Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 14(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36146676

RESUMEN

Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions.


Asunto(s)
Arenaviridae , Orthopoxvirus , Antivirales/farmacología , Arenaviridae/genética , Genes Reporteros , Virus Lassa , Luciferasas de Renilla/genética , Orthopoxvirus/genética , Investigación
2.
IUCrJ ; 9(Pt 4): 468-479, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35844481

RESUMEN

Arenaviruses are emerging enveloped negative-sense RNA viruses that cause neurological and hemorrhagic diseases in humans. Currently, no FDA-approved vaccine or therapeutic agent is available except for ribavirin, which must be administered early during infection for optimum efficacy. A hallmark of arenavirus infection is rapid and efficient immune suppression mediated by the exonuclease domain encoded by the nucleoprotein. This exonuclease is therefore an attractive target for the design of novel antiviral drugs since exonuclease inhibitors might not only have a direct effect on the enzyme but could also boost viral clearance through stimulation of the innate immune system of the host cell. Here, in silico screening and an enzymatic assay were used to identify a novel, specific but weak inhibitor of the arenavirus exonuclease, with IC50 values of 65.9 and 68.6 µM for Mopeia virus and Lymphocytic choriomeningitis virus, respectively. This finding was further characterized using crystallographic and docking approaches. This study serves as a proof of concept and may have assigned a new therapeutic purpose for the bisphosphonate family, therefore paving the way for the development of inhibitors against Arenaviridae.

3.
Viruses ; 14(3)2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35337059

RESUMEN

Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium.


Asunto(s)
Arenaviridae , Arenavirus , Fiebre de Lassa , Animales , Arenaviridae/genética , Células Endoteliales , Humanos , Virus Lassa , Proteómica
4.
Emerg Infect Dis ; 27(12): 3092-3102, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34808083

RESUMEN

We conducted a survey for group-specific indirect immunofluorescence antibody to mammarenaviruses by using Lassa fever and Mopeia virus antigens on serum specimens of 5,363 rodents of 33 species collected in South Africa and Zimbabwe during 1964-1994. Rodents were collected for unrelated purposes or for this study and stored at -70°C. We found antibody to be widely distributed in the 2 countries; antibody was detected in serum specimens of 1.2%-31.8% of 14 species of myomorph rodents, whereas 19 mammarenavirus isolates were obtained from serum specimens and viscera of 4 seropositive species. Phylogenetic analysis on the basis of partial nucleoprotein sequences indicates that 14 isolates from Mastomys natalensis, the Natal multimammate mouse, were Mopeia virus, whereas Merino Walk virus was characterized as a novel virus in a separate study. The remaining 4 isolates from 3 rodent species potentially constitute novel viruses pending full characterization.


Asunto(s)
Arenaviridae , Enfermedades de los Roedores , Animales , Reservorios de Enfermedades , Virus Lassa , Murinae , Filogenia , Sudáfrica/epidemiología , Zimbabwe/epidemiología
5.
Viruses ; 11(3)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901952

RESUMEN

Lassa virus (LASV) causes a viral haemorrhagic fever in humans and is a major public health concern in West Africa. An efficient immune response to LASV appears to rely on type I interferon (IFN-I) production and T-cell activation. We evaluated the response of plasmacytoid dendritic cells (pDC) to LASV, as they are an important and early source of IFN-I. We compared the response of primary human pDCs to LASV and Mopeia virus (MOPV), which is very closely related to LASV, but non-pathogenic. We showed that pDCs are not productively infected by either MOPV or LASV, but produce IFN-I. However, the activation of pDCs was more robust in response to MOPV than LASV. In vivo, pDC activation may support the control of viral replication through IFN-I production, but also improve the induction of a global immune response. Therefore, pDC activation could play a role in the control of LASV infection.


Asunto(s)
Células Dendríticas/virología , Virus Lassa/inmunología , Activación de Linfocitos , Replicación Viral/inmunología , Células Cultivadas , Humanos , Interferón Tipo I/inmunología
6.
Pathogens ; 8(1)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650607

RESUMEN

Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host's immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements.

7.
Viruses ; 10(2)2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29439402

RESUMEN

Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells to come in contact with the viruses, and as such they potentially play a role in spread of virus to naïve hosts. The role of the intestinal epithelia during arenavirus infection remains to be uncharacterized. We have utilized a well-established cell culture model, Caco-2, to investigate the role of intestinal epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-WE, and Mopeia (MOPV) release infectious progeny via similar patterns. However, the reassortant virus, ML-29, containing the L segment of MOPV and S segment of LASV, exhibits a unique pattern of viral release relative to LCMV and MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is potentially responsible for observed replication kinetics of these viruses in a polarized Caco-2 cell model. Collectively, our data shows that viral dissemination and interaction with intestinal epithelia may be host, tissue, and viral specific.


Asunto(s)
Arenavirus/fisiología , Mucosa Intestinal/virología , Animales , Infecciones por Arenaviridae/virología , Células CACO-2 , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Virus Reordenados , Células Vero , Internalización del Virus , Replicación Viral
8.
Acta Crystallogr D Struct Biol ; 73(Pt 8): 641-649, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28777079

RESUMEN

The Arenaviridae family is one of the two RNA viral families that encode a 3'-5' exonuclease in their genome. An exonuclease domain is found in the Arenaviridae nucleoprotein and targets dsRNA specifically. This domain is directly involved in suppression of innate immunity in the host cell. Like most phosphate-processing enzymes, it requires a divalent metal ion such as Mg2+ (or Mn2+) as a cofactor to catalyse nucleotide-cleavage and nucleotide-transfer reactions. On the other hand, calcium (Ca2+) inhibits this enzymatic activity, in spite of the fact that Mg2+ and Ca2+ present comparable binding affinities and biological availabilities. Here, the molecular and structural effects of the replacement of magnesium by calcium and its inhibition mechanism for phosphodiester cleavage, an essential reaction in the viral process of innate immunity suppression, are studied. Biochemical data and high-resolution structures of the Mopeia virus exonuclease domain complexed with each ion are reported for the first time. The consequences of the ion swap for the stability of the protein, the catalytic site and the functional role of a specific metal ion in enabling the catalytic cleavage of a dsRNA substrate are outlined.


Asunto(s)
Arenavirus/química , Arenavirus/enzimología , Exonucleasas/química , Proteínas de la Nucleocápside/química , Nucleoproteínas/química , Infecciones por Arenaviridae/virología , Arenavirus/metabolismo , Sitios de Unión , Calcio/metabolismo , Dominio Catalítico , Cationes Bivalentes/metabolismo , Cristalización , Cristalografía por Rayos X , Exonucleasas/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , Dominios Proteicos , ARN Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...