Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Más filtros












Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39338334

RESUMEN

Considering the complex pathogenesis of Alzheimer's disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide-hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50hMAOB-0.665 µM; IC50eeAChE-4.145 µM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood-brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state.

2.
Acta Crystallogr C Struct Chem ; 80(Pt 10): 633-647, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226423

RESUMEN

Two new two-dimensional (2D) coordination polymers (CPs), namely, poly[diaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O''']cadmium(II)], [Cd(C14H6N2O8)(H2O)2]n (1), and poly[[tetraaqua[µ4-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ4O:O':O'':O'''][µ2-2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetato-κ2O:O']dizinc(II)] dihydrate], {[Zn(C14H6N2O8(H2O)2]·H2O}n (2), have been synthesized by the microwave-irradiated reaction of Cd(CH3COO)2·2H2O and Zn(CH3COO)2·2H2O, respectively, with N,N'-bis(glycinyl)pyromellitic diimide {BGPD, namely, 2,2'-(1,3,5,7-tetraoxo-1,2,3,5,6,7-hexahydropyrrolo[3,4-f]isoindole-2,6-diyl)diacetic acid, H2L}. In the crystal structure of 1, the CdII ion is six-coordinated by four carboxylate O atoms from four symmetry-related L2- dianions and two coordinated water molecules, furnishing an octahedral coordination geometry. The bridging L2- dianion links four symmetry-related CdII cations into a 2D layer-like structure with a 3,4-connected bex topology. In the crystal structure of 2, the ZnII ion is five-coordinated by three carboxylate O atoms from three different L2- dianions and two coordination water molecules, furnishing a trigonal bipyramidal coordination geometry. Two crystallographically independent ligands serve as µ4- and µ2-bridges, respectively, to connect the ZnII ions, thereby forming a 2D layer with a 3,3-connected hcb topology. Crystal structure analysis reveals the presence of n→π* interactions between two carbonyl groups of the pyromellitic diimide moieties in 1 and 2. CP 1 exhibits an enhanced fluorescence emission compared with free H2L. The framework of 2 decomposes from 720 K, indicating its high thermal stability. A comparative analysis of a series of structures based on the BGPD ligand indicates that the metal-ion size has a great influence on the connection modes of the metal ions due to different steric effects, which, in turn, affects the structures of the SBUs (secondary building units) and frameworks.

3.
Chemistry ; : e202402513, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39345155

RESUMEN

Metal-encapsulated covalent organic framework (metal/COF) represents an emerging paradigm in heterogeneous catalysis. However, the time-intensive (usually 4 or more days) and tedious multi-step synthesis of metal/COFs remains a significant stumbling block for their broad application. To address this challenge, we introduce a facile microwave-assisted in situ metal encapsulation strategy to cooperatively combine COF formation and in situ palladium(II) encapsulation in one step. With this unprecedented approach, we synthesize a diverse range of palladium(II)-encapsulated COFs (termed Mw-Pd/COF) in the air within just an hour. Notably, this strategy is scalable for large-scale production (~0.5 g). Leveraging the high crystallinity, porosity, and structural stability, one representative Mw-Pd/COF exhibits remarkable activity, functional group tolerance, and recyclability for the Suzuki-Miyaura coupling reaction at room temperature, surpassing most previously reported Pd(II)/COF catalysts with respect to catalytic performance, preparation time, and synthetic ease. This microwave-assisted in situ metal encapsulation strategy opens a facile and rapid avenue to construct metal/COF hybrids, which hold enormous potential in a multitude of applications including heterogeneous catalysis, sensing, and energy storage.

4.
Luminescence ; 39(9): e4889, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223967

RESUMEN

Based on novel phosphorus-doped carbon dots (PCDs), a simple, quick, and accurate fluorescence probe for sarecycline (SAR) determination has been created. The PCDs were prepared in just five minutes using green, straightforward one-step microwave pyrolysis. To create the PCD probe, sodium phosphate monobasic was utilized as a phosphorus dopant and citric acid as a carbon supply. The proposed synthesis method was energy efficient and yielded CDs with a narrow particle size distribution. Based on inner-filter effect mechanism, the generated PCDs were used as nano-probe for SAR determination. The fluorescence quenching intensity showed a strong linear relationship with SAR concentration in the 3-90-µM range with a detection limit of 0.88 µM. Because there is no surface alteration of the CDs or creation of a covalent bond between SAR and PCDs, the developed approach is quick, easy, inexpensive, and requires less time. The new probe's enhanced sensitivity, broad linear range, and acceptable selectivity made it suitable for SAR measurement in pharmaceutical formulations and spiked human plasma. Most importantly, the Green Analytical Procedure Index (GAPI) and Analytical GREEnness (AGREE) assessments showed that the suggested method was environmentally friendly.


