moduli were determined by oscillatory ramp and dynamic mechanical analysis protocols. RESULTS: We found significant differences between ankles and within the same ankle joint, with the medial talus having significantly higher storage- and loss moduli than the lateral talus. The storage- and loss moduli of intact articular cartilage increased with greater indentation depths. However, postimpact the storage- and loss moduli were significantly and consistently lower in all specimens indicating immediate posttraumatic damage. The deeper regions of talar cartilage were less affected by the impact than the more superficial regions. CONCLUSIONS: A single traumatic impact results in an immediate and significant decrease of storage- and loss moduli. Further research must focus on the development of non- or minimally invasive diagnostic tools to address the exact microdamage caused by the impact. We speculate that the traumatic impact damaged the collagen fibers that confine the water-binding proteoglycans and thereby decreasing the hydrostatic pressure of cartilage. As part of the treatment directly after a trauma, one could imagine a reduction or restriction of peak loads to prevent the progression of the cascade towards PTOA of the ankle joint.

8.
Dent Mater ; 40(4): 593-607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365457

RESUMEN

OBJECTIVES: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. METHODS: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens' morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. RESULTS: CaP-N consisted of rounded microparticles (200 nm - 1 µm) composed of 33 wt% hydroxyapatite and 67 wt% ß-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential ß-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. SIGNIFICANCE: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry.


Asunto(s)
Dentina , Hidroxiapatitas , Remineralización Dental , Animales , Humanos , Dentina/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Esmalte Dental , Calcio/análisis , Durapatita/farmacología , Durapatita/química , Colágeno
9.
Bone Rep ; 20: 101733, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38357013

RESUMEN

Impact microindentation (IMI) is a minimally invasive technique that allows the assessment of bone material strength index (BMSi) in vivo, by measuring the depth of a micron-sized, spherical tip into cortical bone that is then indexed to the depth of the tip into a reference material. In this study, we aimed to assess the practicality of its application in 99 women aged 42-84 yr from the Geelong Osteoporosis Study. Impact microindentation was performed in the mid-shaft of the right tibia using the OsteoProbe. Immediately following measurement, each participant was requested to rate on a Visual Analogue Scale [0-10] the level of discomfort anticipated and experienced, any initial reluctance towards the measurement and whether they were willing to repeat the measurement. Of 99 potential participants who attended this assessment phase, 55 underwent IMI measurement. Reasons for non-measurement in 44 women were existing skin conditions (n = 8, 18.2 %) and excessive soft tissue around mid-tibial region (n = 32, 72.2 %). An additional four (9.1 %) participants did not provide any reasons for declining. For 55 participants who had underwent IMI, the expectation for pain when briefed about the procedure was low (2.28 ± 2.39), as was pain experienced during the measurement (0.72 ± 1.58). Participants were not reluctant to undergo the measurement (0.83 ± 1.67), and all indicated a willingness to repeat the measurement. Results of this study showed that the IMI technique is well tolerated and accepted by women participating in the Geelong Osteoporosis Study, suggesting that the technique shows promise in a research or clinical setting.

10.
Bone Rep ; 20: 101734, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38292933

RESUMEN

The fibrocartilaginous tendon enthesis, i.e. the site where a tendon is attached to bone through a fibrocartilaginous tissue, is considered as a functionally graded interface. However, at local scale, a very limited number of studies have characterized micromechanical properties of this transitional tissue. The first goal of this work was to characterize the micromechanical properties of the mineralized part of the healthy Achilles tendon enthesis (ATE) through microindentation testing and to assess the degree of mineralization and of carbonation of mineral crystals by Raman spectroscopy. Since little is known about enthesis biological plasticity, our second objective was to examine the effects of unloading and reloading, using a mouse hindlimb-unloading model, on both the micromechanical properties and the mineral phase of the ATE. Elastic modulus, hardness, degree of mineralization, and degree of carbonation were assessed after 14 days of hindlimb suspension and again after a subsequent 6 days of reloading. The elastic modulus gradually increased along the mineralized part of the ATE from the tidemark to the subchondral bone, with the same trend being found for hardness. Whereas the degree of carbonation did not differ according to zone of measurement, the degree of mineralization increased by >70 % from tidemark to subchondral bone. Thus, the gradient in micromechanical properties is in part explained by a mineralization gradient. A 14-day unloading period did not appear to affect the gradient of micromechanical properties of the ATE, nor the degree of mineralization or carbonation. However, contrary to a short period of unloading, early return to normal mechanical load reduced the micromechanical properties gradient, regardless of carbonate-to-phosphate ratios, likely due to the more homogeneous degree of mineralization. These findings provide valuable data not only for tissue bioengineering, but also for musculoskeletal clinical studies and microgravity studies focusing on long-term space travel by astronauts.

