Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Forensic Sci Int ; 361: 112136, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38968645

RESUMEN

Etomidate as a non-barbiturate sedative, has central inhibitory effect and addiction and has been listed as a controlled drug in some countries due to the abusing trend nowadays. Therefore, rapid and sensitive detection of etomidate is of great significance. In this work, a novel fluorescent sensing probe (CuNCs@MIPs) based on copper nanoclusters (CuNCs) and molecular imprinted polymers (MIPs) has been firstly reported. CuNCs was environment-friendly synthesized using poly(vinylpyrrolidone) as a template and ascorbic acid as a reducing agent. After functionalized with molecular imprinting technique, the CuNCs@MIPs probe has special binding cavities on surface to target etomidate, causing the fluorescence intensity rapidly decrease, which confirmed it has excellent sensitivity, selectivity and stability. Under optimal conditions, the fluorescent sensing probe presented high precision linear relationship for etomidate in range of 10-500 ng/ml with detection limit of 10 ng/ml, and the whole detection process was completed within 10 min. This sensing method has also been applied to real samples detection, still demonstrated excellent feasibility in electronic cigarette liquids and urine. More importantly, compared with previous methods, this fluorescent sensing method has advantages such as rapid, simple and easy to operate. Collectively, the proposed CuNCs@MIPs sensing probe has good fluorescence characteristics and simple synthesis strategy, showed a great potential in etomidate detection and application.

2.
Angew Chem Int Ed Engl ; : e202408979, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38979660

RESUMEN

Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising-strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via the widely used Strep-tag II affinity peptide. Electrochemistry, surface-sensitive spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tag labeled enzymes: an O2-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.

3.
Food Chem ; 460(Pt 1): 140557, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39047491

RESUMEN

In this study, a new analytical method was developed using magnetic molecularly imprinted polymers (MMIPs) by employing eco-friendly supramolecular ternary deep eutectic solvents to synthesize these MMIPs for selective extraction of rifaximin. The characterization analysis and adsorption affinity investigation were conducted. The results showed fast adsorption (15 min) with high adsorption capacity (43.20 mg g-1) and selectivity for rifaximin. Various extraction parameters were optimized, achieving recoveries ranging from 86.67% to 99.47% in spiked milk samples using high-performance liquid chromatography (HPLC). The detection and quantification limits were 0.01 mg L-1 and 0.03 mg L-1, respectively. The method exhibited low RSDs (<4.70%) and excellent selectivity, with MMIPs reusable up to seven times with only a 10% performance loss. This study proposes a convenient and reliable method for trace-level rifaximin extraction from milk using eco-friendly MMIPs.

4.
J Biomater Sci Polym Ed ; : 1-22, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885181

RESUMEN

Molecularly imprinted polymers (MIPs) have garnered the interest of researchers in the drug delivery due to their advantages, such as exceptional durability, stability, and selectivity. In this study, a biocompatible MIP drug adsorption and delivery system with high loading capacity and controlled release, was prepared based on chitosan (CS) and graphene quantum dots (GQDs) as the matrix, and the anticancer drug oxaliplatin (OXAL) as the template. Additionally, samples without the drug (non-imprinted polymers, NIPs) were created for comparison. GQDs were produced using the hydrothermal method, and samples underwent characterization through FTIR, XRD, FESEM, and TGA. Various experiments were conducted to determine the optimal pH for drug adsorption, along with kinetic and isotherm studies, selectivity assessments, in vitro drug release and kinetic evaluations. The highest drug binding capacity was observed at pH 6.5. The results indicated the Lagergren-first-order kinetic model (with rate constant of 0.038 min-1) and the Langmuir isotherm (with maximum adsorption capacity of 17.15 mg g-1) exhibited better alignment with the experimental data. The developed MIPs displayed significant selectivity towards OXAL, by an imprinting factor of 2.88, in comparison to two similar drugs (cisplatin and carboplatin). Furthermore, the analysis of the drug release profile showed a burst release for CS-Drug (87% within 3 h) at pH 7.4, where the release from the CS-GQD-Drug did not occur at pH 7.4 and 10; instead, the release was observed at pH 1.2 in a controlled manner (100% within 28 h). Consequently, this specific OXAL adsorption and delivery system holds promise for cancer treatment.

