Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 478: 135528, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154476

RESUMEN

Microplastics (MPs) in agricultural plastic film mulching system changes microbial functions and nutrient dynamics in soils. However, how biodegradable MPs impact the soil gross nitrogen (N) transformations and crop N uptake remain significantly unknown. In this study, we conducted a paired labeling 15N tracer experiment and microbial N-cycling gene analysis to investigate the dynamics and mechanisms of soil gross N transformation processes in soils amended with conventional (polyethylene, PE) and biodegradable (polybutylene adipate co-terephthalate, PBAT) MPs at concentrations of 0 %, 0.5 %, and 2 % (w/w). The biodegradable MPs-amended soils showed higher gross N mineralization rates (0.5-16 times) and plant N uptake rates (16-32 %) than soils without MPs (CK) and with conventional MPs. The MPs (both PE and PBAT) with high concentration (2 %) increased gross N mineralization rates compared to low concentration (0.5 %). Compare to CK, MPs decreased the soil gross nitrification rates, except for PBAT with 2 % concentration; while PE with 0.5 % concentration and PBAT with 2 % concentration increased but PBAT with 0.5 % concentration decreased the gross N immobilization rates significantly. The results indicated that there were both a concentration effect and a material effect of MPs on soil gross N transformations. Biodegradable MPs increased N-cycling gene abundance by 60-103 %; while there was no difference in the abundance of total N-cycling genes between soils without MPs and with conventional MPs. In summary, biodegradable MPs increased N cycling gene abundance by providing enriched nutrient substrates and enhancing microbial biomass, thereby promoting gross N transformation processes and maize N uptake in short-term. These findings provide insights into the potential consequences associated with the exposure of biodegradable MPs, particularly their impact on soil N cycling processes.


Asunto(s)
Microplásticos , Ciclo del Nitrógeno , Nitrógeno , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Nitrógeno/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Poliésteres/metabolismo , Poliésteres/química , Biodegradación Ambiental , Plásticos Biodegradables/metabolismo , Polietileno/metabolismo , Nitrificación
2.
Sci Total Environ ; 944: 173652, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38825209

RESUMEN

Straw incorporation with nitrogen (N) fertilization is crucial for enhancing soil fertility and minimizing negative environmental impacts by altering the magnitude and direction of soil N transformation processes. However, the response of soil N transformations to long-term carbon (C) and N inputs, and their primary driving factors, remain poorly understood. Thus, a 15N tracing study was conducted to investigate the effects of straw incorporation (AS) and straw removal (NS) with N levels of 0, 150 and 250 kg N ha-1 per season (N0, N150 and N250) on gross N transformation rates in the North China Plain after 6-year trial. Results indicated that at N0, AS significantly increased soil microbial immobilization of nitrate (NO3--N, INO3) and autotrophic nitrification rates (ONH4) compared to NS. With N fertilization, AS increased gross N immobilization (Itotal), ammonium-N immobilization (NH4+-N, INH4), net NH4+-N immobilization (InetNH4) and net NH4+-N absorption rates (AnetNH4). Specifically, at N150, AS significantly increased recalcitrant organic N mineralization rate (MNrec), while significantly reducing ONH4, labile organic N mineralization (MNlab), and gross N mineralization rates (Mtotal). At N250, AnetNH4, MNlab, MNrec and ONH4 under AS were significantly higher than under NS. Nitrogen application significantly increased ONH4, Itotal and INO3 under two straw management practices, and enhanced INH4 and InetNH4 under AS. Compared to N250, N150 significantly increased INH4 and InetNH4 under AS, while decreasing Mtotal. Opposite results were observed under NS. Meanwhile, NO3--N and dissolved organic carbon (DOC) were master factors controlling immobilization, total nitrogen (TN), hydrolysable NH4+-N (HNN) and stable organic N significantly affected AnetNH4, while labile organic N were the key environmental factors affecting MNrec, all of which positively influenced the rates of assimilation, mineralization and clay mineral adsorption. Overall, this study provides new insights into reducing N fertilization under straw incorporation by quantifying soil N transformation processes.


Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , China , Nitrógeno/análisis , Suelo/química , Agricultura/métodos , Nitrificación , Microbiología del Suelo , Monitoreo del Ambiente , Agua Subterránea/química
3.
Chemosphere ; 358: 142175, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679173

RESUMEN

Carbamazepine (CBZ) is a widely used anticonvulsant drug that has been detected in aquatic environments. This study investigated the toxicity of its by-products (CBZ-BPs), which may surpass CBZ. Unlike the previous studies, this study offered a more systematic approach to identifying toxic BPs and inferring degradation pathways. Furthermore, quadrupole time-of-flight (QTOF) and density functional theory (DFT) calculations were employed to analyze CBZ-BP structures and degradation pathways. Evaluation of total organic carbon (TOC) and total nitrogen (TN) mineralization rates, revealed carbon (C) greater susceptibility to mineralization compared with nitrogen (N). Furthermore, three rules were established for CBZ decarbonization and N removal during degradation, observing the transformation of aromatic compounds into aliphatic hydrocarbons and stable N-containing organic matter over time. Five potentially highly toxic BPs were screened from 14 identified BPs, with toxicity predictions guiding the selection of commercial standards for quantification and true toxicity testing. Additionally, BP207 emerged as the most toxic, supported by the predictive toxicity accumulation model (PTAM). Notably, highly toxic BPs feature an acridine structure, indicating its significant contribution to toxicity. These findings offered valuable insights into the degradation mechanisms of emerging contaminants and the biosafety of aquatic environments during deep oxidation.


Asunto(s)
Carbamazepina , Peróxido de Hidrógeno , Contaminantes Químicos del Agua , Carbamazepina/toxicidad , Carbamazepina/química , Contaminantes Químicos del Agua/toxicidad , Peróxido de Hidrógeno/química , Rayos Ultravioleta , Nitrógeno , Anticonvulsivantes/toxicidad , Anticonvulsivantes/química
4.
J Environ Manage ; 358: 120886, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648726

RESUMEN

Intercropping-driven changes in nitrogen (N)-acquiring microbial genomes and functional expression regulate soil N availability and plant N uptake. However, present data seem to be limited to a specific community, obscuring the viewpoint of entire N-acquiring microbiomes and functions. Taking maize intercropped with legumes (peanut and soybean) and non-legumes (gingelly and sweet potato) as models, we studied the effects of intercropping on N transformations and N-acquiring microbiomes in rhizosphere soil across four maize growth stages. Meanwhile, we compiled promising strategies such as random forest analysis and structural equation model for the exploitation of the associations between microbe-driven N dynamics and soil-plant N trade-offs and maize productivity. Compared with monoculture, maize intercropping significantly increased the denitrification rate of rhizosphere soils across four maize growth stages, net N mineralization in the elongation and flowering stages, and the nitrification rate in the seedling and mature stages. The abundance of most N-acquiring microbial populations was influenced significantly by intercropping patterns and maize growth stages. Soil available N components (NH4+-N, NO3--N, and dissolved organic N content) showed a highly direct effect on plant N uptake, which mainly mediated by N transformations (denitrification rate) and N-acquiring populations (amoB, nirK3, and hzsB genes). Overall, the adaptation of N-acquiring microbiomes to changing rhizosphere micro-environments caused by intercropping patterns and maize development could promote soil N transformations and dynamics to meet demand of maize for N nutrient. This would offer another unique perspective to manage the benefits of the highly N-effective and production-effective intercropping ecosystems.


Asunto(s)
Nitrógeno , Rizosfera , Suelo , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Nitrógeno/metabolismo , Suelo/química , Microbiología del Suelo , Microbiota , Agricultura/métodos
5.
J Environ Manage ; 356: 120643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513582

RESUMEN

Hydrothermal aqueous phase (HAP) contains abundant organics and nutrients, which have potential to partially replace chemical fertilizers for enhancing plant growth and soil quality. However, the underlying reasons for low available nitrogen (N) and high N loss in dryland soil remain unclear. A cultivation experiment was conducted using HAP or urea to supply 160 mg N kg-1 in dryland soil. The dynamic changes of soil organic matters (SOMs), pH, N forms, and N cycling genes were investigated. Results showed that SOMs from HAP stimulated urease activity and ureC, which enhanced ammonification in turn. The high-molecular-weight SOMs relatively increased during 5-30 d and then biodegraded during 30-90 d, which SUV254 changed from 0.51 to 1.47 to 0.29 L-1 m-1. This affected ureC that changed from 5.58 to 5.34 to 5.75 lg copies g-1. Relative to urea, addition HAP enhanced ON mineralization by 8.40 times during 30-90 d due to higher ureC. It decreased NO3-N by 65.35%-77.32% but increased AOB and AOA by 0.25 and 0.90 lg copies g-1 at 5 d and 90 d, respectively. It little affected nirK and increased nosZ by 0.41 lg copies g-1 at 90 d. It increased N loss by 4.59 times. The soil pH for HAP was higher than that for urea after 11 d. The comprehensive effects of high SOMs and pH, including ammonification enhancement and nitrification activity inhibition, were the primary causes of high N loss. The core idea for developing high-efficiency HAP fertilizer is to moderately inhibit ammonification and promote nitrification.


