Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(3): e0045623, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38426722

RESUMEN

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Asunto(s)
Actinoplanes , N-Acetil Muramoil-L-Alanina Amidasa , Esporas , Hidrolasas , Pared Celular
2.
Int J Biol Macromol ; 256(Pt 2): 128468, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035962

RESUMEN

Bacillus amyloliquefaciens (BA) is considered as an important industrial strain for heterologous proteins production. However, its severe autolytic behavior leads to reduce the industrial production capacity of the chassis cells. In this study, we aimed to evaluate the autolysis of N-acetylmuranyl-L-alanine amidase in BA TCCC11018, and further slowed down the cell lysis for improved the heterologous protein production by a series of modifications. Firstly, we identified six N-acetylmuramic acid-L-alanines by bioinformatics, and analyzed the transcriptional levels at different culture time points by transcriptome and quantitative real-time PCR. Then, by establishing an efficient CRISPR-nCas9 gene editing method, N-acetylmuramic acid-L-alanine genes were knocked out or overexpressed to verify its effect on cell lysis. Then, by single or tandem knockout N-acetylmuramic acid-L-alanines, it was determined that the reasonable modification of LytH and CwlC1 can slow down cell lysis. After 48 h of culture, the autolysis rate of the mutant strain BA ΔlytH-cwlC1 decreased by 4.83 %, and the amylase activity reached 176 U/mL, which was 76.04 % higher than that of the control strain BA Δupp. The results provide a reference for mining the functional characteristics of autolysin in Bacillus spp., and provide from this study reveal valuable insights delaying the cell lysis and increasing heterologous proteins production.


Asunto(s)
Bacillus amyloliquefaciens , N-Acetil Muramoil-L-Alanina Amidasa , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Bacillus amyloliquefaciens/genética , Bacillus amyloliquefaciens/metabolismo , Ácidos Murámicos , Alanina
3.
Braz J Microbiol ; 55(1): 215-233, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38146050

RESUMEN

This study is an extension of our previous studies in which the lysozyme was isolated and purified from Bacillus subtilis BSN314 (Naveed et al., 2022; Naveed et al., 2023). In this study, the lysozyme genes were cloned into the E. coli BL21. For the expression of lysozyme in E. coli BL21, two target genes, Lyz-1 and Lyz-2, were ligated into the modified vector pET28a to generate pET28a-Lyz1 and pET28a-Lyz2, respectively. To increase the production rate of the enzyme, 0.5-mM concentration of IPTG was added to the culture media and incubated at 37 °C and 220 rpm for 24 h. Lyz1 was identified as N-acetylmuramoyl-L-alanine amidase and Lyz2 as D-alanyl-D-alanine carboxypeptidase. They were purified by multi-step methodology (ammonium sulfate, precipitation, dialysis, and ultrafiltration), and antimicrobial activity was determined. For Lyz1, the lowest MIC/MBC (0.25 µg/mL; with highest ZOI = 22 mm) were recorded against Micrococcus luteus, whereas the highest MIC/MBC with lowest ZOI were measured against Salmonella typhimurium (2.50 µg /mL; with ZOI = 10 mm). As compared with Aspergillus oryzae (MIC/MFC; 3.00 µg/mL), a higher concentration of lysozyme was required to control the growth of Saccharomyces cerevisiae (MIC/MFC; 50 µg/mL). Atomic force microscopy (AFM) was used to analyze the disintegrating effect of Lyz1 on the cells of selected Gram-positive bacteria, Gram-negative bacteria, and yeast. The AFM results showed that, as compared to Gram-negative bacteria, a lower concentration of lysozyme (Lyz1) was required to disintegrate the cell of Gram-positive bacteria.


