Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
2.
Crit Rev Oncol Hematol ; 199: 104382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723838

RESUMEN

Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.


Asunto(s)
Síndrome de Down , Reacción Leucemoide , Hígado , Humanos , Síndrome de Down/complicaciones , Síndrome de Down/patología , Hígado/patología , Reacción Leucemoide/genética , Reacción Leucemoide/patología , Reacción Leucemoide/diagnóstico , Reacción Leucemoide/complicaciones , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Feto , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Mielopoyesis
3.
J Neonatal Perinatal Med ; 17(2): 269-273, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728206

RESUMEN

BACKGROUND: Tumor lysis syndrome (TLS) is an oncological emergency associated with hematological malignancies or highly proliferative solid tumors, commonly after chemotherapy. It is rarely associated with transient abnormal myelopoiesis. OBSERVATION: We report a rare case of a neonate with transient abnormal myelopoiesis and tumor lysis syndrome, complicated with concomitant heart failure due to an underlying atrioventricular septal defect. Hyperhydration was contraindicated due to heart failure. The patient was managed conservatively with full recovery. CONCLUSION: Tumor lysis syndrome should be suspected in neonates with transient abnormal myelopoiesis with electrolyte abnormalities. Treatment options should be considered carefully for their risks and benefits.


Asunto(s)
Reacción Leucemoide , Síndrome de Lisis Tumoral , Humanos , Síndrome de Lisis Tumoral/etiología , Síndrome de Lisis Tumoral/diagnóstico , Recién Nacido , Reacción Leucemoide/diagnóstico , Insuficiencia Cardíaca/etiología , Masculino , Femenino , Defectos del Tabique Interatrial/complicaciones , Defectos del Tabique Interatrial/diagnóstico , Síndrome de Down
4.
Int Immunopharmacol ; 134: 112253, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735257

RESUMEN

Tumor microenvironment (TME), is characterized by a complex and heterogenous composition involving a substantial population of immune cells. Myeloid cells comprising over half of the solid tumor mass, are undoubtedly one of the most prominent cell populations associated with tumors. Studies have unambiguously established that myeloid cells play a key role in tumor development, including immune suppression, pro-inflammation, promote tumor metastasis and angiogenesis, for example, tumor-associated macrophages promote tumor progression in a variety of common tumors, including lung cancer, through direct or indirect interactions with the TME. However, due to previous technological constraints, research on myeloid cells often tended to be conducted as studies with low throughput and limited resolution. For example, the conventional categorization of macrophages into M1-like and M2-like subsets based solely on their anti-tumor and pro-tumor roles has disregarded their continuum of states, resulting in an inadequate analysis of the high heterogeneity characterizing myeloid cells. The widespread adoption of single-cell RNA sequencing (scRNA-seq) in tumor immunology has propelled researchers into a new realm of understanding, leading to the establishment of novel subsets and targets. In this review, the origin of myeloid cells in high-incidence cancers, the functions of myeloid cell subsets examined through traditional and single-cell perspectives, as well as specific targeting strategies, are comprehensively outlined. As a result of this endeavor, we will gain a better understanding of myeloid cell heterogeneity, as well as contribute to the development of new therapeutic approaches.


Asunto(s)
Células Mieloides , Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/patología , Células Mieloides/inmunología , Animales
5.
Front Immunol ; 15: 1353513, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38680490

RESUMEN

The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Cráneo , Humanos , Lesiones Traumáticas del Encéfalo/patología , Animales , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/metabolismo , Cráneo/lesiones , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Médula Ósea/metabolismo , Médula Ósea/patología , Médula Ósea/inmunología
6.
Immunity ; 57(5): 1124-1140.e9, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38636522

RESUMEN

Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Factores Reguladores del Interferón , Proteína Jagged-2 , Neoplasias Pulmonares , Ratones Noqueados , Macrófagos Asociados a Tumores , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Proteína Jagged-2/inmunología , Animales , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ratones , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Transducción de Señal , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Ratones Endogámicos C57BL , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Escape del Tumor/inmunología
7.
Stem Cell Reports ; 19(5): 639-653, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38608679