11.
Clin Biomech (Bristol, Avon) ; 112: 106189, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295572

RESUMEN

BACKGROUND: Cerebrospinal fluid leakage through the spinal meninges is difficult to diagnose and treat. Moreover, its underlying mechanism remains unknown. Considering that the dura mater is structurally the strongest and outermost membrane among the three-layered meninges, we hypothesized that a dural mechanical tear would trigger spontaneous cerebrospinal fluid leakage, especially when a traumatic loading event is involved. Thus, accurate biomechanical properties of the dura mater are indispensable for improving computational models, which aid in predicting blunt impact injuries and creating artificial substitutes for transplantation and surgical training. METHOD: We characterized the surface profile of the spinal dura and its mechanical properties (Young's moduli) with a distinction of its inherent anatomical sites (i.e., the cervical and lumbar regions as well as the dorsal and ventral sides of the spinal cord). FINDINGS: Although the obtained Young's moduli exhibited no considerable difference between the aforementioned anatomical sites, our results suggested that the wrinkles structurally formed along the longitudinal direction would relieve stress concentration on the dural surface under in vivo and supraphysiological conditions, enabling mechanical protection of the dural tissue from a blunt impact force that was externally applied to the spine. INTERPRETATION: This study provides fundamental data that can be used for accurately predicting cerebrospinal fluid leakage due to blunt impact trauma.


Asunto(s)
Duramadre , Columna Vertebral , Animales , Porcinos , Duramadre/lesiones , Duramadre/fisiología , Duramadre/cirugía , Columna Vertebral/cirugía , Pérdida de Líquido Cefalorraquídeo/prevención & control
12.
Bone Rep ; 19: 101727, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058464

RESUMEN

Purpose: Bone Material Strength Index (BMSi) quantifies the resistance of bone to a specified force in vivo at the mid tibia using impact microindentation (IMI). Anecdotal evidence suggests that within-participant variance in BMSi may be associated with the individual's mean BMSi. This study aimed to investigate associations between mean and variance of IMI measures in a population-based study. Methods: Participants were men (n = 420) and women (n = 55) from the Geelong Osteoporosis Study who underwent BMSi measurement using the OsteoProbe at recent follow-up phases (men 2016-2022; women 2022-2023). Median age was 63.7 yr (IQR 53.0-71.8). BMSi standard deviation was skewed and therefore natural log transformed (referred to as ln-SD). Linear regression models were developed with ln-SD as the dependent variable and mean BMSi as the independent variable adjusting for sex, age, height and weight. Results: In unadjusted models, greater BMSi was associated with lower ln-SD (ß = -1.58, p = 0.042). This association was sustained after adjustment (p = 0.013), and an interaction between BMSi and age was observed (p = 0.004). In those aged 63.7 yr and over (median age), mean BMSi was inversely associated with ln-SD (ß = -3.22, p = 0.002). Sex was not identified as an effect modifier. In younger participants, no BMSi*ln-SD association was observed. Conclusion: In older men and women, there was greater variance in low BMSi values. This suggests that standard deviation of the BMSi measure may provide additional information in the assessment of bone health and is worthy of further investigation. Mini abstract: In older men and women, greater variance is observed when BMSi values are low, reflecting potential variation in the bone surface.

13.
Calcif Tissue Int ; 113(5): 496-510, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690031

RESUMEN

Components of the renin-angiotensin-aldosterone system (RAAS) are present on bone cells. One measure of RAAS activity, the aldosterone-renin-ratio (ARR), is used to screen for primary aldosteronism. Associations between ARR and bone mineral density are conflicting. This study investigated associations between ARR and peripheral quantitative computed tomography (pQCT) and impact microindentation (IMI). Male participants (n = 431) were from the Geelong Osteoporosis Study. "Likely" primary aldosteronism was defined as ARR ≥ 70 pmol/mIU. Another group, "possible" primary aldosteronism, was defined as either ARR ≥ 70 pmol/mIU or taking a medication that affects the RAAS, but not a beta blocker, and renin < 15 mU/L. Using pQCT, images at 4% and 66% of radial (n = 365) and tibial (n = 356) length were obtained. Using IMI measurements, bone material strength index (BMSi; n = 332) was determined. Associations between ARR or likely/possible primary aldosteronism and IMI or pQCT-derived bone parameters were tested using median regression. ARR and aldosterone values were not associated with any of the pQCT-derived bone variables in either unadjusted or adjusted analyses. Men with likely primary aldosteronism (n = 16), had lower adjusted total bone area (radial 66% site, - 12.5%). No associations were observed for men with possible primary aldosteronism (unadjusted or adjusted). No associations with BMSi were observed (p > 0.05). There were no associations between ARR or aldosterone and pQCT-derived bone parameters. Men with likely primary aldosteronism had lower bone area, suggesting clinically high levels of ARR may have a negative impact on bone health.


