Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079473

RESUMEN

Myelination enables electrical impulses to propagate on axons at the highest speed, encoding essential life functions. The Rho family GTPases, RAC1 and CDC42, have been shown to critically regulate Schwann cell myelination. P21-activated kinase 2 (PAK2) is an effector of RAC1/CDC42, but its specific role in myelination remains undetermined. We produced a Schwann cell-specific knockout mouse of Pak2 (scPak2-/-) to evaluate PAK2's role in myelination. Deletion of Pak2 specifically in mouse Schwann cells resulted in severe hypomyelination, slowed nerve conduction velocity, and behavior dysfunctions in the scPak2-/- peripheral nerve. Many Schwann cells in scPak2-/-sciatic nerves were arrested at the stage of axonal sorting. These abnormalities were rescued by reintroducing Pak2, but not the kinase-dead mutation of Pak2, via lentivirus delivery to scPak2-/- Schwann cells in vivo. Moreover, ablation of Pak2 in Schwann cells blocked the promyelinating effect driven by neuregulin-1, prion protein, and inactivated RAC1/CDC42. Conversely, the ablation of Pak2 in neurons exhibited no phenotype. Such PAK2 activity can also be either enhanced or inhibited by different myelin lipids. We have identified a novel promyelinating factor, PAK2, that acts as a critical convergence point for multiple promyelinating signaling pathways. The promyelination by PAK2 is Schwann cell-autonomous. Myelin lipids, identified as inhibitors or activators of PAK2, may be utilized to develop therapies for repairing abnormal myelin in peripheral neuropathies.

2.
Mult Scler Relat Disord ; 79: 105033, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832257

RESUMEN

BACKGROUND: various prognostic factors of multiple sclerosis have been identified, including demographic, clinical, radiological, and laboratory factors. The aim was to analyze whether the presence of IgM oligoclonal bands against lipids is associated with disease progression. METHODS: an individual-based, prospective, observational study was conducted at the Neurology Department of Hospital Universitari i Politècnic la Fe. Clinical, radiological, and laboratory variables were collected. Data analysis was divided into a descriptive phase and a subsequent analytical phase. RESULTS: a total of 116 patients were included. 81.9% of them had IgM oligoclonal bands against lipids, with phosphatidylcholine being the predominant type. A higher proportion of patients with IgM oligoclonal bands against lipids required treatment with a disease-modifying drug, started treatment at an earlier stage, showed poorer results in functional tests, and exhibited a higher increase in lesion burden, although these differences were not statistically significant. CONCLUSIONS: In our study, the presence of IgM oligoclonal bands against lipids was not found to be associated with other poor prognostic variables.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Bandas Oligoclonales , Estudios Prospectivos , Análisis Costo-Beneficio , Biomarcadores , Pronóstico , Inmunoglobulina M , Lípidos
3.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954217

RESUMEN

In the mature central nervous system (CNS), oligodendrocytes (OLs) provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, OLs require energy and building blocks for lipids, which implies a great investment of energy fuels and molecular sources of carbon. The oligodendroglial G protein-coupled receptor 17 (GPR17) has emerged as a key player in OL maturation; it reaches maximal expression in pre-OLs, but then it has to be internalized to allow terminal maturation. In this study, we aim at elucidating the role of physiological GPR17 downregulation in OL metabolism by applying transcriptomics, metabolomics and lipidomics on differentiating OLs. After GPR17 silencing, we found a significant increase in mature OL markers and alteration of several genes involved in glucose metabolism and lipid biosynthesis. We also observed an increased release of lactate, which is partially responsible for the maturation boost induced by GPR17 downregulation. Concomitantly, GPR17 depletion also changed the kinetics of specific myelin lipid classes. Globally, this study unveils a functional link between GPR17 expression, lactate release and myelin composition, and suggests that innovative interventions targeting GPR17 may help to foster endogenous myelination in demyelinating diseases.


Asunto(s)
Células Precursoras de Oligodendrocitos , Diferenciación Celular/fisiología , Glucosa , Lactatos , Metabolismo de los Lípidos , Lípidos , Proteínas del Tejido Nervioso/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1864(5): 183874, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35120896

RESUMEN

Lipids extracted from Purified Myelin Membranes (LPMM) were spread as monomolecular films at the air/aqueous interface. The films were visualized by Brewster Angle Microscopy (BAM) at different lateral pressures (π) and ionic environments. Coexistence of Liquid-Expanded (LE) and cholesterol-enriched (CE) rounded domains persisted up to π ≈ 5 mN/m but the monolayers became homogeneous at higher surface pressures. Before mixing, the domains distorted to non-rounded domains. We experimentally measured the line tension (λ) for the lipid monolayers at the domain borders by a shape relaxation technique using non-homogeneous electric fields. Regardless of the subphase conditions, the obtained line tensions are of the order of pN and tended to decrease as lateral pressure increased toward the mixing point. From the mean square displacement of nested trapped domains, we also calculated the dipole density difference between phases (µ). A non-linear drop was detected in this parameter as the mixing point is approached. Here we quantitively evaluated the π-dependance of both parameters with proper power laws in the vicinity of the critical mixing surface pressure, and the exponents showed to be consistent with a critical phenomenon in the two-dimensional Ising universality class. This idea of bidimensionality was found to be compatible only for simplified lipidic systems, while for whole myelin monolayers, that means including proteins, no critical mixing point was detected. Finally, the line tension values were related with the thickness differences between phases (Δt) near the critical point.