5.
Biosens Bioelectron ; 258: 116349, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705072

RESUMEN

Detection of cancer-related exosomes in body fluids has become a revolutionary strategy for early cancer diagnosis and prognosis prediction. We have developed a two-step targeting detection method, termed PS-MIPs-NELISA SERS, for rapid and highly sensitive exosomes detection. In the first step, a phospholipid polar site imprinting strategy was employed using magnetic PS-MIPs (phospholipids-molecularly imprinted polymers) to selectively isolate and enrich all exosomes from urine samples. In the second step, a nanozyme-linked immunosorbent assay (NELISA) technique was utilized. We constructed Au/Na7PMo11O39 nanoparticles (NPs) with both surface-enhanced Raman scattering (SERS) property and peroxidase catalytic activity, followed by the immobilization of CD9 antibodies on the surface of Au/Na7PMo11O39 NPs. The Au/Na7PMo11O39-CD9 antibody complexes were then used to recognize CD9 proteins on the surface of exosomes enriched by magnetic PS-MIPs. Lastly, the high sensitivity detection of exosomes was achieved indirectly via the SERS activity and peroxidase-like activity of Au/Na7PMo11O39 NPs. The quantity of exosomes in urine samples from pancreatic cancer patients obtained by the PS-MIPs-NELISA SERS technique showed a linear relationship with the SERS intensity in the range of 6.21 × 107-2.81 × 108 particles/mL, with a limit of detection (LOD) of 5.82 × 107 particles/mL. The SERS signal intensity of exosomes in urine samples from pancreatic cancer patients was higher than that of healthy volunteers. This bidirectional MIPs-NELISA-SERS approach enables noninvasive, highly sensitive, and rapid detection of cancer, facilitating the monitoring of disease progression during treatment and opening up a new avenue for rapid early cancer screening.


Asunto(s)
Técnicas Biosensibles , Exosomas , Oro , Espectrometría Raman , Humanos , Exosomas/química , Oro/química , Espectrometría Raman/métodos , Fosfolípidos/química , Fosfolípidos/orina , Límite de Detección , Impresión Molecular , Polímeros Impresos Molecularmente/química , Epítopos/inmunología , Epítopos/química , Nanopartículas del Metal/química , Tetraspanina 29/orina , Tetraspanina 29/análisis , Anticuerpos Inmovilizados/química
6.
Bioanalysis ; 16(6): 331-345, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38426317

RESUMEN

Aim: Investigating molecularly imprinted polymers (MIPs) in electrochemical biosensors for thrombin detection, an essential protein biomarker. Comparing different monomers to showcase distinct sensitivity, specificity and stability advantages. Materials & methods: Dopamine, thionine and ethanolamine serve as monomers for MIP synthesis. Electrochemical methods and atomic force microscopy characterize sensor surfaces. Performance is evaluated, emphasizing monomer-specific electrochemical responses. Results: Monomer-specific electrochemical responses highlight dopamine's superior signal change and stability over 30 days. Notably, a low 5 pg/ml limit of detection, a broad linear range (5-200 pg/ml) and enhanced selectivity against interferents are observed. Conclusion: Dopamine-based MIPs show promise for high-performance electrochemical thrombin biosensors, suggesting significant applications in clinical diagnostics.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Dopamina , Trombina , Polímeros/química , Impresión Molecular/métodos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos
7.
Sensors (Basel) ; 23(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37687913

RESUMEN

This perspective article focuses on the overwhelming significance of molecular recognition in biological processes and its emulation in synthetic molecules and polymers for chemical sensing. The historical journey, from early investigations into enzyme catalysis and antibody-antigen interactions to Nobel Prize-winning breakthroughs in supramolecular chemistry, emphasizes the development of tailored molecular recognition materials. The discovery of supramolecular chemistry and molecular imprinting, as a versatile method for mimicking biological recognition, is discussed. The ability of supramolecular structures to develop selective host-guest interactions and the flexible design of molecularly imprinted polymers (MIPs) are highlighted, discussing their applications in chemical sensing. MIPs, mimicking the selectivity of natural receptors, offer advantages like rapid synthesis and cost-effectiveness. Finally, addressing major challenges in the field, this article summarizes the advancement of molecular recognition-based systems for chemical sensing and their transformative potential.