Asunto(s)
Fertilizantes , Suelo , Nitrógeno/metabolismo , Microbiología del Suelo , Amoníaco , Nitrificación , Urea
6.
Bioresour Technol ; 394: 130221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38109975

RESUMEN

Partial denitrification (PD) is an alternative to providing NO2- for the anaerobic ammonium oxidation (anammox) process. In this study, three upflow anaerobic sludge blankets (UASB) were used to investigate the effect of an external electric field on PD performance. The results indicated that the maximum nitrite transformation ratio (NTR) reached 76.3 %, with an average NTR of 54.1 %, in the presence of external electric field, whereas the average NTR of the control was only 49.8 %. The fitted maximum specific nitrate reduction rates of PD1, PD2, and PD3 were 83.7, 90.5, and 92.3 mg N g-1VSS h-1, respectively, according to the Haldane model analysis. Microbial community analysis demonstrated that the abundance of Thauera, Comamonas, and Accumulibacter increased with electric assistance. In summary, UASB reactor with electrodes set in the upper region was most feasible for the stable PD process, providing an alternative for developing a coupled PD-anammox process.


Asunto(s)
Desnitrificación , Aguas del Alcantarillado , Anaerobiosis , Nitrógeno/análisis , Reactores Biológicos , Oxidación-Reducción , Nitritos
7.
Environ Sci Pollut Res Int ; 30(54): 116162-116174, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37910350

RESUMEN

Nitrification inhibitors (NIs) are considered as an effective strategy for reducing nitrification rate and related environmental nitrogen (N) loss. However, whether plant-derived biological NIs had an advantage over chemical NIs in simultaneously inhibiting nitrification rate and N2O production remains unclear. Here, we conducted an aerobic 15N microcosmic incubation experiment to compare the effects of a biological NI (methyl 3-(4-hydroxyphenyl) propionate, MHPP) with three chemical NIs, 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin), dicyandiamide (DCD), and 3,4-dimethylpyrazole phosphate (DMPP) on (i) gross N mineralization and nitrification rate and (ii) the relative importance of nitrification and denitrification in N2O emission in a calcareous soil. The results showed that DMPP significantly inhibited m_gross rate (P < 0.05), whereas DCD, nitrapyrin, and MHPP only numerically inhibited it. Gross N nitrification (n_gross) rates were inhibited by 9.48% in the DCD treatment to 51.5% in the nitrapyrin treatment. Chemical NIs primarily affected the amoA gene abundance of ammonia-oxidizing bacteria (AOB), whereas biological NIs affected the amoA gene abundance of ammonia-oxidizing archaea (AOA) and AOB. AOB's community composition was more susceptible to NIs than AOA, and NIs mainly targeted Nitrosospira clusters of AOB. Chemical NIs of DCD, DMPP, and nitrapyrin proportionally reduced N2O production from nitrification and denitrification. However, the biological NI MHPP stimulated short-term N2O emission and increased the proportion of N2O from denitrification. Our findings showed that the influence of NIs on gross N mineralization rate (m_gross) was dependent on the NI type. MHPP exhibited a moderate n_gross inhibitory capacity compared with the three chemical NIs. The mechanisms of chemical and biological NIs inhibiting n_gross can be partly attributed to changes in the abundance and community of ammonia oxidizers. A more comprehensive evaluation is needed to determine whether biological NIs have advantages over chemical NIs in inhibiting greenhouse gas emissions.