RESUMEN

Sepsis survivors exhibit immune dysfunction, hematological changes, and increased risk of infection. The long-term impacts of sepsis on hematopoiesis were analyzed using a surgical model of murine sepsis, resulting in 50% survival. During acute disease, phenotypic hematopoietic stem and progenitor cells (HSPCs) were reduced in the bone marrow (BM), concomitant with increased myeloid colony-forming units and extramedullary hematopoiesis. Upon recovery, BM HSPCs were increased and exhibited normal function in the context of transplantation. To evaluate hematopoietic responses in sepsis survivors, we treated recovered sham and cecal ligation and puncture mice with a mobilizing regimen of granulocyte colony-stimulating factor (G-CSF) at day 20 post-surgery. Sepsis survivors failed to undergo emergency myelopoiesis and HSPC mobilization in response to G-CSF administration. G-CSF is produced in response to acute infection and injury to expedite the production of innate immune cells; therefore, our findings contribute to a new understanding of how sepsis predisposes to subsequent infection.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Movilización de Célula Madre Hematopoyética , Células Madre Hematopoyéticas , Mielopoyesis , Sepsis , Animales , Sepsis/complicaciones , Factor Estimulante de Colonias de Granulocitos/farmacología , Ratones , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino , Sobrevivientes
8.
J Leukoc Biol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682253

RESUMEN

The noncanonical NF-κB pathway is involved in lymphoid organ development, B cell maturation, and cytokine production. However, new research has demonstrated that this pathway is also key for the orderly and sequential maturation of myeloid cells, including neutrophils and eosinophils. When this pathway is disrupted or constitutively activated, aberrations in hematopoietic stem and progenitor cell (HSPC) survival and proliferation, as well as subsequent granulopoiesis and eosinophilopoiesis are affected. Disturbance of such a coordinated and delicate process can manifest in devastating clinical disease including acute and chronic myeloid leukemias (AML and CML, respectively), pre-leukemic processes such as myelodysplastic syndrome (MDS) or hyperinflammatory conditions like Hypereosinophilic Syndrome (HES). In this review, we will discuss the molecular machinery within the noncanonical NF-κB pathway, crosstalk with the canonical NF-κB pathway, murine models of noncanonical signaling, as well as how aberrations in this pathway manifest in leukemic or hyperinflammatory disease with a focus on HES. Potential and promising drug therapies will also be discussed, emphasizing the noncanonical NF-κB pathway as a potential target for improved treatment for patients suffering from leukemia or idiopathic HES. The hope is that review of such mechanisms and treatments may eventually result in findings that aid physicians in rapidly diagnosing and more accurately classifying patients suffering from such complex and overlapping hematopoietic diseases.

9.
Immunol Rev ; 323(1): 197-208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632868

RESUMEN

Innate immune memory endows innate immune cells with antigen independent heightened responsiveness to subsequent challenges. The durability of this response can be mediated by inflammation induced epigenetic and metabolic reprogramming in hematopoietic stem and progenitor cells (HSPCs) that are maintained through differentiation to mature immune progeny. Understanding the mechanisms and extent of trained immunity induction by pathogens and vaccines, such as BCG, in HSPC remains a critical area of exploration with important implications for health and disease. Here we review these concepts and present new analysis to highlight how inflammatory reprogramming of HSPC can potently alter immune tone, including to enhance specific anti-tumor responses. New findings in the field pave the way for novel HSPC targeting therapeutic strategies in cancer and other contexts of immune modulation. Future studies are expected to unravel diverse and extensive effects of infections, vaccines, microbiota, and sterile inflammation on hematopoietic progenitor cells and begin to illuminate the broad spectrum of immunologic tuning that can be established through altering HSPC phenotypes. The purpose of this review is to draw attention to emerging and speculative topics in this field where we posit that focused study of HSPC in the framework of trained immunity holds significant promise.


Asunto(s)
Reprogramación Celular , Células Madre Hematopoyéticas , Inmunidad Innata , Memoria Inmunológica , Humanos , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Animales , Diferenciación Celular/inmunología , Epigénesis Genética , Inflamación/inmunología , Neoplasias/inmunología , Neoplasias/terapia
10.
Dev Comp Immunol ; 156: 105178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599553

RESUMEN

In the present study, using transgenic frogs that express GFP specifically in myeloid cells under the myeloperoxidase enhancer sequence, we found that myeloperoxidase-positive cells are localized in the liver cortex at the late tadpole stages. Immunohistochemical analysis revealed that myelopoiesis in the liver cortex became evident after st. 50 and reached its peak by st. 56. Transplantation experiments indicated that cells with a high density at the liver cortex were derived from the dorso-lateral plate tissue in the neurula embryo. Analysis of smear samples of the cells isolated from collagenase-treated liver tissues of the transgenic tadpoles indicated that myeloid cells were the major population of blood cells in the larval liver and that, in addition to myeloid colonies, erythroid colonies expanded in entire liver after metamorphosis. Cells that were purified from the livers of transgenic tadpoles according to the GFP expression exhibited the multi-lobed nuclei. The results of present study provide evidence that the liver cortex of the Xenopus tadpole is a major site of granulopoiesis.