Asunto(s)
Lípidos/química , Vaina de Mielina/metabolismo , Animales , Bovinos , Microscopía Fluorescente , Médula Espinal/metabolismo , Tensión Superficial , Liposomas Unilamelares/química
5.
Biofabrication ; 14(1)2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34933294

RESUMEN

As the myelin sheath is crucial for neuronal saltatory conduction, loss of myelin in the peripheral nervous system (PNS) leads to demyelinating neuropathies causing muscular atrophy, numbness, foot deformities and paralysis. Unfortunately, few interventions are available for such neuropathies, because previous pharmaceuticals have shown severe side effects and failed in clinical trials. Therefore, exploring new strategies to enhance PNS myelination is critical to provide solution for such intractable diseases. This study aimed to investigate the effectiveness of electrical stimulation (ES) to enhance myelination in the mouse dorsal root ganglion (DRG)-anex vivomodel of the PNS. Mouse embryonic DRGs were extracted at E13 and seeded onto Matrigel-coated surfaces. After sufficient growth and differentiation, screening was carried out by applying ES in the 1-100 Hz range at the beginning of the myelination process. DRG myelination was evaluated via immunostaining at the intermediate (19 daysin vitro(DIV)) and mature (30 DIV) stages. Further biochemical analyses were carried out by utilizing ribonucleic acid sequencing, quantitative polymerase chain reaction and biochemical assays at both intermediate and mature myelination stages. Imaging of DRG myelin lipids was carried out via time-of-flight secondary ion mass spectrometry (ToF-SIMS). With screening ES conditions, optimal condition was identified at 20 Hz, which enhanced the percentage of myelinated neurons and average myelin length not only at intermediate (129% and 61%) but also at mature (72% and 17%) myelination stages. Further biochemical analyses elucidated that ES promoted lipid biosynthesis in the DRG. ToF-SIMS imaging showed higher abundance of the structural lipids, cholesterol and sphingomyelin, in the myelin membrane. Therefore, promotion of lipid biosynthesis and higher abundance of myelin lipids led to ES-mediated myelination enhancement. Given that myelin lipid deficiency is culpable for most demyelinating PNS neuropathies, the results might pave a new way to treat such diseases via electroceuticals.


Asunto(s)
Ganglios Espinales , Células de Schwann , Animales , Células Cultivadas , Lípidos , Ratones , Vaina de Mielina/fisiología , Regulación hacia Arriba
6.
Cell Chem Biol ; 27(5): 551-559.e4, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32169163

RESUMEN

X-linked adrenoleukodystrophy (X-ALD) is a rare, genetic disease in which increased very long chain fatty acids (VLCFAs) in the central nervous system (CNS) cause demyelination and axonopathy, leading to neurological deficits. Sobetirome, a potent thyroid hormone agonist, has been shown to lower VLCFAs in the periphery and CNS. In this study, two pharmacological strategies for enhancing the effects of sobetirome were tested in Abcd1 KO mice, a murine model with the same inborn error of metabolism as X-ALD patients. First, a sobetirome prodrug (Sob-AM2) with increased CNS penetration lowered CNS VLCFAs more potently than sobetirome and was better tolerated with reduced peripheral exposure. Second, co-administration of thyroid hormone with sobetirome enhanced VLCFA lowering in the periphery but did not produce greater lowering in the CNS. These data support the conclusion that CNS VLCFA lowering in Abcd1 knockout mice is limited by a mechanistic threshold related to slow lipid turnover.


Asunto(s)
Acetatos/uso terapéutico , Adrenoleucodistrofia/tratamiento farmacológico , Fenoles/uso terapéutico , Profármacos/uso terapéutico , Hormonas Tiroideas/uso terapéutico , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Masculino , Ratones , Ratones Noqueados
7.
J Neurochem ; 154(1): 84-98, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32141089

RESUMEN

There is emerging evidence that amyloid beta (Aß) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aß42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aß plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aß plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aß deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aß plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.