Asunto(s)
Betaproteobacteria , Suelo , Suelo/química , Nitrificación , Amoníaco/análisis , Yoduro de Dimetilfenilpiperazina/farmacología , Microbiología del Suelo , Archaea , Fosfatos/farmacología , Oxidación-Reducción
8.
Glob Chang Biol ; 29(24): 7117-7130, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37800353

RESUMEN

Replacing synthetic fertilizer by organic manure has been shown to reduce emissions of nitrous oxide (N2 O), but the specific roles of ammonia oxidizing microorganisms and gross nitrogen (N) transformation in regulating N2 O remain unclear. Here, we examined the effect of completely replacing chemical fertilizer with organic manure on N2 O emissions, ammonia oxidizers, gross N transformation rates using a 13-year field manipulation experiment. Our results showed that organic manure reduced cumulative N2 O emissions by 16.3%-210.3% compared to chemical fertilizer. The abundance of ammonia oxidizing bacteria (AOB) was significantly lower in organic manure compared with chemical fertilizer during three growth stages of maize. Organic manure also significantly decreased AOB alpha diversity and changed their community structure. However, organic manure substitution increased the abundance of ammonia oxidizing archaea and the alpha diversity of comammox Nitrospira compared to chemical fertilizer. Interestingly, organic manure decreased organic N mineralization by 23.2%-32.9%, and autotrophic nitrification rate by 10.5%-45.4%, when compared with chemical fertilizer. This study also found a positive correlation between AOB abundance, organic N mineralization and gross autotrophic nitrification rate with N2 O emission, and their contribution to N2 O emission was supported by random forest analysis. Our study highlights the key roles of ammonia oxidizers and N transformation rates in predicting cropland N2 O.


Asunto(s)
Fertilizantes , Suelo , Suelo/química , Fertilizantes/análisis , Amoníaco/análisis , Estiércol , Nitrógeno/análisis , Microbiología del Suelo , Oxidación-Reducción , Archaea , Nitrificación
9.
J Environ Manage ; 348: 119238, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820433

RESUMEN

There are contrasting reports about whether and how vegetation types influence litter and soil properties. Accurate and comprehensive assessment of the complex relationship between vegetation types, litter and soil characteristics in semi-arid mountain landscapes is almost unknown. Thus, the purpose of this research was to study the effects of (1) Carpinus orientalis Miller., (2) Crataegus melanocarpa M.B., (3) Rhamnus pallasii Fisch. and C.A.Mey, (4) Agropyron longiaristatum Boiss, (5) Bromus tomentolus Bioss. and (6) Hordeum vulgare L. on litter properties and soil physical, chemical, biochemical and biological features in northern Iran. A sampling of the organic layer (litter) and mineral soil (30 × 30 cm) from a depth of 0-10 cm was done for all characteristics in the summer season and for soil microclimate and biological characteristics in the summer and fall seasons. A total of 90 litter samples, 90 soil samples in summer and 90 soil samples in fall (6 vegetation types × 2 seasons × 15 samples) were taken from the area and transferred to the laboratory. Results showed that the Carpinus improved litter properties, soil organic matter contents, total N and available nutrients (P, K, Ca and Mg) and enzyme activities (urease, acid phosphatase, arylsulfatase and invertase). In addition, the population of earthworm groups (epigeic, anecic, and endogeic), acarina, collembola, nematodes, protozoa (especially in the fall season) and bacteria and fungi (especially in the summer season) under Carpinus significantly increased. Data analysis demonstrated higher soil fertility and biological activities in the woody vegetation, which can be assigned to the higher litter input and nutrients. Overall, the findings of this study showed that woody vegetation, especially Carpinus, can improve soil properties at high altitudes of mountainous, semi-arid sites that are often considered as especially fragile and sensitive ecosystems.


Asunto(s)
Artrópodos , Ecosistema , Animales , Suelo/química , Irán
10.
J Hazard Mater ; 455: 131527, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163892