Asunto(s)
Impresión Molecular , Polímeros Impresos Molecularmente , Polímeros , Catálisis , Reconocimiento en Psicología
8.
Biosensors (Basel) ; 13(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37367012

RESUMEN

In this study, a label-free and antibody-free impedimetric biosensor based on molecularly imprinting technology for exosomes derived from non-small-cell lung cancer (NSCLC) cells was established. Involved preparation parameters were systematically investigated. In this design, with template exosomes anchored on a glassy carbon electrode (GCE) by decorated cholesterol molecules, the subsequent electro-polymerization of APBA and elution procedure afforded a selective adsorption membrane for template A549 exosomes. The adsorption of exosomes caused a rise in the impedance of the sensor, so the concentration of template exosomes can be quantified by monitoring the impedance of GCEs. Each procedure in the establishment of the sensor was monitored with a corresponding method. Methodological verification showed great sensitivity and selectivity of this method with an LOD = 2.03 × 103 and an LOQ = 4.10 × 104 particles/mL. By introducing normal cells and other cancer cells derived exosomes as interference, high selectivity was proved. Accuracy and precision were measured, with an obtained average recovery ratio of 100.76% and a resulting RSD of 1.86%. Additionally, the sensors' performance was retained at 4 °C for a week or after undergoing elution and re-adsorption cycles seven times. In summary, the sensor is competitive for clinical translational application and improving the prognosis and survival for NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Exosomas , Neoplasias Pulmonares , Impresión Molecular , Humanos , Polímeros Impresos Molecularmente , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Impresión Molecular/métodos , Polímeros , Neoplasias Pulmonares/diagnóstico , Anticuerpos , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
9.
Food Chem ; 420: 136100, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062085

RESUMEN

The presence of various harmful substances in food is significantly risky to human health. Therefore, simple, rapid, and selective food hazard analysis tools have become a focus of sensing research. At present, molecularly imprinted polymers (MIPs) have attracted more and more attention because of their easy preparation and high selectivity. Due to their simple preparation, low cost, large specific surface area, and high conductivity, carbon nanomaterial can be used as sensing substrate carriers. Therefore, the combination of carbon nanomaterial with MIPs has attracted great attention. This paper summarizes the development, composition, and preparation methods of MIPs, as well as the latest research progress in carbon nanomaterials for the detection of various food hazards using sensors. In addition, the practical applications of carbon nanomaterial-based MIP sensors, their current challenges and future trends, and the ongoing efforts devoted to developing new and efficient carbon nanomaterial-based MIP sensing platforms are also introduced.


Asunto(s)
Imagen Molecular , Carbono/química , Polímeros Impresos Molecularmente , Sustancias Peligrosas , Nanoestructuras/química , Humanos
10.
Drug Deliv Transl Res ; 13(10): 2487-2502, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36988874

RESUMEN

In a significant percentage of breast cancers, increased expression of the HER2 receptor is seen and is associated with the spread and worsening of the disease. This research aims to investigate the effect of miR-559 (which targets HER2 mRNA) on SKBR3 breast cancer cells and the possibility of their effective delivery with polymeric nanoparticles and tumor-targeting peptides. L-DOPA monomers were polymerized on the surface of silica nanoparticles in the presence of miR-559 (as a molecular template for molecular imprinting) then an anti-HER2 peptide coupled to the surface of these polymeric nanocomposites (miR-NC-NL2), and the effects of this construct against a HER2-positive breast cancer cells (SKBR3 cells) investigated in vitro conditions. The results showed that miR-NC-NL2 is selective for HER2-positive cells and delivers the miR-559 to them in a targeted manner. miR-NC-NL2 decreased the proliferation of SKBR3 cells and reduced the expression and production of HER2 protein in these cells. Effective and targeted delivery of miR-559 to HER2-positive cancer cells by the miR-NC-NL2 promises the therapeutic potential of this nascent structure based on its inhibitory effect on cancer growth and progression. Of course, animal experiments require a better understanding of this structure's anti-tumor effects.


