Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Intervalo de año de publicación
1.
Front Immunol ; 15: 1474688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386212

RESUMEN

Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-ß (TGF-ß) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.


Asunto(s)
Fibrosis , Macrófagos , Miofibroblastos , Transducción de Señal , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/inmunología
2.
Inflammation ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662165

RESUMEN

Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-ß (TGF-ß) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.

3.
Biochem Pharmacol ; 220: 115996, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38154546

RESUMEN

Cardiac fibrosis is pivotal in the progression of numerous cardiovascular diseases. This phenomenon is hallmarked by an excessive deposition of ECM protein secreted by myofibroblasts, leading to increased myocardial stiffness. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein-converting enzyme family. It has emerged as a viable therapeutic target for reducing plasma low-density lipoprotein cholesterol. However, the exact mechanism via which PCSK9 impacts cardiac fibrosis remains unclear. In the present research, an increase in circulating PCSK9 protein levels was observed in individuals with myocardial infarction and rat models of myocardial infarction. Moreover, the inhibition of circulating PCSK9 in rats was found to reduce post-infarction fibrosis. In vitro experiments further demonstrated that overexpression of PCSK9 or stimulation by extracellular PCSK9 recombinant protein enhanced the transformation of cardiac fibroblasts to myofibroblasts. This process also elevated collagen Ⅰ, and Ⅲ, as well as α-SMA protein levels. However, these effects were countered when co-incubated with the STAT3 inhibitor S3I-201. This study suggests that PCSK9 may function as a novel regulator of myocardial fibrosis, primarily via the JAK2/STAT3 pathway.


Asunto(s)
Infarto del Miocardio , Proproteína Convertasa 9 , Animales , Humanos , Ratas , Fibrosis , Miofibroblastos/metabolismo , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo
4.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958795

RESUMEN

The extracellular matrix (ECM) is a dynamic complex protein network that provides structural integrity and plays an active role in shaping fibroblast behavior both in health and disease. Despite its essential functions, the impact of age-associated post-translational modifications on ECM-driven fibroblast activities such as proliferation, survival, fibroblast-to-myofibroblast transformation (FMT), and extracellular matrix production remains largely unknown. Nε-carboxymethyl-lysine (CML) is one of the well-characterized advanced glycation end-products (AGEs) that can occur on lysine residues within ECM proteins through non-enzymatic glycation. In this study, we determined the accumulation and the effects of the CML-modified ECM (CML-ECM) on fibroblast activation. Immunostainings and immunoblot analysis demonstrated significant increases in CML-AGE content in idiopathic pulmonary fibrosis (IPF) compared to age-matched healthy lungs. Gene expression analysis and fibroblast activation assays collectively implicate the ECM as a negative regulator of fibroblast activation. Notably, the CML modification of the ECM resulted in a significant decrease in its anti-fibrotic effects including proliferation, FMT, apoptosis, and ECM production. Together, the results of this study revealed an unexplored pathological role played by the CML-ECM on fibroblast activation, which has wide implications in IPF and other fibrotic diseases.


Asunto(s)
Proteínas de la Matriz Extracelular , Fibrosis Pulmonar Idiopática , Humanos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Lisina/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Matriz Extracelular/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis , Fibroblastos/metabolismo
5.
J Zhejiang Univ Sci B ; 24(8): 682-697, 2023 Aug 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37551555

RESUMEN

Cardiac fibrosis is a cause of morbidity and mortality in people with heart disease. Anti-fibrosis treatment is a significant therapy for heart disease, but there is still no thorough understanding of fibrotic mechanisms. This study was carried out to ascertain the functions of cytokine receptor-like factor 1 (CRLF1) in cardiac fibrosis and clarify its regulatory mechanisms. We found that CRLF1 was expressed predominantly in cardiac fibroblasts. Its expression was up-regulated not only in a mouse heart fibrotic model induced by myocardial infarction, but also in mouse and human cardiac fibroblasts provoked by transforming growth factor-|ß1 (TGF|-|ß1). Gain- and loss-of-function experiments of CRLF1 were carried out in neonatal mice cardiac fibroblasts (NMCFs) with or without TGF-|ß1 stimulation. CRLF1 overexpression increased cell viability, collagen production, cell proliferation capacity, and myofibroblast transformation of NMCFs with or without TGF|-|ß1 stimulation, while silencing of CRLF1 had the opposite effects. An inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and different inhibitors of TGF-|ß1 signaling cascades, comprising mothers against decapentaplegic homolog (SMAD)|-dependent and SMAD-independent pathways, were applied to investigate the mechanisms involved. CRLF1 exerted its functions by activating the ERK1/2 signaling pathway. Furthermore, the SMAD-dependent pathway, not the SMAD-independent pathway, was responsible for CRLF1 up-regulation in NMCFs treated with TGF-|ß1. In summary, activation of the TGF-|ß1/SMAD signaling pathway in cardiac fibrosis increased CRLF1 expression. CRLF1 then aggravated cardiac fibrosis by activating the ERK1/2 signaling pathway. CRLF1 could become a novel potential target for intervention and remedy of cardiac fibrosis.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Infarto del Miocardio , Receptores de Citocinas , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Infarto del Miocardio/metabolismo , Receptores de Citocinas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/farmacología
6.
Exp Eye Res ; 229: 109419, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806671

