Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Test Anal ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992954

RESUMEN

In a doping case, a top athlete challenged an anti-doping rule violation, involving molidustat. Molidustat is a stabilizing agent of the hypoxia-inducible factor (HIF) recently developed. It is currently undergoing clinical trials for anemia associated with chronic kidney disease. HIF stabilizers are banned at all times by the World Anti-Doping Agency (class S2). Because of their pharmacological proprieties, these new drugs can enhance athletic performance. The athlete's defense wanted to analyze multiple keratinized matrices as they allow long-term investigations. Requests concerning HIF stabilizers are constantly growing. We have therefore developed a liquid chromatography coupled with tandem mass spectrometry method to identify and quantify three molecules of this class: molidustat, vadadustat, and roxadustat. Thirty milligrams of keratinized matrices were incubated in 1 mL of pH 8.4 diammonium hydrogen phosphate buffer for 16 h at 40°C with 1 ng of testosterone-D3, used as internal standard. After extraction with ethyl acetate/diethyl ether (80/20), the organic phase was evaporated, and the dry residue was reconstituted in 30 µL of initial phase. The method was linear from 5 to 1000 pg/mg for the three analytes. Limits of quantification were 2, 0.5, and 5 pg/mg for molidustat, roxadustat, and vadadustat, respectively. The analysis of the athlete's head hair (collected 1 month after the urine test) showed a concentration of molidustat of 135 pg/mg, and his beard hair and his fingernails clippings contained 55 and 40 pg/mg, respectively.

2.
Cell Mol Life Sci ; 81(1): 320, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078527

RESUMEN

The hypoxia response pathway enables adaptation to oxygen deprivation. It is mediated by hypoxia-inducible factors (HIF), which promote metabolic reprogramming, erythropoiesis, angiogenesis and tissue remodeling. This led to the successful development of HIF-inducing drugs for treating anemia and some of these molecules are now in clinic. However, elevated levels of HIFs are frequently associated with tumor growth, poor prognosis, and drug resistance in various cancers, including hepatocellular carcinoma (HCC). Consequently, there are concerns regarding the recommendation of HIF-inducing drugs in certain clinical situations. Here, we analyzed the effects of two HIF-inducing drugs, Molidustat and Roxadustat, in the well-characterized HCC cell line Huh7. These drugs increased HIF-1α and HIF-2α protein levels which both participate in inducing hypoxia response genes such as BNIP3, SERPINE1, LDHA or EPO. Combined transcriptomics, proteomics and metabolomics showed that Molidustat increased the expression of glycolytic enzymes, while the mitochondrial network was fragmented and cellular respiration decreased. This metabolic remodeling was associated with a reduced proliferation and a lower demand for pyrimidine supply, but an increased ability of cells to convert pyruvate to lactate. This was accompanied by a higher resistance to the inhibition of mitochondrial respiration by antimycin A, a phenotype confirmed in Roxadustat-treated Huh7 cells and Molidustat-treated hepatoblastoma cells (Huh6 and HepG2). Overall, this study shows that HIF-inducing drugs increase the metabolic resilience of liver cancer cells to metabolic stressors, arguing for careful monitoring of patients treated with HIF-inducing drugs, especially when they are at risk of liver cancer.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma Hepatocelular , Proliferación Celular , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Isoquinolinas/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Estrés Fisiológico/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
3.
Heliyon ; 10(9): e30621, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765138

RESUMEN

Objective: Molidustat is a novel agent investigated for the treatment of anemia in both dialysisdependent (DD) and non-dialysis-dependent (NDD) patients. Its efficacy and safety are still unclear. Methods: We searched five databases to identify randomized controlled trials comparing molidustat to erythropoiesis-stimulating agents (ESAs) or placebo in patients with anemia. Results: Six studies containing 2025 eligible participants were identified. For NDD patients, the change in Hb levels from baseline (ΔHb) was significantly higher for molidustat than for placebo [mean difference (MD) = 1.47 (95 % CI: 1.18 to 1.75), P < 0.00001] and ΔHb was also significantly higher for molidustat than for ESAs [MD = 0.25 (95 % CI 0.09 to 0.40), P = 0.002]. For NDD patients, Δhepcidin was significantly lower for molidustat than for placebo [MD = -20.66 (95 % CI: -31.67 to -9.66), P = 0.0002] and Δhepcidin was also significantly lower for molidustat than for ESAs [MD = -24.51 (95 % CI: -29.12 to -19.90), P < 0.00001]. For NDD patients, Δiron was significantly lower for molidustat than for ESAs [MD = -11.85 (95 % CI: -15.52 to -8.18), P < 0.00001], and ΔTSAT was also significantly lower for molidustat than for ESAs [MD = -5.29 (95 % CI: -6.81 to -3.78), P < 0.00001]. For NDD patients, Δferritin was significantly lower for molidustat than for placebo [MD = -90.01 (95 % CI: -134.77 to -45.25), P < 0.00001]. However, for DD-CKD patients, molidustat showed an effect similar to that of ESAs on increasing the Hb level [MD = -0.18 (95 % CI: -0.47 to 0.11), P = 0.23], Δiron level [MD = 3.78 (95 % CI: -7.21 to 14.76), P = 0.5], Δferritin level [MD = 25.03 (95 % CI: -34.69 to 84.75), P = 0.41], and Δhepcidin level [MD = 1.20 (95 % CI: -4.36 to 6.76), P = 0.67]. For DD-CKD patients, compared with the placebo or ESA group, molidustat showed a significantly higher level on ΔTSAT[MD = 3.88 (95 % CI: 2.10 to 5.65), P < 0.0001] and a slightly increased level on ΔTIBC level [MD = 1.08 (95 % CI: -0.07 to 2.23), P = 0.07]. There was no significant difference in the incidence of severe adverse events (SAEs), death, and cardio-related adverse events between molidustat and the ESAs groups. Conclusions: Moricizine can effectively improves Hb levels in NDD patients and corrects anemia in DD patients without increasing adverse event incidence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...