RESUMEN

Nitrate is a significant constituent of the total nitrogen pool in shallow aquifers and poses an escalating threat to groundwater resources, making it crucial to comprehend the source, conversion, and elimination of nitrogen using appropriate techniques. Although dual-isotope dynamics in nitrate have been widely used, uncertainties remain regarding the asynchronously temporal changes in δ18O-NO3- and δ15N-NO3- observed in hypoxic aquifers. This study aimed to investigate changes in nitrogen sources and transformations using temporal changes in field-based NO3- isotopic composition, hydro-chemical variables, and environmental DNA profiling, as the groundwater table varied. The results showed that the larger enrichment in δ18O-NO3- (+13‰) compared with δ15N-NO3- (-2‰) on average during groundwater table rise was due to a combination of factors, including high 18O-based atmospheric N deposition, canopies nitrification, and soil nitrification transported vertically by rainfalls, and 18O-enriched O2 produced through microbial and root respiration within denitrification. The strong association between functional gene abundance and nitrogen-related indicators suggests that anammox was actively processed with nitrification but in small bacterial population during groundwater table rise. Furthermore, bacterial species associated with nitrogen-associated gradients provided insight into subsurface nitrogen transformation, with Burkholderiaceae species and Pseudorhodobacter potentially serving as bioindicators of denitrification, while Candidatus Nitrotogn represents soil nitrification. Fluctuating groundwater tables can cause shifts in hydro-chemical and isotopic composition, which in turn can indicate changes in nitrogen sources and transformations. These changes can be used to improve input sources for mixture models and aid in microbial remediation of nitrate.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Nitrógeno/análisis , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Oxígeno/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/química , Suelo/química , China
11.
Sci Total Environ ; 882: 163641, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080304

RESUMEN

The effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of 15N-labeled pot experiments were carried out with Solidago canadensis L. (S. canadensis), an invasive plant, and the Ntrace tool was used to clarify the preferred inorganic N form and its effects on soil N transformation. According to the results, nitrate-N (NO3--N) uptake rates by S. canadensis were 2.38 and 2.28 mg N kg-1 d-1 in acidic and alkaline soil, respectively, which were significantly higher than the ammonium-N (NH4+-N) uptake rates (1.76 and 1.56 mg N kg-1 d-1, respectively), indicating that S. canadensis was a NO3--N-preferring plant, irrespective of pH condition. Gross N mineralization rate was 0.41 mg N kg-1 d-1 in alkaline soil in the presence of S. canadensis L., which was significantly lower than that in the control (no plant, CK, 2.44 mg N kg-1 d-1). Gross autotrophic nitrification rate also decreased from 5.95 mg N kg-1 d-1 in the CK to 0.04 mg N kg-1 d-1 in the presence of S. canadensis in alkaline soil. However, microbial N immobilization rate increased significantly from 1.09 to 2.16 mg N kg-1 d-1, and from 0.02 to 2.73 mg N kg-1 d-1 after S. canadensis planting, in acidic and alkaline soil, respectively. Heterotrophic nitrification rate was stimulated in the presence of S. canadensis to provide NO3--N to support the N requirements of plants and microbes. The results suggested that S. canadensis can influence the mineralization-immobilization turnover (MIT) to optimize its N requirements while limiting N supply for other plants in the system. The results of the present study enhance our understanding of the competitiveness and mechanisms of invasion of alien plants.


Asunto(s)
Solidago , Nitrógeno/análisis , Suelo , Nitrificación , Nitratos/análisis
12.
Water Res ; 235: 119837, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36905735

RESUMEN

Ecological restoration of wetland plants has emerged as an environmentally-friendly and less carbon footprint method for treating secondary effluent wastewater. Root iron plaque (IP) is located at the important ecological niches in constructed wetlands (CWs) ecosystem and is the critical micro-zone for pollutants migration and transformation. Root IP can affect the chemical behaviors and bioavailability of key elements (C, N, P) since its formation/dissolution is a dynamic equilibrium process jointly influenced by rhizosphere habitats. However, as an efficient approach to further explore the mechanism of pollutant removal in CWs, the dynamic formation of root IP and its function have not been fully studied, especially in substrate-enhanced CWs. This article concentrates on the biogeochemical processes between Fe cycling involved in root IP with carbon turnover, nitrogen transformation, and phosphorus availability in CWs rhizosphere. As IP has the potential to enhance pollutant removal by being regulated and managed, we summarized the critical factors affecting the IP formation from the perspective of wetland design and operation, as well as emphasizing the heterogeneity of rhizosphere redox and the role of key microbes in nutrient cycling. Subsequently, interactions between redox-controlled root IP and biogeochemical elements (C, N, P) are emphatically discussed. Additionally, the effects of IP on emerging contaminants and heavy metals in CWs rhizosphere are assessed. Finally, major challenges and outlooks for future research in regards to root IP are proposed. It is expected that this review can provide a new perspective for the efficient removal of target pollutants in CWs.