Asunto(s)
Antiinfecciosos , Muramidasa , Muramidasa/genética , Muramidasa/farmacología , Muramidasa/metabolismo , Escherichia coli , Antiinfecciosos/farmacología , Bacillus subtilis/genética
4.
World J Microbiol Biotechnol ; 37(11): 196, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34654973

RESUMEN

The gene encoding N-acetylmuramoyl-L-alanine amidase in Latilactobacillus sakei isolated from a fermented meat product was cloned in two forms: its complete sequence (AmiC) and a truncated sequence without one of its anchoring LysM domains (AmiLysM4). The objective of this work was to evaluate the effect of LysM domain deletion on antibacterial activity as well the biochemical characterization of each recombinant protein. AmiC and AmiLysM4 were expressed in Escherichia coli BL21. Using a zymography method, two bands with lytic activity were observed, which were confirmed by LC-MS/MS analysis, with molecular masses of 71 kDa (AmiC) and 66 kDa (AmiLysM4). The recombinant proteins were active against Listeria innocua and Staphylococcus aureus strains. The inhibitory spectrum of AmiLysM4 was broader than AmiC as it showed inhibition of Leuconostoc mesenteroides and Weissella viridescens, both microorganisms associated with food decomposition. Optimal temperature and pH values were determined for both proteins using L-alanine-p-nitroanilide hydrochloride as a substrate for N-acetylmuramoyl-L-alanine amidase activity. Both proteins showed similar maximum activity values for pH (8) and temperature (50 °C). Furthermore, structural predictions did not show differences for the catalytic region, but differences were found for the region called 2dom-AmiLysM4, which includes 4 of the 5 LysM domains. Therefore, modification of the LysM domain offers new tools for the development of novel food biopreservatives.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Lactobacillaceae/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Antibacterianos/química , Dominio Catalítico , Clonación Molecular , Concentración de Iones de Hidrógeno , Lactobacillaceae/genética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Temperatura
5.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34502443

RESUMEN

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Asunto(s)
Clostridium botulinum tipo E/enzimología , Endopeptidasas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Clostridium/efectos de los fármacos , Clostridium/ultraestructura , Endopeptidasas/química , Endopeptidasas/aislamiento & purificación , Endopeptidasas/farmacología , Lipopolisacáridos/metabolismo , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Profagos/enzimología , Ácidos Teicoicos/metabolismo
6.
World J Microbiol Biotechnol ; 37(4): 65, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740141

RESUMEN

Lactic acid bacteria are the predominant group within meat products, whose metabolites such as bacteriocins and peptidoglycan hydrolases inhibit pathogenic or spoilage bacteria. Fermented meat products, as a salami, is a good source to analyze the viable microbiota, due to these products present a low risk to consumer health. The aim of this work was to identify the lactic acid bacteria with broad antibacterial activity present in salami, purify the protein responsible for this activity, achieve antagonistic spectrum and perform the biochemical characterization. Five strains from salami were selected, isolated and identified by 16S rRNA gene sequencing. The antimicrobial activity was evaluated by antagonism assay and zymography, using spoilage microorganisms commonly found in meat products. The strain that showed a broad antibacterial activity was Latilactobacillus sakei and the antibacterial activity was given by a protein with 75-kDa of molecular mass, identified by LC/MALDI-TOF/TOF. The sequence analysis showed 67% of identity with a N-acetylmuramoyl-L-alanine amidase protein with five non-identical LysM domains. The purified protein showed an optimal pH of 8.0 and heat resistance at 80 °C for 10 min. L. sakei strain displayed antibacterial activity against Gram-negative and Gram-positive spoilage microorganisms. The results of this study provide the information to use Latilactobacillus sakei as a starter culture which will provide the necessary metabolites to combat undesirable microorganisms. Additionally, the conditions and properties for the best application and use of the antibacterial protein produced by this strain. This protein may have a potential use in the food industry as a new antibacterial agent.