RESUMEN

Graphene-based nanomaterials (GBNs) are widely used due to their chemical and physical properties for multiple commercial and environmental applications. From an occupational health perspective, there is concern regarding the effects of inhalation on the respiratory system, and many studies have been conducted to study inhalation impacts on lung. Similar to the respiratory system, the eyes may also be exposed to GBNs and thus impacted. In this study, immortalized human corneal epithelial (hTCEpi) cells and rabbit corneal fibroblasts (RCFs) were used to investigate the toxicity of eight types of GBN: graphene oxide (GO; 400 nm), GO (1 µm), partially reduced graphene oxide (PRGO; 400 nm), reduced graphene oxide (RGO; 400 nm), RGO (2 µm), graphene (110 nm), graphene (140 nm), and graphene (1 µm). We next examined the effects of these GBNs on hTCEpi cell migration. We also determined whether the expression of α-smooth muscle actin (αSMA), a myofibroblast marker, is altered by the GBNs using RCFs. We found that RGO (400 nm) and RGO (2 µm) were highly toxic to hTCEPi cells and RCFs meanwhile, PRGO (400 nm) was toxic only to hTCEpi cells. In addition, PRGO (400 nm), RGO (400 nm), and RGO (2 µm) inhibited hTCEpi cell migration and significantly increased αSMA mRNA expression. Further study in vivo is required to determine if RGO nanomaterials delay corneal epithelial healing and induce scar formation.


Asunto(s)
Grafito , Nanoestructuras , Animales , Humanos , Conejos , Grafito/toxicidad , Córnea , Cicatrización de Heridas
7.
Front Pharmacol ; 13: 997916, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313337

RESUMEN

A disintegrin and metalloprotease domain family protein 17 (ADAM17) is a new member of renin-angiotensin system (RAS) but its role in the pathogenesis of diabetic cardiomyopathy (DCM) is obscure. To test the hypothesis that ADAM17 knockdown mitigates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation in diabetic mice, ADAM17 gene was knocked down and overexpressed by means of adenovirus-mediated short-hairpin RNA (shRNA) and adenovirus vector carrying ADAM17 cDNA, respectively, in a mouse model of DCM. Two-dimensional and Doppler echocardiography, histopathology and immunohistochemistry were performed in all mice and in vitro experiments conducted in primary cardiofibroblasts. The results showed that ADAM17 knockdown ameliorated while ADAM17 overexpression worsened cardiac dysfunction and cardiac fibrosis in diabetic mice. In addition, ADAM17 knockdown increased ACE2 while reduced AT1R expression in diabetic hearts. Mechanistically, ADAM17 knockdown decreased while ADAM17 overexpression increased cardiac fibroblast-to-myofibroblast transformation through regulation of TGF-ß1/Smad3 signaling pathway. In conclusion, ADAM17 knockdown attenuates while ADAM17 overexpression aggravates cardiac fibrosis via regulating ACE2 shedding and myofibroblast transformation through TGF-ß1/Smad3 signaling pathway in diabetic mice. Targeting ADAM17 may provide a promising approach to the prevention and treatment of cardiac fibrosis in DCM.

8.
Biochem Pharmacol ; 197: 114950, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35143754

RESUMEN

We previously reported that 2,5-dimethylcelecoxib (DM-C), a derivative of celecoxib, lacks cyclooxygenase-2 inhibitory effects and suppresses cardiac remodeling by activating glycogen synthase kinase-3 (GSK-3). However, it remains unclear whether DM-C attenuates fibroblast-to-myofibroblast transformation (FMT), which plays a key role in cardiac fibrosis. Therefore, we evaluated the effect of DM-C on FMT using a cryoinjury-induced myocardial infarction (CMI) mouse model. We found that DM-C attenuated the deterioration of left ventricular ejection fraction after CMI by decreasing cardiac fibrosis. Analysis of the expression level of α-smooth muscle actin (α-SMA), a marker for myofibroblasts, indicated that DM-C decreased FMT at the cardiac injury site. To investigate the mechanism by which DM-C attenuated FMT, fibroblasts obtained from the heart were stimulated with TGF-ß to induce FMT, and the effect of DM-C was analyzed. DM-C suppressed the expression of α-SMA and the phosphorylation levels of Smad 2/3 and GSK-3, indicating that DM-C suppressed α-SMA expression by inhibiting the transforming growth factor (TGF)-ß signaling pathway via activation of GSK-3. DM-C decreased the expression of collagen, connective tissue growth factor (CTGF) and Snail, which are also known to accelerate cardiac fibrosis. These results suggested that DM-C attenuated cardiac fibrosis by suppressing FMT at the injured site after CMI by inhibiting the TGF-ß signaling pathway via activation of GSK-3. Thus, DM-C has potential against cardiac disease as a novel anti-fibrotic agent.