Asunto(s)
MicroARNs , Impresión Molecular , Neoplasias , Animales , Levodopa/farmacología , Dióxido de Silicio , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proliferación Celular , Línea Celular Tumoral , Fragmentos de Péptidos/farmacología , MicroARNs/genética , MicroARNs/metabolismo
11.
Polymers (Basel) ; 15(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36771840

RESUMEN

Encapsulating bioactive avenanthramides (AVAs) in carriers to respond to the environmental changes of food thermal processing allows the controlled release of AVAs for the effective inhibition of biohazards. In this study, fluorescent molecular imprinted polymers (FMIPs) loaded with AVAs were prepared by reverse microemulsion. The fluorescent signal was generated by carbon dots (CDs), which were derived from oat bran to determine the load of AVAs. The FMIPs were uniformly spherical in appearance and demonstrated favorable properties, such as thermal stability, protection of AVAs against photodegradation, high encapsulation efficiency, and effective scavenging of free radicals. After consideration of the different kinetics models, the release of AVAs from the FMIPs matched the Weibull model and followed a Fickian diffusion mechanism. The FMIPs exhibited good inhibition of pyrraline in a simulated casein-ribose system and in milk samples, indicating the release of AVAs could inhibit the generation of pyrraline.

12.
Food Chem ; 413: 135600, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758389

RESUMEN

Since a high dosage or excessive intake of Sunset Yellow (SY) may pose a threat to human health, it is in great demand to construct an effective method to detect and control SY. Based on the molecularly imprinted polymers (MIPs) and dual-signal output mode, a ratiometric molecularly imprinted electrochemical sensor (RMIECs) was developed for sensitive detection of SY. AuNPs not only provided a large specific surface area to enhance the electron transfer rate but also served as a reference signal (S1), together with SY signal (S2), to produce dual signals. For a proof-of-application study, RMIECs was applied to detect SY with a wide linear range from 10 nM to 100 µM and a low detection limit (LOD) of 1.60 nM (S/N = 3, n = 3). Besides, the method was applied in spiked food samples with recoveries of 94.0 âˆ¼ 97.0 % as well as relative errors of 5.4 âˆ¼ 8.3 %, revealing its promising potential in detection of SY.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Humanos , Oro , Límite de Detección , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos , Electrodos
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122365, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36652805

RESUMEN

In this work, we fabricated a 300 nm-sized silver-coated silica (SiO2@Ag) SERS substrate. Based on SiO2@Ag, we designed SiO2@Ag@molecular imprinted polymers (SiO2@Ag@MIPs) to realize selectively detection of amoxicillin by coating a molecular imprinted layer averagely thinner than 10 nm on SiO2@Ag. The as-prepared SERS-active substrate demonstrates excellent enhancement for amoxicillin as well as the enhancement factors were 1.63 × 106 of SiO2@Ag@MIPs and 2.97 × 105 of SiO2@Ag, respectively. The SiO2@Ag@MIPs core-shell hybrids as SERS substrates and the minimum detectable concentration of amoxicillin was as low as 2.7 × 10-9 M, and the detection limit of SiO2@Ag was 2.7 × 10-7 M. The linear relationship between intensities of characteristic peaks and concentrations of amoxicillin was established. Both SiO2@Ag and SiO2@Ag@MIPs substrates were highly sensitive and could achieve qualitative and semi-quantitative analysis of amoxicillin in aqueous media with good linear correlations. Based on the above, SiO2@Ag@MIPs will be conducive to detecting actual samples and expanding the practical application.

14.
J Chromatogr A ; 1691: 463815, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36709550

RESUMEN

Estrogens are a class of steroid hormone with strong physiological activity. Due to the pronounced beauty effect, such drugs are highly susceptible to illegal addition and cause other adverse effects. To avoid template leakage and the negative impacts on the environment caused by the estrogens, diosgenin was selected as the dummy template due to its similar skeleton structure. The Pickering emulsion polymerization was used to obtain the dummy-template molecularly imprinted polymers (dt-MIPs). Scanning electron microscopy, optical microscopy, specific surface area testing, Fourier transform infrared spectroscopy and adsorption experiments were used to characterize the apparent morphology and the recognition performance of the microspheres. Then, the prepared microspheres and commercial fillers were used to construct an on-line solid phase extraction (on-line SPE) analytical system coupled with HPLC via a two-position switching valve. On-line solid phase extraction-HPLC analytical methods were established and verified, for the simultaneous determination of four estrogens in cosmetic samples. The accuracy and precision RSDs for the established methods using the imprinted sorbents were 92.00-104.02% and less than 9.12%, respectively. All four estrogens exhibited good linearity in the range of 0.05 to 5 µg/mL with a coefficient of determination R2 greater than 0.9810. The method comparison results suggest that the established analytical method is simple in pre-treatment, easy to automate, and has excellent sensitivity to meet the analytical requirements of complex samples.