Asunto(s)
Contaminantes Ambientales , Hierro , Humedales , Ecosistema , Aguas Residuales , Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos
13.
Sci Total Environ ; 856(Pt 2): 159116, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36179828

RESUMEN

Soil net nitrogen (N) mineralization (Nmin) is a key process in the forest N cycle regulating the N availability of plant growth. However, it is unclear how N transformation responds to soil hydraulic properties changes. The soil inorganic N pools and N transformation in the early growing season in karst forestlands were investigated by using an intact soil core in situ incubation method. Three different typical vegetation types were selected. The results showed that the mean values of NH4+-N, NO3--N, and inorganic N were 1.05-1.36, 1.55-3.85, and 1.05-2.34 times greater for ferns than for shrubs. NO3--N and NH4+-N mainly occur at soil depths of 0-5 cm and 5-15 cm, respectively. The soil Nmin was 2.21-232.03 times higher at 0-5 cm than at the 10-15 cm. Net N immobilization was found for the juvenile ferns and shrubs at 5-15 cm. The Nmin of juvenile and mature ferns was 1.90-11.78 times and 1.17-16.20 times higher than shrubs, respectively, and shrubs had the highest Ks (69.91 mm h-1) but the lowest water-holding capacity. Both ferns and shrubs were able to hold more water and available water was richest in mature fern soil, which provided an extra water source for fern growth. Principal component analysis (PCA) was used to test whether the measured variables affected Nmin, and the results showed that soil organic matter (SOM), pH, and saturated volumetric water content (θs) were the main soil factors affecting Nmin. In addition, the NH4+-N, NO3--N, and inorganic N stocks were reduced by 3.98 %-59.04 %, 48.07 %-63.30 % and 8.18 %-57.37 % after rainwater input, respectively. Our findings suggest that soil inorganic N and Nmin in the karst forest were regulated by soil hydraulic properties. Changes in the soil hydraulic properties might therefore influence the functioning of soil N transformation.


Asunto(s)
Bosques , Suelo , Suelo/química , Nitrógeno/análisis , China , Agua , Carbonatos
14.
Bioresour Technol ; 367: 128235, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36332857

RESUMEN

This study explored the coupling relationships between denitrifiers and N-transformation using multi-level (DNA, RNA and enzyme) and multi-aspect (abundance, diversity, structure, key community, network pattern, and functional module) analyses during cattle-manure (CM) and biochar (CMB) composting. Amino sugar-N (ASN, 0.914) and hydrolysable unknown-N (-0.724) were main organic-N components mediating NH4+-N in CM and CMB, respectively. Biochar lowered nirK, nirS, and nosZ genes copies, up-regulated nir gene transcripts, and inhibited nitrite reductase (NIR) activity. For nirK-denitrifiers, Luteimonas was predominant taxa influencing NO2--N and amino acid-N (AAN). Unclassified_k_norank_d_Bacteria and unclassified_p_Proteobacteria regulated NO3--N and ASN, respectively. These three genera played crucial roles in mediating NIR activity and nosZ/nirK. For nirS-denitrifiers, Paracoccus and Pseudomonas mediated NH4+-N and AAN, respectively, and they were vital genera regulating NO3--N, ASN and NIR activity. Furthermore, nirK-denitrifiers was major contributor to denitrification. Overall, functional denitrifiers might simultaneously participate in multiple N-transformation processes.


Asunto(s)
Compostaje , Bovinos , Animales , Estiércol/microbiología , Nitrógeno , Desnitrificación/genética , Proteobacteria , Suelo/química , Microbiología del Suelo
15.
Sci Total Environ ; 849: 157858, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35934040

RESUMEN

Application of Zn fertilizers to agricultural field is a simple and effective way for farmers to manage Zn deficient stress in soils to avoid yield lose. Although a synergistic effect of Zn on N transformation in soil has been reported, the mechanism is not fully understood yet. In this study, we planted rice in soils with different combinations of Zn and N supply, and analyzed the plant growth and N uptake, the N transformation, microbial communities, enzyme activities and gene expression levels in rhizosphere soil to reveal the underlying mechanism. Results showed that Zn application promoted the rice growth and N uptake, increased the soil alkali-hydrolyzed N and NH4+, but decreased NO3- and inhibited NH3 volatilization from the rhizosphere soil under optimal N condition. Zn supply significantly increased the relative abundances of Sphingomonas, Gaiella, subgroup_6, and Gemmatimonas, but decreased nitrosifying bacteria Ellin6067; while increased saprophytic fungi Schizothecium and Mortierella, but decreased pathogenic fungi Gaeumannomyces, Acremonium, Curvularia, and Fusarium in the rhizosphere soil under optimal N condition. Meanwhile, Zn application elevated the activities of protease, cellulase and dehydrogenase, and up-regulated the expression levels of napA, nirS, cnorB, and qnorB genes involved in the denitrification process in rice rhizosphere soil under optimal N condition. These results indicated Zn application could facilitate the soil N transformation and improved its availability by modifying both bacterial and fungal communities, and altering the soil enzyme activities and functional gene expression levels, ultimately promoted the N uptake and biomass of rice plant. However, this synergistic effect of Zn on rice growth, N uptake and soil N transformation strongly depended on the external N conditions, as no significant changes were observed under high N condition. Our results indicated that Zn co-fertilized with appropriate application of N is a useful strategy to improve the N bioavailability in rice rhizosphere soil and enhance the N uptake in rice plant.