Asunto(s)
Antibacterianos/biosíntesis , Antibacterianos/farmacología , Lactobacillus/aislamiento & purificación , Lactobacillus/metabolismo , Productos de la Carne/microbiología , N-Acetil Muramoil-L-Alanina Amidasa/biosíntesis , Bacterias/efectos de los fármacos , Bacteriocinas/farmacología , Fermentación , Alimentos Fermentados/microbiología , Microbiología de Alimentos , Lactobacillus/genética , Pruebas de Sensibilidad Microbiana , Peso Molecular , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , ARN Ribosómico 16S
7.
Clin Exp Vaccine Res ; 9(2): 76-80, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32864363

RESUMEN

PURPOSE: N-acetylmuramoyl-l-alanine amidase known as lytA, is an immunogenic protein that plays an important role in the pathogenesis of Streptococcus pneumoniae. It is highly conserved among S. pneumoniae strains and is absent among other Streptococcus species. In the present study, the level of antibodies against the lytA recombinant protein was evaluated in healthy individuals' sera. MATERIALS AND METHODS: DNA was extracted from S. pneumoniae ATCC 49619 to amplify lytA gene by polymerase chain reaction assay. The lytA amplicon and pET28a vector were separately double digested using Nde-1 and Xho1 restriction enzymes and then ligated together with ligase enzyme. The recombinant plasmid was expressed in Escherichia coli BL21 strain and the lytA recombinant protein purified using nickel-nitrilotriacetic acid affinity chromatography. Western blot was carried to detect lytA recombinant protein. Sixty healthy individual's sera (at three age groups: group 1, <2; group 2, 2-40; and group 3, 60-90 years old) were collected and the titers of anti-lytA antibodies were determined. RESULTS: The lytA gene was highly expressed in E. coli BL21 host. The recombinant lytA protein was purified and confirmed by western blotting. Tukey test analysis showed that there were no significant differences among the age groups considering the anti-lytA titer of 10. However, at the anti-lytA titer of 60, significant differences were observed between group 1 vs. group 2 (p<0.001); group 1 vs. group 3 (p=0.003), and group 2 vs. group 3 (p=0.024). CONCLUSION: The lytA protein seems to be a highly immunogenic antigen and a potential target for developing vaccines against pneumococcal infections.

8.
Infect Genet Evol ; 84: 104412, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531516

RESUMEN

Tuberculosis caused by Mycobacterium tuberculosis (M. tuberculosis) infection remains a serious public threat despite decades of creative endeavors. There are few reports on the roles of M. tuberculosis enzymes involved in cell envelope biosynthesis in pathogen survival and persistence. M. tuberculosis Rv3717 encodes N-acetylmuramoyl-l-alanine amidase, a cell-wall hydrolase that hydrolyzes the bond between N-acetylmuramic acid and l-alanine in cell-wall peptidoglycan. In this paper, we demonstrated the Rv3717 promoted the survival of Mycolicibacterium smegmatis(M. smegmatis) within macrophages. More importantly, we demonstrated that this effect is because MS_Rv3717 reduces the release of host pro-inflammatory cytokines such as IL-1ß, IL-6, IL-12 p40, TNF-α, and increased transcription of anti-inflammatory cytokine IL-10. At the same time, MS_Rv3717 inhibits apoptosis by inhibiting the activation of Caspase-3/9, reducing the host's elimination of M. smegmatis. Finally, from a bacterial perspective, we found Rv3717 decreased the survival of M. smegmatis under stresses such as SDS and low pH. This is the first report of the involvement of Mycobacterium cell envelope biosynthetic enzyme in host-pathogen interaction.


Asunto(s)
Apoptosis/inmunología , Proteínas Bacterianas/metabolismo , Caspasas/metabolismo , Mycobacteriaceae/genética , Mycobacteriaceae/fisiología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Caspasas/genética , Supervivencia Celular , Biología Computacional , Secuencia Conservada , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Inmunidad Innata , Ratones , Monocitos/microbiología , Monocitos/fisiología , Células RAW 264.7 , Estrés Fisiológico , Células THP-1
9.
Biol Chem ; 401(2): 249-262, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31299006

RESUMEN

Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.