Asunto(s)
Fibroblastos/efectos de los fármacos , Congelación/efectos adversos , Infarto del Miocardio/tratamiento farmacológico , Miofibroblastos/efectos de los fármacos , Pirazoles/uso terapéutico , Transducción de Señal/efectos de los fármacos , Sulfonamidas/uso terapéutico , Animales , Células Cultivadas , Fibroblastos/enzimología , Fibroblastos/patología , Fibrosis , Glucógeno Sintasa Quinasa 3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/enzimología , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Miofibroblastos/enzimología , Miofibroblastos/patología , Nitrógeno/toxicidad , Pirazoles/farmacología , Ratas , Ratas Endogámicas Lew , Transducción de Señal/fisiología , Sulfonamidas/farmacología
9.
Mol Med ; 28(1): 19, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135471

RESUMEN

BACKGROUND: Myocardial fibrosis after myocardial infarction (MI) is one of the leading causes of cardiovascular diseases. Cardiac fibroblasts (CFs) are activated and promoted by MI to undergo myofibroblast transformation (CMT). Urolithin A (UA) is an active and effective gut metabolite derived from polyphenolics of berries and pomegranate fruits, which has been reported to have anti-inflammatory and anti-oxidant functions. However, whether UA affects the CMT process during myocardial fibrosis remains unclear. METHODS: TGF-ß1-treated primary rat cardiac fibroblasts were used for in vitro study. Cell proliferation ability was evaluated by MTT assay. Cell migration and invasion abilities were tested by wound healing and Transwell assays. The expression of CMT process-related markers were measured by qRT-PCR and western blot. The rat MI model was established by left anterior descending coronary artery (LAD) ligation and evaluated by H&E and Masson staining. RESULTS: Our data demonstrated that UA treatment could inhibit the CMT process in TGF-ß1-induced CFs, including cell proliferation, migration and invasion abilities. Knocking down of Nrf2, which was activated by UA treatment, could mitigate the effects of UA treatment on CMT process. Moreover, in vivo administration of UA in rat MI model successfully up-regulated Nrf2 expression and improved the myocardial damage and fibrosis. CONCLUSIONS: The study discovered the function and mechanism of UA on myocardial fibrosis and demonstrated the protective effects of UA administration through activation of Nrf2 pathway.


Asunto(s)
Cumarinas/farmacología , Microbioma Gastrointestinal , Miocardio/metabolismo , Miocardio/patología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Biomarcadores , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cumarinas/metabolismo , Fibrosis , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Ratas
10.
J Cardiovasc Transl Res ; 15(3): 621-634, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34734351

RESUMEN

Myocardial infarction (MI) is a significant contributor to the development of heart failure. Histidine decarboxylase (HDC), the unique enzyme that converts L-histidine to histamine, is highly expressed in CD11b+ immature myeloid cells. However, the relationship between HDC-expressing macrophages and cardiac myofibroblasts remains to be explained. Here, we demonstrate that the GFP (green fluorescent protein)-labeled HDC+CD11b+ myeloid precursors and their descendants could differentiate into fibroblast-like cells in myocardial interstitium. Furthermore, we prove that CD11b+Ly6C+ monocytes/macrophages, but not CD11b+Ly6G+ granulocytes, are identified as the main cellular source for bone marrow-derived myofibroblast transformation, which could be regulated via histamine H1 and H2 receptor-dependent signaling pathways. Using HDC knockout mice, we find that histamine deficiency promotes myofibroblast transformation from Ly6C+ macrophages and cardiac fibrosis partly through upregulating the expression of Krüppel-like factor 5 (KLF5). Taken together, our data uncover a central role of HDC in regulating bone marrow-derived macrophage-to-myofibroblast transformation but also identify a histamine receptor (HR)-KLF5 related signaling pathway that mediates myocardial fibrosis post-MI. CD11b+Ly6C+ monocytes/macrophages are the main cellular source for bone marrow-derived myofibroblast transformation. Histamine inhibits myofibroblasts transformation via H1R and H2R-dependent signaling pathways, and ameliorates cardiac fibrosis partly through upregulating KLF5 expression.