Asunto(s)
Hiperaldosteronismo , Hipertensión , Humanos , Masculino , Aldosterona/uso terapéutico , Renina/uso terapéutico , Hiperaldosteronismo/complicaciones , Sistema Renina-Angiotensina , Tomografía Computarizada por Rayos X , Hipertensión/complicaciones , Hipertensión/tratamiento farmacológico
14.
Calcif Tissue Int ; 113(5): 511-514, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37666992

RESUMEN

Bone material strength index (BMSi) values are obtained using impact microindentation, which assesses the ability of bone to resist indentation. Differences in BMSi between men and women are unclear, and to date, BMSi sex differences have not been compared for individuals from the same population. Therefore, we compared BMSi values for men and women drawn from the same geographical location in Australia. Participants (n = 220) were from the Geelong Osteoporosis Study. BMSi was measured, following international published guidelines, using an OsteoProbe for participants at recent follow-up phases (women 2022-2023 and men 2016-2022). Women (n = 55) were age matched to men (n = 165) in a 1:3 ratio. A two-sample t test was used to determine the intergroup difference in mean BMSi. Linear regression was also performed, adjusting for weight and height. Median (IQR) ages for men and women were 67.0 (61.7-71.5) and 67.4 (62.0-71.2) years (p = 0.998). Men were heavier (81.0 ± 10.9 vs 71.0 ± 13.9 kg, p < 0.001) and taller (173.9 ± 6.4 vs 161.5 ± 7.5 cm, p < 0.001) than women. Mean (± SD) BMSi for women (75.7 ± 7.4) was lower than for men (82.8 ± 6.8) (p < 0.001). The difference persisted after adjustment for weight and height (mean ± SE: 76.5 ± 1.1 vs 82.5 ± 0.6, p < 0.001). Given the higher fracture risk observed for women, the higher mean BMSi values in men are consistent with cross sectional data suggesting this measure may be useful in fracture prediction.


Asunto(s)
Fracturas Óseas , Osteoporosis , Humanos , Femenino , Masculino , Densidad Ósea , Estudios Transversales , Huesos
15.
Materials (Basel) ; 16(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37629809

RESUMEN

A thermal neutron absorber material composed of Al3Hf particles in an aluminum matrix is under development for the Advanced Test Reactor. This metal matrix composite was fabricated via hot pressing of high-purity aluminum and micrometer-size Al3Hf powders at volume fractions of 20.0, 28.4, and 36.5%. Room temperature tensile and hardness testing of unirradiated specimens revealed a linear relationship between volume fraction and strength, while the tensile data showed a strong decrease in elongation between the 20 and 36.5% volume fraction materials. Tensile tests conducted at 200 °C on unirradiated material revealed similar trends. Evaluations were then conducted on specimens irradiated at 66 to 75 °C to four dose levels ranging from approximately 1 to 4 dpa. Tensile properties exhibited the typical increase in strength and decrease in ductility with dose that are common for metallic materials irradiated at ≤0.4Tm. Hardness also increased with neutron dose. The difference in strength between the three different volume fraction materials was roughly constant as the dose increased. Nanoindentation measurements of Al3Hf particles in the 28.4 vol% material showed the expected trend of increased hardness with irradiation dose. Transmission electron microscopy revealed oxygen at the interface between the Al3Hf particles and aluminum matrix in the irradiated material. Scanning electron microscopy of the exterior surface of tensile tested specimens revealed that deformation of the material occurs via plastic deformation of the Al matrix, cracking of the Al3Hf particles, and to a lesser extent, tearing of the matrix away from the particles. The fracture surface of an irradiated 28.4 vol% specimen showed failure by brittle fracture in the particles and ductile tearing of the aluminum matrix with no loss of cohesion between the particles and matrix. The coefficient of thermal expansion decreased upon irradiation, with a maximum change of -6.3% for the annealed irradiated 36.5 vol% specimen.