Asunto(s)
Estrógenos , Impresión Molecular , Estrógenos/análisis , Impresión Molecular/métodos , Microesferas , Emulsiones/química , Extracción en Fase Sólida/métodos , Adsorción , Cromatografía Líquida de Alta Presión
15.
Crit Rev Food Sci Nutr ; 63(24): 6820-6839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35170386

RESUMEN

Coffee is one of the most consumed beverages in the world. Coffee provides to the consumer special sensorial characteristics, can help to prevent diseases, improves physical performance and increases focus. In contrast, coffee consumption supplies a significant source of substances with carcinogenic and genotoxic potential such as furan, hydroxymethylfurfural (HMF), furfural (F), and acrylamide (AA). The present review addresses the issues around the presence of such toxic substances formed in Maillard reaction (MR) during thermal treatments in food processing, from chemical and, toxicological perspectives, occurrences in coffee and other foods processed by heating. In addition, current strategies advantages and disadvantages are presented along with application of molecular imprinting technology (MIT) and poly (ionic liquid) s (PIL) as an alternative to reduce the furan, HMF, F and AA content in coffee and other foods.


Asunto(s)
Líquidos Iónicos , Impresión Molecular , Café/química , Líquidos Iónicos/química , Acrilamida/química , Furanos
16.
Chem Zvesti ; 77(2): 619-655, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36213319

RESUMEN

Molecular imprinted polymers (MIPs) as extraordinary compounds with unique features have presented a wide range of applications and benefits to researchers. In particular when used as a sorbent in sample preparation methods for the analysis of biological samples and complex matrices. Its application in the extraction of medicinal species has attracted much attention and a growing interest. This review focus on articles and research that deals with the application of MIPs in the analysis of components such as biomarkers, drugs, hormones, blockers and inhibitors, especially in biological matrices. The studies based on MIP applications in bioanalysis and the deployment of MIPs in high-throughput settings and optimization of extraction methods are presented. A review of more than 200 articles and research works clearly shows that the superiority of MIP techniques lies in high accuracy, reproducibility, sensitivity, speed and cost effectiveness which make them suitable for clinical usage. Furthermore, this review present MIP-based extraction techniques and MIP-biosensors which are categorized on their classes based on common properties of target components. Extraction methods, studied sample matrices, target analytes, analytical techniques and their results for each study are described. Investigations indicate satisfactory results using MIP-based bioanalysis. According to the increasing number of studies on method development over the last decade, the use of MIPs in bioanalysis is growing and will further expand the scope of MIP applications for less studied samples and analytes.

17.
Nat Prod Res ; 37(11): 1844-1850, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36054814

RESUMEN

A solid phase extraction (SPE) system for sesquiterpene lactones of damsissa was developed utilising molecularly imprinted polymers (MIPs). The prepared MIPs had a mesoporous structure and particle size of ≈2.65 µm with 3.99 nm pore size. Additionally, MIPs exhibited high thermal stability with degradation temperature between 209 and 459 °C. Optimized MIP-SPE protocol conditions were set at loading step: 1 mL ethanol; washing step: 1 mL water; eluting step: 4 mL methanol. Developed MIP-SPE system showed a binding capacity of 66.66 mg/g based on Langmuir isotherm which was selected as the best fitting model isotherm. Good selectivity coefficients were observed for neoambrosin of 2.37, 1.31 and 1.14 against umbelliferone, quercetin glucoside and p-coumaric acid, respectively. Furthermore, the proposed MIP-SPE protocol displayed some potential in the isolation of sesquiterpene lactones from damsissa plant extract and laid a foundation for the development of more selective MIPs to nonpolar natural products.