Asunto(s)
Amidohidrolasas/aislamiento & purificación , Amidohidrolasas/metabolismo , Peptidoglicano/metabolismo , Rickettsia conorii/enzimología , Amidohidrolasas/química , Peptidoglicano/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
10.
Cell Rep ; 27(8): 2468-2479.e3, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31116989

RESUMEN

Mycobacterium tuberculosis, the causative agent of tuberculosis, withstands diverse environmental stresses in the host. The periplasmic protease HtrA is required only to survive extreme conditions in most bacteria but is predicted to be essential for normal growth in mycobacteria. We confirm that HtrA is indeed essential in Mycobacterium smegmatis and interacts with another essential protein of unknown function, LppZ. However, the loss of any of three unlinked genes, including those encoding Ami3, a peptidoglycan muramidase, and Pmt, a mannosyltransferase, suppresses the essentiality of both HtrA and LppZ, indicating the functional relevance of these genes' protein products. Our data indicate that HtrA-LppZ is required to counteract the accumulation of active Ami3, which is toxic under the stabilizing influence of Pmt-based mannosylation. This suggests that HtrA-LppZ blocks the toxicity of a cell wall enzyme to maintain mycobacterial homeostasis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Mycobacterium smegmatis/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Periplasmáticas/metabolismo , Serina Endopeptidasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glicosilación , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Muramidasa/genética , Muramidasa/metabolismo , Mutagénesis Sitio-Dirigida , Mycobacterium smegmatis/crecimiento & desarrollo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Dominios PDZ , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Serina Endopeptidasas/química , Serina Endopeptidasas/genética
11.
Viruses ; 10(7)2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029517

RESUMEN

The antibiotic-resistant bacterium Paenibacillus larvae is the causative agent of American foulbrood (AFB), currently the most destructive bacterial disease in honeybees. Phages that infect P. larvae were isolated as early as the 1950s, but it is only in recent years that P. larvae phage genomes have been sequenced and annotated. In this study we analyze the genomes of all 48 currently sequenced P. larvae phage genomes and classify them into four clusters and a singleton. The majority of P. larvae phage genomes are in the 38⁻45 kbp range and use the cohesive ends (cos) DNA-packaging strategy, while a minority have genomes in the 50⁻55 kbp range that use the direct terminal repeat (DTR) DNA-packaging strategy. The DTR phages form a distinct cluster, while the cos phages form three clusters and a singleton. Putative functions were identified for about half of all phage proteins. Structural and assembly proteins are located at the front of the genome and tend to be conserved within clusters, whereas regulatory and replication proteins are located in the middle and rear of the genome and are not conserved, even within clusters. All P. larvae phage genomes contain a conserved N-acetylmuramoyl-l-alanine amidase that serves as an endolysin.


Asunto(s)
Bacteriófagos/clasificación , Bacteriófagos/genética , Genoma Viral , Paenibacillus larvae/virología , Animales , Bacteriófagos/aislamiento & purificación , Abejas , Proteínas de la Cápside/genética , Genómica , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Filogenia , Análisis de Secuencia de ADN
12.
Biomark Med ; 10(12): 1225-1229, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911590

RESUMEN

AIM: Sepsis is a critical condition that leads to high mortality and is the most common cause of death in intensive care units. Despite exhaustive efforts by the scientific community, a reliable biomarker for diagnosis, evolution and prognosis of sepsis is still lacking. Results & methodology: Here, using high-throughput proteomics, we describe N-acetylmuramoyl-l-alanine amidase as a novel candidate for differentiating infectious and noninfectious inflammatory syndromes. DISCUSSION & CONCLUSION: This is the first description of N-acetylmuramoyl-l-alanine amidase as a biomarker that can be used alone or in conjunction with other biomarkers to facilitate the diagnosis of sepsis in the critically ill.