Asunto(s)
Carbono , Fósforo , Puntos Cuánticos , Carbono/química , Humanos , Fósforo/química , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Tetraciclinas/análisis , Tetraciclinas/sangre , Espectrometría de Fluorescencia , Tamaño de la Partícula , Formas de Dosificación , Límite de Detección
5.
Anal Chim Acta ; 1319: 342946, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39122268

RESUMEN

BACKGROUND: Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS: Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 µM. LOD and LOQ were 0.16 and 0.49 µM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY: The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.


Asunto(s)
Biomasa , Jugo Gástrico , Medicago sativa , Microondas , Nitrofuranos , Medicago sativa/química , Nitrofuranos/análisis , Jugo Gástrico/química , Tecnología Química Verde , Hidroxibenzoatos/análisis , Hidroxibenzoatos/química , Puntos Cuánticos/química , Humanos , Tamaño de la Partícula
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125918

RESUMEN

In recent years, inorganic nanoparticles, including calcium hydroxide nanoparticles [Ca Ca(OH)2 NPs], have attracted significant interest for their ability to impact plant photosynthesis and boost agricultural productivity. In this study, the effects of 15 and 30 mg L-1 oleylamine-coated calcium hydroxide nanoparticles [Ca(OH)2@OAm NPs] on photosystem II (PSII) photochemistry were investigated on tomato plants at their growth irradiance (GI) (580 µmol photons m-2 s-1) and at high irradiance (HI) (1000 µmol photons m-2 s-1). Ca(OH)2@OAm NPs synthesized via a microwave-assisted method revealed a crystallite size of 25 nm with 34% w/w of oleylamine coater, a hydrodynamic size of 145 nm, and a ζ-potential of 4 mV. Compared with the control plants (sprayed with distilled water), PSII efficiency in tomato plants sprayed with Ca(OH)2@OAm NPs declined as soon as 90 min after the spray, accompanied by a higher excess excitation energy at PSII. Nevertheless, after 72 h, the effective quantum yield of PSII electron transport (ΦPSII) in tomato plants sprayed with Ca(OH)2@OAm NPs enhanced due to both an increase in the fraction of open PSII reaction centers (qp) and to the enhancement in the excitation capture efficiency (Fv'/Fm') of these centers. However, the decrease at the same time in non-photochemical quenching (NPQ) resulted in an increased generation of reactive oxygen species (ROS). It can be concluded that Ca(OH)2@OAm NPs, by effectively regulating the non-photochemical quenching (NPQ) mechanism, enhanced the electron transport rate (ETR) and decreased the excess excitation energy in tomato leaves. The delay in the enhancement of PSII photochemistry by the calcium hydroxide NPs was less at the GI than at the HI. The enhancement of PSII function by calcium hydroxide NPs is suggested to be triggered by the NPQ mechanism that intensifies ROS generation, which is considered to be beneficial. Calcium hydroxide nanoparticles, in less than 72 h, activated a ROS regulatory network of light energy partitioning signaling that enhanced PSII function. Therefore, synthesized Ca(OH)2@OAm NPs could potentially be used as photosynthetic biostimulants to enhance crop yields, pending further testing on other plant species.


Asunto(s)
Hidróxido de Calcio , Nanopartículas , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Complejo de Proteína del Fotosistema II/metabolismo , Hidróxido de Calcio/química , Nanopartículas/química , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/metabolismo , Fotosíntesis/efectos de los fármacos , Hormesis , Transporte de Electrón/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
7.
Environ Technol ; : 1-13, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002157