Asunto(s)
Histamina , Histidina Descarboxilasa , Células Mieloides , Infarto del Miocardio , Miofibroblastos , Animales , Fibrosis , Histamina/deficiencia , Histidina Descarboxilasa/metabolismo , Ratones , Células Mieloides/citología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miofibroblastos/citología
11.
Hereditas ; 158(1): 47, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34876240

RESUMEN

BACKGROUND: Asthma is a common chronic respiratory disease that influences 300 million people all over the world. However, the pathogenesis of asthma has not been fully elucidated. It has been reported that transforming growth factor-ß (TGF-ß) can activate myofibroblasts. Moreover, the fibroblast to myofibroblast transformation (FMT) can be triggered by TGF-ß, which is a major mediator of subepithelial fibrosis. Secreted modular calcium-binding protein 2 (SMOC2) is a member of cysteine (SPARC) family and is involved in the progression of multiple diseases. However, its role in asthma remains poorly understood. RT-qPCR evaluated the expression of SMOC2. Bromodeoxyuridine assay and wound-healing assay detected the proliferation and migration of lung fibroblasts, respectively. IF staining was performed to assess the expression of α-smooth muscle actin (α-SMA). Western blot analysis detected the levels of proteins. Flow cytometry was utilized for determination of the number of myofibroblasts. RESULTS: We found the expression of SMOC2 was upregulated by the treatment of TGF-ß1 in lung fibroblasts. In addition, SMOC2 promoted the proliferation and migration of lung fibroblasts. More importantly, SMOC2 accelerated FMT of lung fibroblasts. Furthermore, SMOC2 was verified to control the activation of AKT and ERK. Rescue assays showed that the inhibition of AKT and ERK pathway reversed the promoting effect of SMOC2 overexpression on proliferation, migration and FMT in lung fibroblasts. CONCLUSIONS: This work demonstrated that SMOC2 modulated TGF-ß1-induced proliferation, migration and FMT in lung fibroblasts and may promote asthma, which potentially provided a novel therapeutic target for the management of asthma.


Asunto(s)
Asma , Miofibroblastos , Asma/genética , Proteínas de Unión al Calcio , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Pulmón/metabolismo , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
12.
Exp Eye Res ; 204: 108447, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33465394

RESUMEN

We previously found that epigallocatechin-3-gallate (EGCG) could inhibit the myofibroblast transformation of human Tenon's fibroblasts, however, the underlying mechanism remained unclear. We therefore investigated whether the autophagic regulation involved in the anti-fibrotic function of EGCG. The fibroblasts were subjected to transforming growth factor beta-1 (TGF-ß1) induction followed by EGCG treatments. The autophagic flux was examined by transmission electron microscopy and autophagic flux analysis. The levels of autophagy-related proteins (LC3ß and p62) and alpha-smooth muscle actin (α-SMA) were measured by Western blot and immunofluorescence. Results showed that TGF-ß1 partially inhibited the autophagic function of Tenon's fibroblasts. But this inhibition effect was rescued by LY2157299, a TGF-ßR1 selective inhibitor. Compared with the cells treated with TGF-ß1 alone, EGCG treatments increased the amount of autophagosomes and autolysosomes, evaluated the ratio of LC3-II to LC3-I and decreased p62 level. Our results indicated that EGCG could recover the activity of autophagy in the TGF-ß1-treated cells. Moreover, treatments with EGCG significantly decreased the α-SMA expression. Taken together, these findings revealed that autophagic regulation involved in the action of EGCG against TGF-ß1-induced transformation of Tenon's fibroblasts. Through increasing intracellular autophagy, EGCG could be a potential anti-fibrotic reagent for preventing subconjunctival fibrosis after glaucoma filtration surgery.


Asunto(s)
Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Catequina/análogos & derivados , Miofibroblastos/efectos de los fármacos , Cápsula de Tenon/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Actinas/metabolismo , Adenoviridae/genética , Western Blotting , Catequina/farmacología , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/ultraestructura , Proteína Sequestosoma-1/metabolismo , Cápsula de Tenon/metabolismo , Cápsula de Tenon/ultraestructura , Transfección , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores
13.
NanoImpact ; 24: 100352, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-35559825

