Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 20(1): 6-27, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177930

RESUMEN

The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.


Asunto(s)
Tasa de Mutación , Neoplasias , Humanos , Mutación , Neoplasias/genética , Secuencia de Bases , Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...