RESUMEN

ABSTRACTMetal-organic frameworks (MOFs) with photocatalytic activity have garnered significant attentions in environmental remediation. Herein, copper-doped zeolitic imidazolate framework-7 (Cu-doped ZIF-7) was synthesized rapidly and easily using a microwave-assisted technique. Various analytical and spectroscopic methods were employed to access the framework, morphology, light absorption, photo-electrochemical and photocatalytic performance of the synthesized materials. Compared to ZIF-7, Cu/ZIF-7 (molar ratio of Cu2+ to Zn2+ is 1:1) demonstrates superior visible light absorption ability, narrower band gap, enhanced charge separation capability, and reduced electron-hole recombination performance. Under visible light irradiation, Cu/ZIF-7 serves as a Fenton-like catalyst and demonstrates exceptional activity for contaminant degradation, while virgin ZIF-7 remains inactive. With the addition of 9.8 mmol H2O2 and exposure to visible light for 30 min, 10 mg of Cu/ZIF-7 can completely decompose RhB solution (10 mg/L, 50 mL). The synergistic effect of the Cu/ZIF-7/H2O2/visible light system is attributed to visible light photocatalysis and Fenton-like reactions. Cu/ZIF-7 demonstrates excellent catalytic performance stability, with only a slight decrease in degradation efficiency from an initial 97.0% to 95.4% over four cycles. Additionally, spin-trapping ESR measurements and active species trapping experiments revealed that h+ and ·OH occupied a significant position for Rhodamine B (RhB) degradation. Degradation intermediate products of Rhodamine B have been identified using UPLC-MS, and the degradation pathways have been proposed and discussed. This work offers a facile and efficient technique for developing MOF-based visible light photocatalysts for water purification.

8.
Eur J Med Chem ; 276: 116592, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013357

RESUMEN

A novel group of 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines was prepared via a microwave assisted one-pot telescopic approach. The synthetic sequence involves the formation of an amine precursor of imidazo [1,2-a]pyridine via condensation and reduction under microwave irradiation. Subsequently, the Pictet-Spengler cyclisation reaction occurs with ketones (cyclic or acyclic) to obtain substituted 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinolines in excellent yields. The compounds were tested as neuroprotective agents. Observed protection of neuron-like cells, SH-SY5Y differentiated with ATRA, in Parkinson's and Huntington's disease models inspired further mechanistic studies of protective activity against damage induced by 1-methyl-4-phenylpyridinium (MPP+), a compound causing Parkinson's disease. The novel compounds exhibit similar or higher potency than ebselen, an established drug with antioxidant activity, in the cells against MPP + -induced total cellular superoxide production and cell death. However, they exhibit a significantly higher capacity to reduce mitochondrial superoxide and preserve mitochondrial membrane potential. We also observed marked differences between a selected derivative and ebselen in terms of normalizing MPP + -induced phosphorylation of Akt and ERK1/2. The cytoprotective activity was abrogated when signaling through cannabinoid receptor CB2 was blocked. The compounds also inhibit both acetylcholine and butyrylcholine esterases. Overall the data show that novel 5,6-dihydropyrido [2',1':2,3]imidazo [4,5-c]quinoline have a broad cytoprotective activity which is mediated by several mechanisms including mitoprotection.


Asunto(s)
Inhibidores de la Colinesterasa , Fármacos Neuroprotectores , Quinolinas , Receptor Cannabinoide CB2 , Transducción de Señal , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/síntesis química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Quinolinas/farmacología , Quinolinas/química , Quinolinas/síntesis química , Relación Estructura-Actividad , Transducción de Señal/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Estructura Molecular , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Animales
9.
Chemistry ; 30(47): e202401644, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869378

RESUMEN

Herein, a series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs of formula M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, (M, M'=metal) with the same pillar and layer linkers 1,4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method (MW) within only 12 min. In the bimetallic MOFs the ratio M:M' was 4 : 1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). Among all tested bimetallic MOF-derived catalysts, the NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a rotating disk glassy carbon electrode (RD-GCE) in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was insitu grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) with, for example, a mass loading of 16.6 mgMOF/gNF, where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy (EIS) measurement (Rfar=2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite. During the electrocatalytic processes or even before upon KOH pre-treatment, the MOFs are transformed to the mixed-metal hydroxide phase α-/ß-M(OH)2 which presents the active species in the reactions (turnover frequency TOF=0.252 s-1 at an overpotential of 320 mV). Compared to the TOF from ß-M(OH)2 (0.002 s-1), our study demonstrates that a bimetallic MOF improves the electrocatalytic performance of the derived catalyst by giving an intimate and uniform mixture of the involved metals at the nanoscale.