16.
J Mech Behav Biomed Mater ; 143: 105941, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285774

RESUMEN

Fluid pressure develops transiently within mechanically-loaded, cell-embedding hydrogels, but its magnitude depends on the intrinsic material properties of the hydrogel and cannot be easily altered. The recently developed melt-electrowriting (MEW) technique enables three-dimensional printing of structured fibrous mesh with small fibre diameter (20 µm). The MEW mesh with 20 µm fibre diameter can synergistically increase the instantaneous mechanical stiffness of soft hydrogels. However, the reinforcing mechanism of the MEW meshes is not well understood, and may involve load-induced fluid pressurisation. Here, we examined the reinforcing effect of MEW meshes in three hydrogels: gelatin methacryloyl (GelMA), agarose and alginate, and the role of load-induced fluid pressurisation in the MEW reinforcement. We tested the hydrogels with and without MEW mesh (i.e., hydrogel alone, and MEW-hydrogel composite) using micro-indentation and unconfined compression, and analysed the mechanical data using biphasic Hertz and mixture models. We found that the MEW mesh altered the tension-to-compression modulus ratio differently for hydrogels that are cross-linked differently, which led to a variable change to their load-induced fluid pressurisation. MEW meshes only enhanced the fluid pressurisation for GelMA, but not for agarose or alginate. We speculate that only covalently cross-linked hydrogels (GelMA) can effectively tense the MEW meshes, thereby enhancing the fluid pressure developed during compressive loading. In conclusion, load-induced fluid pressurisation in selected hydrogels was enhanced by MEW fibrous mesh, and may be controlled by MEW mesh of different designs in the future, thereby making fluid pressure a tunable cell growth stimulus for tissue engineering involving mechanical stimulation.


Asunto(s)
Hidrogeles , Andamios del Tejido , Sefarosa , Ingeniería de Tejidos/métodos , Gelatina , Alginatos , Impresión Tridimensional
17.
J Bone Miner Res ; 38(6): 860-868, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088885

RESUMEN

No previous studies have investigated the association between the bone material strength index (BMSi; an indicator of bone material properties obtained by microindentation) and the risk of incident fracture. The primary purpose of this prospective cohort study was to evaluate if BMSi is associated with incident osteoporotic fracture in older women and, secondarily, with prevalent fractures, anthropometric traits, or measurements of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). In a population-based cohort, 647 women aged 75 to 80 years underwent bone microindentation using the OsteoProbe device. Data on clinical risk factors (CRFs), prevalent fractures, and incident fractures were collected using questionnaires, medical records, and a regional X-ray archive. BMD and vertebral fracture assessment (VFA) were assessed by DXA (Hologic, Discovery A). Associations between BMSi, anthropometrics, BMD, and prevalent fractures were investigated using correlation and linear and logistic regression. Cox proportional hazards and competing risks analysis by Fine and Gray were used to study the association between BMSi and the risk of fracture and mortality. BMSi was weakly associated with age (r = -0.13, p < 0.001) and BMI (r = -0.21, p < 0.001) and with BMD of lumbar spine (ß = 0.09, p = 0.02) and total hip (ß = 0.08, p = 0.05), but only after adjustments. No significant associations were found between BMSi and prevalent fractures (self-reported and/or VFA identified, n = 332). During a median follow-up time of 6.0 years, 121 major osteoporotic fractures (MOF), 151 any fractures, and 50 deaths occurred. Increasing BMSi (per SD) was associated with increased risk of MOF (hazard ratio [HR] = 1.29, 95% confidence interval [CI] 1.07-1.56), any fracture (HR = 1.29, 95% CI 1.09-1.53), and mortality (HR = 1.44, 95% CI 1.07-1.93). The risk of fracture did not materially change with adjustment for confounders, CRFs, femoral neck BMD, or when considering the competing risk of death. In conclusion, unexpectedly increasing BMSi was associated with greater fracture risk. The clinical relevance and potential mechanisms of this finding require further study. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Fracturas Osteoporóticas , Fracturas de la Columna Vertebral , Humanos , Femenino , Anciano , Fracturas Osteoporóticas/epidemiología , Estudios Prospectivos , Suecia/epidemiología , Densidad Ósea , Absorciometría de Fotón , Vértebras Lumbares , Factores de Riesgo
18.
Front Endocrinol (Lausanne) ; 14: 1076739, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051195