RESUMEN

Silver nanoparticles (AgNPs) are a common antimicrobial additive for a variety of applications, including wound care. However, AgNPs often undergo dissolution resulting in release of silver ions, with subsequent toxicity to mammalian cells. The cornea is a primary exposure site to topically administered AgNPs in and around the eye but their impact on corneal wound healing is understudied. Thus, the purpose of this study was to determine in vitro toxicity of AgNPs on corneal epithelial cells and fibroblasts as well as their effects on corneal epithelial wound healing utilizing an in vivo rabbit model. Non-coated 20 nm sized AgNP (AgNP-20) as well as 1% and 10% silver silica NPs (AgSiO2NPs) were tested at concentrations ranging from 0.05-250 µg/mL. Immortalized human corneal epithelial (hTCEpi) cells and primary rabbit corneal fibroblasts (RCFs) were incubated for 24 h with AgNPs and cell viability was tested. Additionally, a round wound healing assay was performed to determine hTCEpi cell migration. Quantitative real-time PCR and western blot analysis was performed to determine α-smooth muscle actin (α-SMA, a myofibroblast marker) mRNA and protein expression, respectively, in RCFs treated with 50 µg/mL of AgNPs. Corneal epithelial wound healing was evaluated with 1%-AgSiO2NPs (10 and 250 µg/mL) using an in vivo rabbit model. Rabbits were subsequently euthanized, and histologic sections of the enucleated globes were used to determine corneal penetration of 1%-AgSiO2NPs with autometallography and hyperspectral darkfield microscopy. Cell viability of both the hTCEpi cells and fibroblasts was significantly decreased by the three AgNPs in a dose dependent manner. Migration of hTCEpi cells was significantly inhibited by the three AgNPs. Alpha-SMA mRNA expression was significantly inhibited with three AgNPs, but only the 1%-AgSiO2NPs inhibited protein expression of α-SMA. In vivo epithelial wound closure did not significantly differ between groups treated with 10 or 250 µg/mL of 1%-AgSiO2NPs or vehicle control. The 1%-AgSiO2NPs penetrated throughout all corneal layers and into the anterior chamber in all treated eyes with no histopathological changes observed. In conclusion, the 1%-AgSiO2NPs are safe and have potential therapeutic applications through its efficacy of the corneal penetration and reduced scar formation during corneal wound healing.


Asunto(s)
Lesiones de la Cornea , Nanopartículas del Metal , Animales , Lesiones de la Cornea/tratamiento farmacológico , Mamíferos , Nanopartículas del Metal/uso terapéutico , ARN Mensajero/farmacología , Conejos , Plata/farmacología , Cicatrización de Heridas
14.
J Sex Med ; 17(10): 1848-1864, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32771352

RESUMEN

BACKGROUND: Myofibroblast transformation is a key step in the pathogenesis of Peyronie's disease (PD). Phosphodiesterase type 5 inhibitors (PDE5is) and selective estrogen receptor modulators (SERMs) can prevent the formation of fibrosis in in vitro and in vivo models of PD. However, it is unknown whether these drugs can also reverse established fibrosis. AIM: To investigate whether PDE5is and SERMs can reverse transforming growth factor beta 1 (TGF-ß1)-induced myofibroblast transformation and determine the point of no return. METHODS: In-Cell enzyme-linked immunosorbent assay was used to quantify TGF-ß1-induced myofibroblast transformation of human primary fibroblasts isolated from tunica albuginea (TA) of patients undergoing surgery for treatment of PD. Extracellular matrix production and collagen contraction assays were used as secondary assays. Reverse transcription-quantitative polymerase chain reaction and In-Cell enzyme-linked immunosorbent assay were used to measure drug target expression. PDE5i (vardenafil) and SERM (tamoxifen) were applied at various time points after TGF-ß1. OUTCOMES: Reversibility of myofibroblast transformation and drug target expression were investigated in a time-dependent manner in TA-derived fibroblasts. RESULTS: Vardenafil or tamoxifen could not reverse the myofibroblast traits of alpha-smooth muscle actin expression and extracellular matrix production, whereas only tamoxifen affected collagen contraction after 72 hours of TGF-ß1 treatment. Phosphodiesterase 5A and estrogen receptor (ER)-ß were downregulated after 72 hours, and estrogen receptor -α protein could not be quantified. Tamoxifen could prevent myofibroblast transformation until 36 hours after TGF-ß1 treatment, whereas vardenafil could prevent only 24 hours after TGF-ß1 treatment. This was mirrored by downregulation of drug targets on mRNA and protein level. Furthermore, antifibrotic signaling pathways, peroxisome proliferator-activated receptor gamma and betaglycan (TGFB receptor III), were significantly downregulated after 36 hours of TGF-ß1 exposure, as opposed to upregulation of profibrotic thrombospondin-1 at the same time point. CLINICAL TRANSLATION: This study suggests that using PDE5is and SERMs might only help for early-phase PD and further highlights the need to test drugs at the appropriate stage of the disease based on their mechanism of action. STRENGTHS & LIMITATIONS: The study uses primary human TA-derived fibroblasts that enhances translatability of the results. Limitations include that only 1 example of PDE5i- and SERM-type drug was tested. Time course experiments were only performed for marker expression experiments and not for functional assays. CONCLUSION: This is the first study to demonstrate that timing for administration of drugs affecting myofibroblast transformation appears to be vital in in vitro models of PD, where 36 hours of TGF-ß1 treatment can be suggested as a "point of no return" for myofibroblast transformation. Ilg MM, Stafford SJ, Mateus M, et al. Phosphodiesterase Type 5 Inhibitors and Selective Estrogen Receptor Modulators Can Prevent But Not Reverse Myofibroblast Transformation in Peyronie's Disease. J Sex Med 2020;17:1848-1864.