10.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930999

RESUMEN

In this study, the optimal microwave-assisted sol-gel synthesis parameters for achieving TiO2 nanoparticles with the highest specific surface area and photocatalytic activity were determined. Titanium isopropoxide was used as a precursor to prepare the sol (colloidal solution) of TiO2. Isopropanol was used as a solvent; acetylacetone was used as a complexation moderator; and nitric acid was used as a catalyst. Four samples of titanium dioxide were synthesized from the prepared colloidal solution in a microwave reactor at a temperature of 150 °C for 30 min and at a temperature of 200 °C for 10, 20, and 30 min. The phase composition of the TiO2 samples was determined by X-ray diffraction analysis (XRD) and Fourier-transform infrared spectroscopy (FTIR). Nitrogen adsorption/desorption isotherms were used to determine the specific surface area and pore size distributions using the Brunauer-Emmett-Teller (BET) method. The band-gap energy values of the TiO2 samples were determined by diffuse reflectance spectroscopy (DRS). The distribution of Ti and O in the TiO2 samples was determined by SEM-EDS analysis. The effects of adsorption and photocatalytic activity of the prepared TiO2 samples were evaluated by the degradation of ciprofloxacin (CIP) as an emerging organic pollutant (EOP) under UV-A light (365 nm). The results of the photocatalytic activity of the synthesized TiO2 nanoparticles were compared to the benchmark Degussa P25 TiO2. Kinetic parameters of adsorption and photocatalysis were determined and analyzed. It was found that crystalline TiO2 nanoparticles with the highest specific surface area, the lowest energy band gap, and the highest photocatalytic degradation were the samples synthesized at 200 °C for 10 min. The results indicate that CIP degradation by all TiO2 samples prepared at 200 °C show a synergistic effect of adsorption and photocatalytic degradation in the removal process.

11.
Heliyon ; 10(11): e32262, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912512

RESUMEN

Simultaneous inhibition of soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) with a single small molecule represents a novel therapeutic approach in treating inflammatory pain, since both targets are involved in pain and inflammation processes. In this study using multi-target directed ligands methodology we designed and synthesized 7 quinolinyl-based dual sEH/FAAH inhibitors, using an optimized microwave-assisted Suzuki-Miyaura coupling reaction and tested their potency in human FAAH and human, rat, and mouse sEH inhibition assays. The structure-activity relationship study showed that quinolinyl moiety is well tolerated in the active sites of both enzymes, yielding several very potent dual sEH/FAAH inhibitors with the IC50 values in the low nanomolar range. The most potent dual inhibitor 4d was further evaluated in stability assay in human and rat plasma where it performed better than the standard Warfarin while in vivo study revealed that 1 mg/kg 4d can inhibit acute inflammatory pain in male rats to a similar degree as the traditional nonsteroidal anti-inflammatory drug ketoprofen (30 mg/kg) after intraperitoneal injection. ADMET prediction studies for this dual inhibitor show favorable pharmacokinetic properties which will guide the future in vivo evaluations.

12.
Materials (Basel) ; 17(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38793432

RESUMEN

This research successfully synthesized SnO2@ZnIn2S4 composites for photocatalytic tap water splitting using a rapid two-step microwave-assisted synthesis method. This study investigated the impact of incorporating a fixed quantity of SnO2 nanoparticles and combining them with various materials to form composites, aiming to enhance photocatalytic hydrogen production. Additionally, different weights of SnO2 nanoparticles were added to the ZnIn2S4 reaction precursor to prepare SnO2@ZnIn2S4 composites for photocatalytic hydrogen production. Notably, the photocatalytic efficiency of SnO2@ZnIn2S4 composites is substantially higher than that of pure SnO2 nanoparticles and ZnIn2S4 nanosheets: 17.9-fold and 6.3-fold, respectively. The enhancement is credited to the successful use of visible light and the facilitation of electron transfer across the heterojunction, leading to the efficient dissociation of electron-hole pairs. Additionally, evaluations of recyclability demonstrated the remarkable longevity of SnO2@ZnIn2S4 composites, maintaining high levels of photocatalytic hydrogen production over eight cycles without significant efficiency loss, indicating their impressive durability. This investigation presents a promising strategy for crafting and producing environmentally sustainable SnO2@ZnIn2S4 composites with prospective implementations in photocatalytic hydrogen generation.