Asunto(s)
Celulasas , Microbiota , Oryza , Álcalis , Bacterias/metabolismo , Fertilizantes/análisis , Hongos/metabolismo , Expresión Génica , Nitrógeno/análisis , Oryza/metabolismo , Oxidorreductasas , Péptido Hidrolasas , Rizosfera , Suelo , Microbiología del Suelo , Zinc
16.
Sci Total Environ ; 848: 157766, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926635

RESUMEN

It has been widely accepted that biochar has a great potential of mitigating soil nitrous oxide (N2O) emission. However, the underlying mechanism about how biochar affects nitrogen transformation and the pathways of soil N2O production is under discussion. A 15N-tracer incubation experiment was conducted to investigate the short-term effects of biochar on soil N transformation rates and source partitioning of N2O emissions in soils from a poplar plantation system. A two-factor experimental design was adopted using biogas digestate slurry and biochar as soil amendments. In total, there were 12 treatments, including three rates of biochar: B0 (control), B2 (80 t ha-1), and B3 (120 t ha-1), and four rates of biogas digestate slurry: C (0 m3 ha-1), L (125 m3 ha-1), M (250 m3 ha-1), and H (375 m3 ha-1). We observed significantly lower rates of net nitrification (Nn) and mineralization (Mn) in biochar-treated soils. The 15N tracer analysis revealed a significant decrease in gross autotrophic (ONH4), heterotrophic nitrification (ONrec), and mineralization (MNorg) rates while an increase in gross immobilization (INH4 and INO3) rates in biochar amended soils. When biogas slurry was applied, biochar only significantly reduced ONH4 except in the moderate slurry treatment. Regardless of the slurry application, biochar consistently suppressed N2O emission by 58-89 %, and nitrification was the dominant pathway accounting contributing >90 % to cumulative N2O emissions. Moreover, soil cumulative N2O emissions significantly negatively correlated with soil ammonium contents and positively with MNorg, Mn, and Nn, showing that biochar decreased N2O emission via a reducing effect on nitrification rates and associated N2O emissions. Our results also highlight that application of N fertilizer greatly influence the biochar's impacts on soil N transformation rates and N2O emission, calling for further studies on their interactions to develop mitigate options and to improve N use efficiency.


Asunto(s)
Compuestos de Amonio , Populus , Biocombustibles , Carbón Orgánico , Fertilizantes , Nitrógeno , Óxido Nitroso , Suelo
17.
Environ Sci Technol ; 56(17): 12745-12754, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35985002

RESUMEN

The response of soil gross nitrogen (N) cycling to elevated carbon dioxide (CO2) concentration and temperature has been extensively studied in natural and semi-natural ecosystems. However, how these factors and their interaction affect soil gross N dynamics in agroecosystems, strongly disturbed by human activity, remains largely unknown. Here, a 15N tracer study under aerobic incubation was conducted to quantify soil gross N transformation rates in a paddy field exposed to elevated CO2 and/or temperature for 9 years in a warming and free air CO2 enrichment experiment. Results show that long-term exposure to elevated CO2 significantly inhibited or tended to inhibit gross N mineralization at elevated and ambient temperatures, respectively. The inhibition of soil gross N mineralization by elevating CO2 was aggravated by warming in this paddy field. The inhibition of gross N mineralization under elevated CO2 could be due to decreased soil pH. Long-term exposure to elevated CO2 also significantly reduced gross autotrophic nitrification at ambient temperature, probably due to decreased soil pH and gross N mineralization. In contrast, none of the gross N transformation rates were affected by long-term exposure to warming alone. Our study provides strong evidence that long-term dual exposure to elevated CO2 and temperature has a greater negative effect on gross N mineralization rate than the single exposure, potentially resulting in progressive N limitation in this agroecosystem and ultimately increasing demand for N fertilizer.