Asunto(s)
Induración Peniana , Preparaciones Farmacéuticas , Actinas , Células Cultivadas , Fibroblastos , Humanos , Masculino , Miofibroblastos , Induración Peniana/tratamiento farmacológico , Pene , Inhibidores de Fosfodiesterasa 5/farmacología , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Factor de Crecimiento Transformador beta1
15.
Exp Eye Res ; 197: 108119, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32603658

RESUMEN

Myofibroblast transformation of human Tenon's fibroblasts severely challenges the outcome of glaucoma filtration surgery. epigallocatechin-3-gallate (EGCG) is considered as a potential reagent to overcome this issue for its anti-fibrosis effect on various human diseases, but it is unclear on the fibrosis of Tenon's fibroblasts. This study was conducted to investigate the effect of EGCG on TGF-ß1-induced myofibroblast transformation of human Tenon's fibroblasts. The human Tenon's fibroblasts were incubated in the medium containing 10 ng/mL TGF-ß1, and subsequently treated with EGCG or mitomycin C (MMC). The cell proliferation and migration were analyzed. The expression of alpha-smooth muscle actin (α-SMA), type I collagen (Col-I), and p-Smad2/3 were also evaluated. It showed that EGCG and MMC strongly inhibited the elevation in cell number in tissue explants compared to the tissues treated with TGF-ß1 alone. Scratch-Wound assay showed that 48 h after TGF-ß1 induction, only 10% of the wound width remained. But cells treated with EGCG still showed over 93% wound width. Further, EGCG effectively inhibited TGF-ß1-induced expression of α-SMA and Col-I as well as phosphorylation of Smad2/3 in Tenon's fibroblasts. Altogether, we concluded that EGCG suppressed the myofibroblast transformation in Tenon's fibroblasts through inactivating TGF-ß1/Smad signaling. These findings demonstrate that EGCG can be considered as one of the possible antifibrotic reagents for preventing postoperative scarring in glaucoma filtration surgery.


Asunto(s)
Catequina/análogos & derivados , Glaucoma/tratamiento farmacológico , Miofibroblastos/metabolismo , Cápsula de Tenon/metabolismo , Catequina/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glaucoma/metabolismo , Glaucoma/patología , Humanos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteasas , Transducción de Señal , Cápsula de Tenon/efectos de los fármacos , Cápsula de Tenon/patología
16.
Respir Res ; 20(1): 87, 2019 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-31072408

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by aberrant fibroblast activation and progressive fibrotic remodelling of the lungs. Though the exact pathophysiological mechanisms of IPF remain unknown, TGF-ß1 is thought to act as a main driver of the disease by mediating fibroblast-to-myofibroblast transformation (FMT). Recent reports have indicated that a metabolic shift towards aerobic glycolysis takes place during FMT and that metabolic shifts can directly influence aberrant cell function. This has led to the hypothesis that inhibition of lactate dehydrogenase 5 (LDH5), an enzyme responsible for converting pyruvate into lactate, could constitute a therapeutic concept for IPF. METHODS: In this study, we investigated the potential link between aerobic glycolysis and FMT using a potent LDH5 inhibitor (Compound 408, Genentech). Seahorse analysis was performed to determine the effect of Compound 408 on TGF-ß1-driven glycolysis in WI-38 fibroblasts. TGF-ß1-mediated FMT was measured by quantifying α-smooth muscle actin (α-SMA) and fibronectin in primary human lung fibroblasts following treatment with Compound 408. Lactate and pyruvate levels in the cell culture supernatant were assessed by LC-MS/MS. In addition to pharmacological LDH5 inhibition, the effect of siRNA-mediated knockdown of LDHA and LDHB on FMT was examined. RESULTS: We show that treatment of lung fibroblasts with Compound 408 efficiently inhibits LDH5 and attenuates the TGF-ß1-mediated metabolic shift towards aerobic glycolysis. Additionally, we demonstrate that LDH5 inhibition has no significant effect on TGF-ß1-mediated FMT in primary human lung fibroblasts by analysing α-SMA fibre formation and fibronectin expression. CONCLUSIONS: Our data strongly suggest that while LDH5 inhibition can prevent metabolic shifts in fibroblasts, it has no influence on FMT and therefore glycolytic dysregulation is unlikely to be the sole driver of FMT.