13.
Chem Biodivers ; 21(8): e202400534, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771305

RESUMEN

Pyrrole, with its versatile heterocyclic ring structure, serves as a valuable template for generating a diverse range of lead compounds with various pharmacophores. Researchers and scientists globally are intrigued by pyrrole and its analogs for their broad pharmacological potential, prompting thorough investigations aimed at advancing human welfare. This comprehensive review delves into the diverse activities exhibited by pyrrole compounds, encompassing their synthesis, reactions, and pharmacological properties alongside their derivatives. In addition to detailing the characteristics of pyrrole and its derivatives within the context of green chemistry, the review also examines microwave-assisted reactions. It provides insights into their chemical structures, natural occurrences, and potential applications across various domains. Furthermore, the article investigates structural alterations of pyrrole compounds and their implications on their functionality, highlighting their versatility as foundational elements for both functional materials and bioactive compounds. The review emphasizes the need for ongoing research and development in the field of pyrrole compounds to discover new activities and benefits.


Asunto(s)
Pirroles , Pirroles/química , Pirroles/farmacología , Pirroles/síntesis química , Humanos , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Microondas , Relación Estructura-Actividad , Tecnología Química Verde
14.
Artículo en Inglés | MEDLINE | ID: mdl-38669483

RESUMEN

The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.

15.
J Colloid Interface Sci ; 659: 718-727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211489

RESUMEN

Herein, we present a novel microwave-assisted method for the synthesis of palladium nanoparticles (PdNPs) supported by Limonia acidissima Groff tree extract gum. The synthesized PdNPs were characterized using various analytical techniques, including FTIR, SEM, TEM, UV-visible, and powder XRD analyses. TEM and XRD analysis confirmed that the synthesized LAG-PdNPs are highly crystalline nature spherical shapes with an average size diameter of 7-9 nm. We employed these gum-capped PdNPs to investigate their peroxidase-like activity for colorimetric detection of hydrogen peroxide (H2O2) and glucose. The oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2, catalyzed by PdNPs, produces oxidation products quantified at 652 nm using spectrophotometry. The catalytic activity of PdNPs was optimized with respect to temperature and pH. The developed method exhibited a linear range of detection from 1 to 50 µm, with detection limits of 0.35 µm for H2O2 and 0.60 µm for glucose.


Asunto(s)
Colorimetría , Nanopartículas del Metal , Nanopartículas del Metal/química , Paladio/química , Peróxido de Hidrógeno/análisis , Microondas , Glucosa/análisis
16.
Anal Bioanal Chem ; 416(4): 945-957, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051414

RESUMEN

Histamine causes allergic reactions and can serve as an indicator for assessing food quality. This study designed and developed a dispersive micro solid-phase extraction (D-µSPE) method that combined the advantages of dispersive liquid-liquid extraction and solid-phase extraction (SPE). Molecularly imprinted polymers (MIPs) were employed as the solid phase in the D-µSPE method to extract histamine in wine samples. We used microwave energy to significantly reduce the synthesis time, achieving an 11.1-fold shorter synthesis time compared to the conventional MIP synthetic method. Under optimized D-µSPE conditions, our results showed that the dispersive solvent could effectively increase the adsorption performance of MIPs in wine samples by 97.7%. To improve the sensitivity of histamine detection in gas chromatography-mass spectrometry, we employed the microwave-assisted tandem derivatization method to reuse excess derivatization reagents and reduce energy consumption and reaction time. Calibration curves were constructed for wine samples spiked with 0-400 nmol histamine using the standard addition method, resulting in good linearity with a coefficient of determination of 0.999. The intra- and inter-batch relative standard deviations of the slope and intercept were < 0.7% and < 5.3%, respectively. The limits of quantitation and detection were 0.4 nmol and 0.1 nmol, respectively. The developed method was successfully applied to analyze the histamine concentration in 10 commercial wine samples. In addition, the AGREEprep tool was used to evaluate the greenness performance of the developed method, which obtained a higher score than the other reported methods.


Asunto(s)
Impresión Molecular , Vino , Vino/análisis , Cromatografía Líquida de Alta Presión/métodos , Histamina/análisis , Polímeros/química , Extracción en Fase Sólida/métodos , Impresión Molecular/métodos
17.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998835

RESUMEN

In order to address the challenges associated with antibiotic resistance by bacteria, two new complexes, Ni(II) and Zn(II), have been synthesized using the conventional method based on Schiff base ligand (E)-2-((5-bromothiazol-2-yl) imino) methyl) phenol. The Schiff base ligand (HL) was synthesized using salicylaldehyde and 5-(4-bromophenyl)thiazol-2-amine in both traditional and efficient, ecologically friendly, microwave-assisted procedures. The ligand and its complexes were evaluated by elemental analyses, FTIR spectroscopy, UV-Vis spectroscopy, nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and magnetic susceptibility. The ligand and its complexes were tested for antibacterial activity against three Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus ATCC 43300 and Enterococcus faecalis ATCC 29212) and three Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 700603). The findings demonstrate the potent activity of the ligand and its complexes against selective bacteria but the Ni(II) complex with MIC values ranging from 1.95 to 7.81 µg/mL outperformed all other compounds, including the widely used antibiotic Streptomycin. Furthermore, the docking study provided evidence supporting the validity of the antimicrobial results, since the Ni complex showed superior binding affinity against to E. coli NAD synthetase, which had a docking score (-7.61 kcal/mol).