Asunto(s)
Biomarcadores/sangre , N-Acetil Muramoil-L-Alanina Amidasa/sangre , Proteómica , Sepsis/diagnóstico , Proteína C-Reactiva/análisis , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Medición de Intercambio de Deuterio , Humanos , Unidades de Cuidados Intensivos , Espectrometría de Masas , Sepsis/patología
13.
Bacteriophage ; 6(3): e1220349, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27738559

RESUMEN

American Foulbrood Disease, caused by the bacterium Paenibacillus larvae, is one of the most destructive diseases of the honeybee, Apis mellifera. Our group recently published the sequences of 9 new phages with the ability to infect and lyse P. larvae. Here, we characterize the genomes of these P. larvae phages, compare them to each other and to other sequenced P. larvae phages, and putatively identify protein function. The phage genomes are 38-45 kb in size and contain 68-86 genes, most of which appear to be unique to P. larvae phages. We classify P. larvae phages into 2 main clusters and one singleton based on nucleotide sequence identity. Three of the new phages show sequence similarity to other sequenced P. larvae phages, while the remaining 6 do not. We identified functions for roughly half of the P. larvae phage proteins, including structural, assembly, host lysis, DNA replication/metabolism, regulatory, and host-related functions. Structural and assembly proteins are highly conserved among our phages and are located at the start of the genome. DNA replication/metabolism, regulatory, and host-related proteins are located in the middle and end of the genome, and are not conserved, with many of these genes found in some of our phages but not others. All nine phages code for a conserved N-acetylmuramoyl-L-alanine amidase. Comparative analysis showed the phages use the "cohesive ends with 3' overhang" DNA packaging strategy. This work is the first in-depth study of P. larvae phage genomics, and serves as a marker for future work in this area.

14.
FEBS J ; 283(7): 1336-50, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26833702

RESUMEN

UNLABELLED: To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. DATABASE: The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Nanoporos , Nostoc/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Microscopía Fluorescente , Modelos Moleculares , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Nostoc/citología , Nostoc/genética , Peptidoglicano/química , Peptidoglicano/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura
15.
Appl Microbiol Biotechnol ; 99(20): 8563-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25940238

RESUMEN

Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 °C, and all activity was lost after 1 h of incubation at 70 °C. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.


Asunto(s)
N-Acetil Muramoil-L-Alanina Amidasa/aislamiento & purificación , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Pediococcus/enzimología , Secuencia de Aminoácidos , Cromatografía en Gel , Clonación Molecular , Estabilidad de Enzimas , Expresión Génica , Concentración de Iones de Hidrógeno , Viabilidad Microbiana/efectos de los fármacos , Micrococcus/efectos de los fármacos , Datos de Secuencia Molecular , Peso Molecular , N-Acetil Muramoil-L-Alanina Amidasa/química , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Temperatura
16.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2543-54, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24311595

RESUMEN

Bacterial N-acetylmuramoyl-L-alanine amidases are cell-wall hydrolases that hydrolyze the bond between N-acetylmuramic acid and L-alanine in cell-wall glycopeptides. Rv3717 of Mycobacterium tuberculosis has been identified as a unique autolysin that lacks a cell-wall-binding domain (CBD) and its structure has been determined to 1.7 Šresolution by the Pt-SAD phasing method. Rv3717 possesses an α/ß-fold and is a zinc-dependent hydrolase. The structure reveals a short flexible hairpin turn that partially occludes the active site and may be involved in autoregulation. This type of autoregulation of activity of PG hydrolases has been observed in Bartonella henselae amidase (AmiB) and may be a general mechanism used by some of the redundant amidases to regulate cell-wall hydrolase activity in bacteria. Rv3717 utilizes its net positive charge for substrate binding and exhibits activity towards a broad spectrum of substrate cell walls. The enzymatic activity of Rv3717 was confirmed by isolation and identification of its enzymatic products by LC/MS. These studies indicate that Rv3717, an N-acetylmuramoyl-L-alanine amidase from M. tuberculosis, represents a new family of lytic amidases that do not have a separate CBD and are regulated conformationally.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Conformación Proteica , Tuberculosis/microbiología , Zinc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...