Asunto(s)
Fibroblastos/metabolismo , Glucólisis/fisiología , Lactato Deshidrogenasa 5/antagonistas & inhibidores , Lactato Deshidrogenasa 5/metabolismo , Miofibroblastos/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Fibroblastos/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Miofibroblastos/efectos de los fármacos
17.
Exp Eye Res ; 176: 235-242, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30193807

RESUMEN

Corneal wound healing is a complex process that consists of cellular integration of multiple soluble biochemical cues and cellular responses to biophysical attributes associated with the matrix of the wound space. Upon corneal stromal wounding, the transformation of corneal fibroblasts to myofibroblasts is promoted by transforming growth factor-ß (TGFß). This process is critical for wound healing; however, excessive persistence of myofibroblasts in the wound space has been associated with corneal fibrosis resulting in severe vision loss. The objective of this study was to determine the effect of hepatocyte growth factor (HGF), which can modulate TGFß signaling, on corneal myofibroblast transformation by analyzing the expression of α-smooth muscle actin (αSMA) as a marker of myofibroblast phenotype particularly as it relates to biomechanical cues. Human corneal fibroblasts were cultured on tissue culture plastic (>1 GPa) or hydrogel substrates mimicking human normal or wounded corneal stiffness (25 and 75 kPa) in media containing TGFß1 ±â€¯HGF. The expression of αSMA was analyzed by quantitative PCR, Western blot and immunocytochemistry. Cellular stiffness, which is correlated with cellular phenotype, was measured by atomic force microscopy (AFM). In primary human corneal fibroblasts, the mRNA expression of αSMA showed a clear dose response to TGFß1. The expression was significantly suppressed when cells were incubated with 20 ng/ml HGF in the presence of 2 ng/ml of TGFß1. The protein expression of αSMA induced by 5 ng/ml TGFß1 was also decreased by 20 ng/ml of HGF. Cells cultured on hydrogels mimicking human normal (25 kPa) and fibrotic (75 kPa) cornea also showed an inhibitory effect of HGF on αSMA expression in the presence or absence of TGFß1. Cellular stiffness was decreased by HGF in the presence of TGFß1 as measured by AFM. In this study, we have demonstrated that HGF can suppress the myofibroblast phenotype promoted by TGFß1 in human corneal stromal cells. These data suggest that HGF holds the potential as a therapeutic agent to improve wound healing outcomes by minimizing corneal fibrosis.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Queratocitos de la Córnea/fisiología , Factor de Crecimiento de Hepatocito/farmacología , Miofibroblastos/fisiología , Actinas/genética , Western Blotting , Células Cultivadas , Sustancia Propia/citología , Expresión Génica , Humanos , Inmunohistoquímica , Microscopía de Fuerza Atómica , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Crecimiento Transformador beta1/farmacología , Cicatrización de Heridas/efectos de los fármacos
18.
Exp Eye Res ; 170: 101-107, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29421383

RESUMEN

The transformation of keratocytes and fibroblasts to myofibroblasts is important to corneal wound healing as well as formation of stromal haze. The purpose of this study was to determine the effect of latrunculin B, an actin cytoskeleton disruptor in conjunction with a fundamental biophysical cue, substrate stiffness, on myofibroblast transformation in vitro and in vivo. Rabbit corneal fibroblasts were cultured on substrates of differing compliance (1.5, 22, and 71 kPa) and tissue culture plastic (TCP; > 1 GPa) in media containing 0 or 10 ng/ml TGFß1 for 72 h. Cells were treated with 0.4 µM Lat-B or DMSO for 30 min every 24 h for 72 h. RNA was collected from cells and expression of alpha-smooth muscle actin (α-SMA), keratocan, and ALDH1A1 determined using qPCR; immunocytochemistry was used to assess α-SMA protein expression. A rabbit phototherapeutic keratectomy (PTK) model was used to assess the impact of 0.1% Lat-B (n = 3) or 25% DMSO (vehicle control, n = 3) on corneal wound healing by assessment of epithelial wound size with fluorescein stain and semi-quantitative stromal haze scoring by an observer masked to treatment group as well as Fourier-domain optical coherence tomography (FD-OCT) at set time points. Statistical analysis was completed using one-way or two-way analysis of variance. Treatment with Lat-B versus DMSO resulted in significantly less αSMA mRNA (P ≤ 0.007) for RCF cells grown on 22 and 71 kPa substrates as well as TCP without or with TGFß1, and significantly decreased α-SMA protein expression in RCFs cultured on the intermediate (22 kPa) stiffness in the absence (P = 0.028) or presence (P = 0.018) of TGFß1. Treatment with Lat-B versus DMSO but did not significantly alter expression of keratocan or ALDH1A1 mRNA in RCFs (P > 0.05) in the absence or presence of TGFß1, but RCFs grown on stiff hydrogels (71 kPa) had significantly more keratocan mRNA expression versus the 22 kPa hydrogel or TCP (P < 0.001) without TGFß1. Administration of topical Lat-B BID was well tolerated by rabbits post-PTK but did not significantly alter epithelial wound closure, stromal haze score, stromal haze thickness as measured by FD-OCT in comparison to DMSO-treated rabbits. When corneal stromal cells are cultured on substrates possessing biologically relevant substratum stiffnesses, Lat-B modulates mRNA and protein expression of α-SMA and thus modulates myofibroblast transformation. At a dose and dose-frequency that reduced IOP in human glaucoma patients, Lat-B treatment did not substantially impact corneal epithelial or stromal wound healing in a rabbit PTK model. While a significant impact on wound healing was observed at the concentration and dose frequency reported here was not found, encouraging in vitro data support further investigations of topically applied Lat-B to determine if this compound can reduce stromal fibrosis.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Transdiferenciación Celular/efectos de los fármacos , Queratocitos de la Córnea/fisiología , Elasticidad/fisiología , Miofibroblastos/fisiología , Tiazolidinas/farmacología , Actinas/genética , Actinas/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Animales , Western Blotting , Células Cultivadas , Córnea/fisiología , Córnea/cirugía , Femenino , Inmunohistoquímica , Microscopía Fluorescente , Queratectomía Fotorrefractiva , Proteoglicanos/genética , Proteoglicanos/metabolismo , ARN Mensajero/genética , Conejos , Reacción en Cadena en Tiempo Real de la Polimerasa , Tomografía de Coherencia Óptica , Factor de Crecimiento Transformador beta1/farmacología
19.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;47(1): 1-10, 01/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-697677