18.
Gels ; 9(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37998964

RESUMEN

Despite the tremendous progress in the development of functional materials from plastic waste to promote its recycling, only a few examples of hydrogel materials from plastic waste were reported. In this study, microwave-assisted depolymerization of waste PET plastic using polyamine was performed to prepare short aminophthalamide oligomers followed by chemically cross-linking into a hydrogel material. Catalyst-free microwave-assisted aminolysis of PET was completed within 30-40 s, demonstrating high efficiency of the depolymerization reaction. Subsequent epoxy cross-linking of the oligomers yielded a hydrogel with a swelling degree of ca. 92.1 times in pure water. The application of the obtained hydrogel for the removal of copper ions (Cu2+) from water was demonstrated. Efficient complexation of NH2 groups of the hydrogel with Cu2+ resulted in high adsorption capacities of the hydrogel material toward Cu2+ removal, which were the highest at neutral pHs and reached ca. 213 mg/g. The proposed type of environmental material is beneficial owing to its waste-derived nature and functionality that can be applied for the high-efficiency removal of a broad scope of known environmental pollutants.

19.
Materials (Basel) ; 16(19)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37834689

RESUMEN

In this review, we focus on a small section of the literature that deals with the materials containing pristine defective carbon nanostructures (CNs) and those incorporated into the larger systems containing carbon atoms, heteroatoms, and inorganic components.. Briefly, we discuss only those topics that focus on structural defects related to introducing perturbation into the surface topology of the ideal lattice structure. The disorder in the crystal structure may vary in character, size, and location, which significantly modifies the physical and chemical properties of CNs or their hybrid combination. We focus mainly on the method using microwave (MW) irradiation, which is a powerful tool for synthesizing and modifying carbon-based solid materials due to its simplicity, the possibility of conducting the reaction in solvents and solid phases, and the presence of components of different chemical natures. Herein, we will emphasize the advantages of synthesis using MW-assisted heating and indicate the influence of the structure of the obtained materials on their physical and chemical properties. It is the first review paper that comprehensively summarizes research in the context of using MW-assisted heating to modify the structure of CNs, paying attention to its remarkable universality and simplicity. In the final part, we emphasize the role of MW-assisted heating in creating defects in CNs and the implications in designing their properties and applications. The presented review is a valuable source summarizing the achievements of scientists in this area of research.

20.
Environ Sci Pollut Res Int ; 30(54): 116078-116090, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37906333

RESUMEN

Carbamazepine is a widely used antiepileptic drug to control and treat a variety of disorders that is frequently detected in surface water, and in municipal and urban wastewater. This recalcitrant pollutant could be removed by alternative advanced oxidation technology such as heterogeneous photocatalysis. Ce-modified ZnO and Pd-modified TiO2 were synthesized by a microwave-assisted sol-gel method. According to the characterizations (Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy), a mixture of oxides was determined in both materials: CeO2/ZnO and PdO/TiO2. Photocatalytic degradation of carbamazepine in pure water under visible light (3 h) was assayed. The degradation percentage obtained with each catalyst was 80%, 53%, 20%, and 9% for ZnO, Ce-modified ZnO, TiO2, and Pd-modified TiO2, respectively. The leaching of Zn as a possible source of water contamination was tested, finding the lowest value for Ce-modified ZnO by adjusting the initial pH up to neutrality. Later, an environmentally relevant concentration of carbamazepine (228 µg L-1) was assayed, using local surface water (pH = 8.3). Despite the presence of other compounds in the real water matrix, after 5 h of photocatalysis, a 56% of degradation of the pharmaceutical and low leaching of Zn were achieved. The use of Ce-modified ZnO activated by visible light is a promising strategy for the abatement of pharmaceutical active compounds.


Asunto(s)
Agua , Óxido de Zinc , Óxido de Zinc/química , Luz , Titanio/química , Carbamazepina/química , Preparaciones Farmacéuticas , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...