Asunto(s)
Animales Modificados Genéticamente , Larva , Hígado , Células Mieloides , Xenopus laevis , Animales , Hígado/citología , Mielopoyesis , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Peroxidasa/metabolismo , Metamorfosis Biológica
11.
Cureus ; 16(2): e54219, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38496060

RESUMEN

Transient abnormal myelopoiesis (TAM) is observed in a few neonates with Down syndrome. While a large proportion undergo complete remission without any treatment, some of them can develop myeloid leukemia of Down syndrome (ML-DS) in the future. Without proper treatment, mortality can be high. Here we have described an interesting and difficult-to-treat case of a neonatal with Down syndrome who presented with anemia, thrombocytopenia, and 75% blasts. We came across multiple challenges in treatment due to severe pneumonia.

12.
Cell ; 187(6): 1402-1421.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38428422

RESUMEN

Neonates are highly susceptible to inflammation and infection. Here, we investigate how late fetal liver (FL) mouse hematopoietic stem and progenitor cells (HSPCs) respond to inflammation, testing the hypothesis that deficits in the engagement of emergency myelopoiesis (EM) pathways limit neutrophil output and contribute to perinatal neutropenia. We show that fetal HSPCs have limited production of myeloid cells at steady state and fail to activate a classical adult-like EM transcriptional program. Moreover, we find that fetal HSPCs can respond to EM-inducing inflammatory stimuli in vitro but are restricted by maternal anti-inflammatory factors, primarily interleukin-10 (IL-10), from activating EM pathways in utero. Accordingly, we demonstrate that the loss of maternal IL-10 restores EM activation in fetal HSPCs but at the cost of fetal demise. These results reveal the evolutionary trade-off inherent in maternal anti-inflammatory responses that maintain pregnancy but render the fetus unresponsive to EM activation signals and susceptible to infection.


Asunto(s)
Inflamación , Interleucina-10 , Mielopoyesis , Animales , Ratones , Embarazo/inmunología , Feto , Hematopoyesis , Células Madre Hematopoyéticas/citología , Inflamación/inmunología , Interleucina-10/inmunología , Animales Recién Nacidos , Femenino
13.
ACS Nano ; 18(9): 7098-7113, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38343099

RESUMEN

Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Ratones , Médula Ósea/diagnóstico por imagen , Lipopolisacáridos , Diabetes Mellitus Experimental/patología , Inflamación/diagnóstico por imagen , Inflamación/patología
14.
J Infect Dis ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38299308

RESUMEN

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a hyperinflammatory condition caused by recent SARS-CoV-2 infection, but the underlying immunological mechanisms driving this distinct syndrome are unknown. METHODS: We utilized high dimensional flow cytometry, cell-free (cf) DNA, and cytokine and chemokine profiling to identify mechanisms of critical illness distinguishing MIS-C from severe acute COVID-19 (SAC). RESULTS: Compared to SAC, MIS-C patients demonstrated profound innate immune cell death and features of emergency myelopoiesis (EM), an understudied phenomenon observed in severe inflammation. EM signatures were characterized by fewer mature myeloid cells in the periphery and decreased expression of HLA-DR and CD86 on antigen presenting cells. IL-27, a cytokine known to drive hematopoietic stem cells towards EM, was increased in MIS-C, and correlated with immature cell signatures in MIS-C. Upon recovery, EM signatures decreased, and IL-27 plasma levels returned to normal levels. Despite profound lymphopenia, we report a lack of cfDNA released by adaptive immune cells and increased CCR7 expression on T cells indicative of egress out of peripheral blood. CONCLUSIONS: Immune cell signatures of EM combined with elevated innate immune cell-derived cfDNA levels distinguish MIS-C from SAC in children and provide mechanistic insight into dysregulated immunity contributing towards MIS-C, offering potential diagnostic and therapeutic targets.