RESUMEN

Background: The impact of tenofovir disoproxil fumarate (TDF) antiretroviral (ART) regimens on bone health has been characterized mostly by bone mineral density (BMD), but recently also by bone quality (BQ). The aim of this pilot study is to assess the changes in BMD and BQ after switch from TDF to tenofovir alafenamide (TAF) ART. Methods: HIV individuals receiving TDF-based ART were randomized to switch to Bictegravir-TAF-Emtricitabine or to remain in the same regimen. At baseline and 24-weeks after randomization, participants underwent bone mineral density (BMD) by DXA and BQ assessment using bone microindentation, a validated technique that measures bone tissue quality expressed as bone material strength index (BMSi). A panel of plasma bone turnover biomarkers were measured by ELISA at the same time-points. Values are expressed as median [interquartile range] and non-parametric tests were used where appropriate. Results: A total of 24 HIV individuals were included in the study, 19 of which were men (80%). Median age at baseline was 43 years (IQR 38-54). Half of individuals were allocated in the TDF group while the other half changed to TAF treatment. No differences at baseline between both groups were detected in any parameter. Non-significant changes nor in lumbar or femoral BMD at week 24 was found in any regimen. In contrast, there was an increase in BMSi in the TAF arm at 24 weeks, and thus an improvement in BQ[81.6 (79-83) to 86 (80-88) (+5.1%);p=0.041], whereas the TDF arm remained stable from 82 (76-85) at baseline to 82 (73-83);p=0.812. Hence, at week 24 there were significant differences in BQ between arms (p=0.049). A reduction in bone formation markers was found at week 24 in both regimens: N-terminal propeptide of type-1 collagen decreased a 20% (-35 - -0.6); p=0.031 with TAF and -16% (-25 - -5); p=0.032 with TDF. Also a decrease in bone resorption marker C-telopeptide with TAF was detected [-10% (-19 - -5);p=0.028] but not with TDF (p=0.232), suggesting a less metabolically active bone after switching to TAF. Conclusion: A bone quality improvement was found after switching from a TDF to a TAF based ART independently of BMD, suggesting that the bone health benefits of TAF may extend beyond BMD. Future research should be directed to confirm these findings and to identify the underlying mechanisms of ART related bone toxicity.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Masculino , Humanos , Adulto , Persona de Mediana Edad , Femenino , Tenofovir/uso terapéutico , Proyectos Piloto , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Adenina/uso terapéutico , Huesos
19.
Materials (Basel) ; 16(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36984271

RESUMEN

Nowadays, technical practice puts emphasis on improving selected material properties of polymers which could lead to new applications. Material properties can be modified in numerous ways, among which is radiation treatment. This study looks into the influence of beta radiation on several properties of polyamide 6, e.g., indentation hardness, modulus and creep. Main changeable parameters were the concentration of triallyl isocyanurate (TAIC), which promotes cross-linking, and intensity of radiation. The concentration was in the range from 2 to 6 wt.%, while the radiation dose was 0, 66, 99 and 132 kGy. The treated materials were measured for indentation hardness, modulus and creep. Degree of cross-linking was verified by thermo-mechanical analysis (TMA), while degradation processes was investigated by Fourier-transform infrared spectroscopy (FTIR). The results indicate that electron radiation positively affects the tested material properties. The best results were seen in polyamide with 6 wt.% of TAIC, which demonstrated a 38% improvement in mechanical properties after exposure to 132 kGy. This improvement in properties affects the final parts and their application (e.g., in the automotive industry-engine parts; in electrical engineering-insulation of wires and cables; and in industry-pipes for underfloor heating, etc.).

20.
Materials (Basel) ; 16(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36902884

RESUMEN

Morphology, macro-, and micromechanical properties of novel poly(urethane-urea)/silica nanocomposites were analyzed by electron microscopy, dynamic mechanical thermal analysis, and microindentation. The studied nanocomposites were based on a poly(urethane-urea) (PUU) matrix filled by nanosilica, and were prepared from waterborne dispersions of PUU (latex) and SiO2. The loading of nano-SiO2 was varied between 0 (neat matrix) and 40 wt% in the dry nanocomposite. The prepared materials were all formally in the rubbery state at room temperature, but they displayed complex elastoviscoplastic behavior, spanning from stiffer elastomeric type to semi-glassy. Because of the employed rigid and highly uniform spherical nanofiller, the materials are of great interest for model microindentation studies. Additionally, because of the polycarbonate-type elastic chains of the PUU matrix, hydrogen bonding in the studied nanocomposites was expected to be rich and diverse, ranging from very strong to weak. In micro- and macromechanical tests, all the elasticity-related properties correlated very strongly. The relations among the properties that related to energy dissipation were complex, and were highly affected by the existence of hydrogen bonding of broadly varied strength, by the distribution patterns of the fine nanofiller, as well as by the eventual locally endured larger deformations during the tests, and the tendency of the materials to cold flow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...