Asunto(s)
Impresión Molecular , Sesquiterpenos , Polímeros Impresos Molecularmente , Impresión Molecular/métodos , Polímeros/química , Ambrosia , Extracción en Fase Sólida/métodos , Lactonas , Adsorción
18.
Front Chem ; 10: 1001685, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311434

RESUMEN

In this project, the quetiapine drug was used as the template for synthesis of a molecular imprinted polymer (MIP). The polymerization approach for preparation of this composite was precipitation, where methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2-azobisissobutyronitrile (AIBN) were used as the functional monomer, the cross-linker, and the initiator, respectively. Scanning electron microscopy (SEM) showed that the diameter of the nanoparticles is about 70 nm. The adsorption rates of quetiapine to the MIP host were evaluated at different pHs, and the results showed that the highest adsorption values were obtained at pH = 7. Moreover, the kinetics of the adsorption process was detected to follow the Langmuir isotherm (R2 = 0.9926) and the pseudo-second-order kinetics (R2 = 0.9937). The results confirmed the high capability of the synthesized MIPs as pharmaceutical carriers for quetiapine. Furthermore, the kinetics of the drug release from the MIP follows the Higuchi model at the pHs of 5.8-6.8 and the Korsmeyer-Peppas model at the pHs of 1.2-5. Finally, in light of the density functional theory (DFT)-based quantum chemical descriptors, the polymer-quetiapine drug complex was designed and investigated. The results showed that there is a strong interaction between the host (polymer) and the guest (drug) due to several hydrogen bonds and other intermolecular (polar) interactions.

19.
Anal Bioanal Chem ; 414(29-30): 8413-8421, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36289104

RESUMEN

In this work, electrochemically controlled solid-phase microextraction (EC-SPME) based on conductive molecularly imprinted polymer (CMIP) is coupled with ion mobility spectrometry (IMS) for analysis of thiopental (TP) as an anesthesia drug. The CMIP film was synthesized on the modified stainless steel wire surface by electropolymerization of pyrrole in the presence of TP as the template anion. Under the optimal experimental conditions, the developed method offered good linear range from 3.3 to 200 µM with coefficients of determination more than 0.99. Using these conditions, the detection limit of 1.1 µM was obtained. The single-fiber relative standard deviations (RSD %) were 3.7 and the fiber-to-fiber RSDs were 5.6 respectively. The developed EC-SPME-IMS was carried out to confirm the ability of the proposed method for determination of TP in the serum matrices. It was indicated that the proposed EC-SPME-IMS provides effective sample clean-up for the analysis of TP in complex matrices. Additionally, EC-SPME-IMS showed great potential for fast, sensitive, and low-cost detection of TP without spectra interfering of co-administered drugs and similar structural compounds (barbituric acid). Conductive molecularly imprinted polymer (CMIP) fiber based on polypyrrole/TP template for analysis of TP in serum matrices by using IMS without the spectra-interfering effect of co-administered drugs.


Asunto(s)
Impresión Molecular , Microextracción en Fase Sólida , Microextracción en Fase Sólida/métodos , Polímeros/química , Impresión Molecular/métodos , Polímeros Impresos Molecularmente , Tiopental , Pirroles/química , Espectrometría de Movilidad Iónica
20.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36080615

RESUMEN

Combining molecular imprinted polymers and water-soluble manganese-doped zinc sulfide quantum dots (Mn2+: ZnS QDs), a new molecule imprinted polymers-based fluorescence sensor was designed. The molecule imprinted quantum dots (MIP@QDs) were constructed by coating molecular imprinted polymers layer on the surface of ZnS: Mn2+ QDs using the surface molecular imprinting technology. The developed MIP@QDs-based sensor was used for rapid and selective fluorescence sensing of sulfanilamide in water samples. The binding experiments showed that the MIP@QDs has rapid fluorescent responses, which are highly selective of and sensitive to the detection of sulfanilamide. The respond time of the MIP@QDs was 5 min, and the imprinting factor was 14.8. Under optimal conditions, the developed MIP@QDs-based sensor shows a good linearity (R2 = 0.9916) over a sulfanilamide concentration range from 2.90 × 10-8 to 2.90 × 10-6 mol L-1, with a detection limit of 3.23 × 10-9 mol L-1. Furthermore, the proposed MIP@QDs-based sensor was applied to the determination of sulfanilamide in real samples, with recoveries of 96.80%-104.33%, exhibiting good recyclability and stability. Experimental results showed that the prepared MIP@QDs has the potential to serve as a selective and sensitive sensor for the fluorescence sensing of sulfonamides in water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...