RESUMEN

Notch signaling is an evolutionarily ancient, highly conserved pathway important for deciding cell fate, cellular development, differentiation, proliferation, apoptosis, adhesion, and epithelial-to-mesenchymal transition. Notch signaling is also critical in mammalian cardiogenesis, as mutations in this signaling pathway are linked to human congenital heart disease. Furthermore, Notch signaling can repair myocardial injury by promoting myocardial regeneration, protecting ischemic myocardium, inducing angiogenesis, and negatively regulating cardiac fibroblast-myofibroblast transformation. This review provides an update on the known roles of Notch signaling in the mammalian heart. The goal is to assist in developing strategies to influence Notch signaling and optimize myocardial injury repair.


Asunto(s)
Animales , Humanos , Cardiopatías/metabolismo , Miocardio/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Apoptosis/fisiología , Diferenciación Celular/fisiología , Cardiopatías/fisiopatología , Precondicionamiento Isquémico Miocárdico , Mamíferos , Regeneración/fisiología
20.
Invest Ophthalmol Vis Sci ; 54(8): 5901-7, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23860754

RESUMEN

PURPOSE: The transformation of fibroblasts to myofibroblasts is critical to corneal wound healing, stromal haze formation, and scarring. It has recently been demonstrated that the provision of biomimetic substratum topographic cues inhibits the progression toward the myofibroblast phenotype under the influence of transforming growth factor ß1 (TGF-ß1). The objective of this study was to determine the effect of another fundamental biophysical cue, substrate compliance, on TGF-ß1-induced myofibroblast transformation of primary corneal cells isolated from human and rabbit corneas. METHODS: Human and rabbit corneal fibroblasts were cultured on surfaces of varying substrate compliance (4-71 kPa) and tissue culture plastic (TCP) (> 1 gigapascal [GPa]). Cells were cultured in media containing TGF-ß1 at concentrations of 0, 1, or 10 ng/mL for 72 hours. RNA and protein were collected from cells cultured on polyacrylamide gels and TCP and were analyzed for the expression of α-smooth muscle actin (α-SMA), a key marker of myofibroblast transformation, using quantitative PCR, immunocytochemistry, and Western blot. RESULTS: Cells grown on more compliant substrates demonstrated significantly reduced amounts of α-SMA mRNA compared with TCP. Immunocytochemistry and Western blot analysis determining the presence of α-SMA corroborated this finding, thus confirming a reduced transformation to the myofibroblast phenotype on more compliant substrates compared with cells on TCP in the presence of TGF-ß1. CONCLUSIONS: These data indicate that substrate compliance modulates TGF-ß1-induced expression of α-SMA and thus influences myofibroblast transformation in the corneal stroma. This provides further evidence that biomimetic biophysical cues inhibit myofibroblast transformation and participate in stabilizing the native cellular phenotype.


Asunto(s)
Transdiferenciación Celular/fisiología , Córnea/citología , Fibroblastos/fisiología , Miofibroblastos/fisiología , Resinas Acrílicas/química , Actinas/metabolismo , Animales , Western Blotting , Transdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Humanos , Hidrogeles/química , Inmunohistoquímica , ARN Mensajero/metabolismo , Conejos , Técnicas de Cultivo de Tejidos , Factor de Crecimiento Transformador beta1/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...