Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39024357

RESUMEN

Diabetes mellitus is one of the leading causes of chronic kidney disease and its progression to end-stage kidney disease. Diabetic kidney disease (DKD) is characterized by glomerular hypertrophy, hyperfiltration, inflammation and the onset of albuminuria, together with a progressive reduction in glomerular filtration rate. This progression is further accompanied by tubulointerstitial inflammation and fibrosis. Factors such as genetic predisposition, epigenetic modifications, metabolic derangements, hemodynamic alterations, inflammation, and inappropriate renin-angiotensin-aldosterone system (RAAS) activity contribute to the onset and progression of DKD. In this context, decades of work have focused on glycemic and blood pressure reduction strategies, especially targeting the RAAS to slow disease progression. While much of the work has focused on targeting angiotensin II, emerging data support that the mineralocorticoid receptor (MR) is integral in the development and progression of DKD. Molecular mechanisms linked to the underlying pathophysiological changes derived from MR activation include vascular endothelial, as well as epithelial cell responses, to oxidative stress and inflammation. These responses lead to alterations in the microcirculatory environment, the abnormal release of extracellular vesicles, gut dysbiosis, epithelial-mesenchymal transition, and kidney fibrosis. Herein we present recent experimental and clinical evidence on the MR in DKD onset and progress along with new MR based strategies for the treatment and prevention of DKD.

2.
J Steroid Biochem Mol Biol ; 243: 106548, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821293

RESUMEN

Due to alternative splicing in an ancestral DNA-binding domain (DBD) of the mineralocorticoid receptor (MR), humans contain two almost identical MR transcripts with either 984 amino acids (MR-984) or 988 amino acids (MR-988), in which their DBDs differ by only four amino acids, Lys,Cys,Ser,Trp (KCSW). Human MRs also contain mutations at two sites, codons 180 and 241, in the amino terminal domain (NTD). Together, there are five distinct full-length human MR genes in GenBank. Human MR-984, which was cloned in 1987, has been extensively studied. Human MR-988, cloned in 1995, contains KCSW in its DBD. Neither this human MR-988 nor the other human MR-988 genes have been studied for their response to aldosterone and other corticosteroids. Here, we report that transcriptional activation of human MR-988 by aldosterone is increased by about 50 % compared to activation of human MR-984 in HEK293 cells transfected with the TAT3 promoter, while the half-maximal response (EC50) is similar for aldosterone activation of MR-984 and MR-988. Transcriptional activation of human MR also depends on the amino acids at codons 180 and 241. Interestingly, in HEK293 cells transfected with the MMTV promoter, transcriptional activation by aldosterone of human MR-988 is similar to activation of human MR-984, indicating that the promoter has a role in the regulation of the response of human MR-988 to aldosterone. The physiological responses to aldosterone and other corticosteroids in humans with MR genes containing KCSW and with differences at codons 180 and 241 in the NTD warrant investigation.

3.
Ter Arkh ; 95(9): 796-801, 2023 Nov 04.
Artículo en Ruso | MEDLINE | ID: mdl-38158924

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) activation plays a key role in the chronic kidney disease (CKD) progression and in the cardiovascular complications (CVC) development in patients with diabetes mellitus (DM). RAAS blockers alone are not sufficient to prevent CVC and CVC progression. RAAS upregulation in CKD associated with DM triggers the mineralocorticoid receptors (MCR) hyperactivation which results in fibrosis and inflammation in the heart and kidneys. This review presents the current data about the variety of MCR hyperactivation manifestations, as well as about of multiplicity of MCR hyperactivation ways in DM. The efficacy and safety of finerenone, a new MCR nonsteroidal selective antagonist, are discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Insuficiencia Renal Crónica , Humanos , Receptores de Mineralocorticoides/fisiología , Sistema Renina-Angiotensina/fisiología , Antagonistas de Receptores de Mineralocorticoides/efectos adversos , Diabetes Mellitus/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...