Asunto(s)
Enfermedad de Alzheimer/patología , Apolipoproteínas E/metabolismo , Encéfalo/patología , Vaina de Mielina/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Lipidómica/métodos , Lípidos/análisis , Ratones , Ratones Transgénicos , Placa Amiloide/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Elife ; 82019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31063129

RESUMEN

Oligodendrocytes (OLs) support neurons and signal transmission in the central nervous system (CNS) by enwrapping axons with myelin, a lipid-rich membrane structure. We addressed the significance of fatty acid (FA) synthesis in OLs by depleting FA synthase (FASN) from OL progenitor cells (OPCs) in transgenic mice. While we detected no effects in proliferation and differentiation along the postnatal OL lineage, we found that FASN is essential for accurate myelination, including myelin growth. Increasing dietary lipid intake could partially compensate for the FASN deficiency. Furthermore, FASN contributes to correct myelin lipid composition and stability of myelinated axons. Moreover, we depleted FASN specifically in adult OPCs to examine its relevance for remyelination. Applying lysolecithin-induced focal demyelinating spinal cord lesions, we found that FA synthesis is essential to sustain adult OPC-derived OLs and efficient remyelination. We conclude that FA synthesis in OLs plays key roles in CNS myelination and remyelination.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Ácidos Grasos/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/fisiología , Oligodendroglía/metabolismo , Remielinización , Animales , Diferenciación Celular , Proliferación Celular , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Acido Graso Sintasa Tipo I/deficiencia , Acido Graso Sintasa Tipo I/metabolismo , Ratones Transgénicos
9.
Front Neuroendocrinol ; 48: 58-69, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28739507

RESUMEN

Important complications of diabetes mellitus in the nervous system are represented by diabetic peripheral neuropathy and diabetic encephalopathy. In this context, an important link is represented by neuroactive steroids (i.e., steroids coming from peripheral glands and affecting nervous functionality as well as directly synthesized in the nervous system). Indeed, diabetes does not only affect the reproductive axis and consequently the levels of sex steroid hormones, but also those of neuroactive steroids. Indeed, as will be here summarized, the levels of these neuromodulators present in the central and peripheral nervous system are affected by the pathology in a sex-dimorphic way. In addition, some of these neuroactive steroids, such as the metabolites of progesterone or testosterone, as well as pharmacological tools able to increase their levels have been demonstrated, in experimental models, to be promising protective agents against diabetic peripheral neuropathy and diabetic encephalopathy.


Asunto(s)
Encefalopatías/metabolismo , Complicaciones de la Diabetes/metabolismo , Neuropatías Diabéticas/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Vaina de Mielina/metabolismo , Neuropéptidos/metabolismo , Caracteres Sexuales , Animales , Encefalopatías/etiología , Complicaciones de la Diabetes/complicaciones , Femenino , Humanos , Masculino
10.
Biochim Biophys Acta Biomembr ; 1859(5): 924-930, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28212858

RESUMEN

Langmuir monolayers at the air/water interface are widely used as biomembrane models and for amphiphilic molecules studies in general. Under controlled intermolecular organization (lateral molecular area), surface pressure, surface potential, reflectivity (R) and other magnitudes can be precisely determined on these planar monomolecular films. However, some physical parameters such as the refractive index of the monolayer (n) still remain elusive. The refractive index is very relevant because (in combination with R) it allows for the determination of the thickness of the film. The uncertainties of n determine important errors that propagate non-linearly into the calculation of monolayers thickness. Here we present an analytical method for the determination of n in monolayers based on refractive index matching. By using a Brewster angle microscopy (BAM) setup and monolayers spread over subphases with variable refractive index (n2), a minimum in R is search as a function of n2. In these conditions, n equals n2. The results shown correspond to monolayers of myelin lipids. The n values remain constant at 1.46 upon compression and equals the obtained value for myelin lipid bilayers in suspension. The values for n and R allow for the determination of thickness. We establish comparisons between these thicknesses for the monolayer and those obtained from two X-ray scattering techniques: 1) GIXOS for monolayers at the air/water interface and 2) SAXS for bilayers in bulk suspension. This allows us to conclude that the thickness that we measure by BAM includes the apolar and polar headgroup regions of the monolayer.


Asunto(s)
Membrana Dobles de Lípidos/química , Vaina de Mielina/química , Refractometría , Microscopía , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
Exp Brain Res ; 235(1): 279-292, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27709268

RESUMEN

The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L-/-) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L-/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.


Asunto(s)
Ácido Aspártico/análogos & derivados , Sistema Nervioso Central/patología , Histonas/metabolismo , Esclerosis Múltiple/patología , Vaina de Mielina/patología , Neuronas/efectos de los fármacos , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Células Cultivadas , Cromatografía Liquida , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Histonas/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Metilación/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía , Cambios Post Mortem , Espectrometría de Masas en Tándem
12.
Biochim Biophys Acta ; 1851(1): 51-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25150974

RESUMEN

Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...