15.
Acta Paediatr ; 113(5): 980-988, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329201

RESUMEN

AIM: Five to thirty percent of neonates with trisomy 21 develop transient abnormal myelopoiesis (TAM) with a high mortality rate. The aim of the study was to identify contributing factors that determine mortality and need for chemotherapy in this patient group. METHODS: Six-year, single-centre, retrospective study of neonatal TAM cases requiring admission to intensive care. Data were collected from electronic patient records, laboratory and genetic results. The odds ratio was calculated to assess the likelihood of neonates with certain clinical characteristics having short-term mortality and needing chemotherapy. RESULTS: Twenty-one neonates were studied with a mortality rate of 28%. Neonates requiring inotropic support (OR 19, 95% CI: 0.9-399, p = 0.05) and inhaled nitric oxide (iNO) (OR 13, 95% CI: 1.4-124.3, p = 0.03) were less likely to survive to discharge. Neonates needing mechanical ventilation (OR 14, 95% CI: 1.1-185.5, p = 0.04), or a white cell count >50 × 109/L (OR 27, 95% CI: 1.2-605.7, p = 0.04) were more likely to receive chemotherapy. CONCLUSION: A high mortality rate was identified in TAM neonates with symptomatic pulmonary hypertension (PH) needing active treatment strategies, such as inotropes and iNO. The presence of PH should be considered in the clinical management, prognosis and parental counselling.


Asunto(s)
Síndrome de Down , Hipertensión Pulmonar , Reacción Leucemoide , Recién Nacido , Humanos , Cuidado Intensivo Neonatal , Estudios Retrospectivos , Óxido Nítrico , Administración por Inhalación
16.
Microbes Infect ; 26(4): 105311, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38342337

RESUMEN

We evaluated whether viable and non-viable Lacticaseibacillus rhamnosus CRL1505 (Lr05V or Lr05NV, respectively) was able to improve emergency myelopoiesis induced by Streptococcus pneumoniae (Sp) infection. Adult Swiss-mice were orally treated with Lr05V or Lr05NV during five consecutive days. The Lr05V and Lr05NV groups and untreated control group received an intraperitoneal dose of cyclophosphamide (Cy-150 mg/kg). Then, the mice were nasally challenged with Sp (107 UFC/mice) on day 3 post-Cy injection. After the pneumococcal challenge, the innate and myelopoietic responses were evaluated. The control group showed a high susceptibility to pneumococcal infection, an impaired innate immune response and a decrease of hematopoietic stem cells (HSCs: Lin-Sca-1+c-Kit+), and myeloid multipotent precursors (MMPs: Gr-1+Ly6G+Ly6C-) in bone marrow (BM). However, lactobacilli treatments were able to significantly increase blood neutrophils and peroxidase-positive cells, while improving cytokine production and phagocytic activity of alveolar macrophages. This, in turn, led to an early Sp lung clearance compared to the control group. Furthermore, Lr05V was more effective than Lr05NV to increase growth factors in BM, which allowed an early HSCs and MMPs recovery with respect to the control group. Both Lr05V and Lr05NV were able to improve BM emergency myelopiesis and protection against respiratory pathogens in mice undergoing chemotherapy.


Asunto(s)
Huésped Inmunocomprometido , Lacticaseibacillus rhamnosus , Mielopoyesis , Probióticos , Streptococcus pneumoniae , Animales , Ratones , Mielopoyesis/efectos de los fármacos , Lacticaseibacillus rhamnosus/inmunología , Probióticos/administración & dosificación , Probióticos/farmacología , Streptococcus pneumoniae/inmunología , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Inmunidad Innata , Modelos Animales de Enfermedad , Citocinas/metabolismo , Ciclofosfamida/farmacología , Neutrófilos/inmunología , Masculino
17.
J Mol Cell Cardiol ; 187: 80-89, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163742

RESUMEN

Of all the different risk factors known to cause cardiovascular disease (CVD), age and sex are considered to play a crucial role. Aging follows a continuum from birth to death, and therefore it inevitably acts as a risk for CVD. Along with age, sex differences have also been shown to demonstrate variations in immune system responses to pathological insults. It has been widely perceived that females are protected against myocardial infarction (MI) and the protection is quite apparent in young vs. old women. Acute MI leads to changes in the population of myeloid and lymphoid cells at the injury site with myeloid bias being observed in the initial inflammation and the lymphoid in the late-resolution phases of the pathology. Multiple evidence demonstrates that aging enhances damage to various cellular processes through inflamm-aging, an inflammatory process identified to increase pro-inflammatory markers in circulation and tissues. Following MI, marked changes were observed in different sub-sets of major myeloid cell types viz., neutrophils, monocytes, and macrophages. There is a paucity of information regarding the tissue and site-specific functions of these sub-sets. In this review, we highlight the importance of age and sex as crucial risk factors by discussing their role during MI-induced myelopoiesis while emphasizing the current status of myeloid cell sub-sets. We further put forth the need for designing and executing age and sex interaction studies aimed to determine the appropriate age and sex to develop personalized therapeutic strategies post-MI.


Asunto(s)
Mielopoyesis , Infarto del Miocardio , Femenino , Humanos , Masculino , Infarto del Miocardio/metabolismo , Monocitos/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(4): e2317929121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227649

RESUMEN

The hierarchical model of hematopoiesis posits that self-renewing, multipotent hematopoietic stem cells (HSCs) give rise to all blood cell lineages. While this model accounts for hematopoiesis in transplant settings, its applicability to steady-state hematopoiesis remains to be clarified. Here, we used inducible clonal DNA barcoding of endogenous adult HSCs to trace their contribution to major hematopoietic cell lineages in unmanipulated animals. While the majority of barcodes were unique to a single lineage, we also observed frequent barcode sharing between multiple lineages, specifically between lymphocytes and myeloid cells. These results suggest that both single-lineage and multilineage contributions by HSCs collectively drive continuous hematopoiesis, and highlight a close relationship of myeloid and lymphoid development.


Asunto(s)
Células Madre Adultas , Células Madre Hematopoyéticas , Animales , Diferenciación Celular , Hematopoyesis/genética , Linaje de la Célula/genética
19.
Pathobiology ; 91(1): 89-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36996802

RESUMEN

INTRODUCTION: The incidence of myelodysplastic syndrome and acute myeloid leukemia is significantly increased in children with Down syndrome (DS). Within the revised 2016 WHO edition, these entities are jointly classified as myeloid leukemia associated with DS (ML-DS). Additionally, infants with DS may develop transient abnormal myelopoiesis (TAM) which is histomorphologically similar to ML-DS. While TAM is self-limiting, it is associated with an increased risk of subsequently developing ML-DS. Differentiating TAM and ML-DS is challenging but clinically critical. METHODS: We performed a retrospective review of ML-DS and TAM cases collected from five large academic institutions in the USA. We assessed clinical, pathological, immunophenotypical, and molecular features to identify differentiating criteria. RESULTS: Forty cases were identified: 28 ML-DS and 12 TAM. Several features were diagnostically distinct, including younger age in TAM (p < 0.05), as well as presentation with clinically significant anemia and thrombocytopenia in ML-DS (p < 0.001). Dyserythropoiesis was unique to ML-DS, as well as structural cytogenetic abnormalities aside from the constitutional trisomy 21. Immunophenotypic characteristics of TAM and ML-DS were indistinguishable, including the aberrant expression of CD7 and CD56 by the myeloid blasts. DISCUSSION: The findings of the study confirm marked biological similarities between TAM and ML-DS. At the same time, several significant clinical, morphological, and genetic differences were observed between TAM and ML-DS. The clinical approach and the differential diagnosis between these entities are discussed in detail.


Asunto(s)
Síndrome de Down , Leucemia Mieloide Aguda , Reacción Leucemoide , Lactante , Niño , Humanos , Síndrome de Down/complicaciones , Síndrome de Down/genética , Síndrome de Down/patología , Mutación , Reacción Leucemoide/diagnóstico , Reacción Leucemoide/genética , Reacción Leucemoide/complicaciones
20.
Stem Cell Reports ; 19(1): 112-125, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38157851

RESUMEN

CCAAT/enhancer-binding protein beta (C/EBPß) induces primary v-Abl immortalized mouse B cells to transdifferentiate (BT, B cell transdifferentiation) into granulocyte-macrophage progenitor-like cells (GMPBTs). GMPBTs maintain cytokine-independent self-renewal, lineage choice, and multilineage differentiation. Single-cell transcriptomics demonstrated that GMPBTs comprise a continuum of myelomonopoietic differentiation states that seamlessly fit into state-to-fate maps of normal granulocyte-macrophage progenitors (GMPs). Inactivating v-Abl kinase revealed the dependence on activated CSF2-JAK2-STAT5 signaling. Deleting IRF8 diminished monopoiesis and enhanced granulopoiesis while removing C/EBPß-abrogated self-renewal and granulopoiesis but permitted macrophage differentiation. The GMPBT culture system is easily scalable to explore the basics of GMP biology and lineage commitment and largely reduces ethically and legislatively debatable, labor-intensive, and costly animal experiments.


Asunto(s)
Granulocitos , Monocitos , Ratones , Animales , Granulocitos/metabolismo , Transdiferenciación Celular , Hematopoyesis , Diferenciación Celular , Biología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...