Asunto(s)
Dióxido de Carbono , Suelo , Dióxido de Carbono/análisis , Ecosistema , Humanos , Nitrógeno , Microbiología del Suelo
18.
J Environ Manage ; 317: 115473, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751272

RESUMEN

Plastic mulch is frequently used to increase crop yield, resulting in large quantities of residues accumulating in soil due to low recovery rates. However, the effects of microplastic residues from traditional and biodegradable plastic films on soil nitrogen (N) transformation and bioavailability are not well understood. Here, the main objectives were to examine the effects of micro-sized residues (diameter <5 mm) of polyethylene (PE) and biodegradable plastic mulch films (PLA) on the soil N in two contrasting soils (clay soil and sandy loam soil) in different temperatures (15 °C vs. 25 °C). Results showed that the microplastic presence showed a little effect on soil N transformation and bioavailability at 15 °C, but both microplastics significantly decreased NO3-, mineral N (MN), total dissolved N (TDN), the net cumulative N nitrification (Nn), and the net cumulative N mineralization (Nm) at 25 °C, indicating that microplastics decreased soil N bioavailability at elevated temperature. Meanwhile, the microplastics significantly reduced the temperature sensitivity (Q10) of N mineralization. The presence of microplastics changed the composition of soil mineral N with lower relative NO3- and higher NH4+ compared to the control in clay soil. The sandy loam soil was more susceptible to microplastic pollution compared to clay soil in N transformation, due to different textures and biochemistry properties in the two soils, which showed that microplastics have a significant soil heterogeneity-dependent effect on soil N processes. Therefore, the results underline that the effects of microplastic residues on soil N cycling can be partly linked to soil properties, suggesting the urgent need for further studies examining their impacts on soil nutrient cycling in different soil systems.


Asunto(s)
Plásticos Biodegradables , Suelo , Disponibilidad Biológica , Arcilla , Microplásticos , Minerales , Nitrógeno/análisis , Plásticos , Suelo/química , Temperatura
19.
Environ Sci Pollut Res Int ; 29(54): 82574-82583, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35752668

RESUMEN

A novel method for remediating eutrophic lakes through electrolysis was made possible by one titanium (Ti) mesh, which serves as a cathode and two anodes of Ti mesh coated with ruthenium (IV) oxide and iridium (IV) oxide (RuO2-IrO2/Ti). Once the three-electrode components RuO2-IrO2/Ti and Ti are stabilized, they can carry out electrolytic reaction to control cyanobacteria blooms and assist with the remediation of eutrophic water. The order of influence on the theoretical energy consumption involved in removing algae is as follows: The electrode spacing was more effective than electrode voltage, which proved more effective than electrolysis time through the orthogonal test method. Thus, an electrode spacing of 60 mm, an electrode voltage of 30 V, and an electrolysis time of 12 h are the optimal electrolysis methods used to remove cyanobacterial blooms. The strong acidic environment produced by the anode increased the concentration of hydroxyl radical (•OH) and other strong oxidizing substances, which were the main roles that made cyanobacteria bloom inactivation. The electrolysis reaction was conducive to the transformation of organophosphorus in cyanobacterial blooms to dissolved inorganic phosphorus (DIP) in water. Some DIP was most deposited on the cathode after electro-depositing enhanced the removal of P in water with the 12-h prolonged electrolysis time. Meanwhile, it was beneficial to reduce the total nitrogen (TN) and ammonia nitrogen (NH3-N) in the water. Thus, electrolysis proved to be an effective way to the inactivation of cyanobacteria blooms and simultaneously recover P as the concentration became higher.


Asunto(s)
Cianobacterias , Rutenio , Fósforo , Amoníaco , Titanio , Iridio , Radical Hidroxilo , Electrólisis , Nitrógeno , Electrodos , Óxidos , Agua , Eutrofización
20.
Bioresour Technol ; 349: 126849, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158032

RESUMEN

To find a cost-effective carbon source for partial denitrification (PD), brewery wastewater was utilized to test the viability of initiating PD. The Sbre (sludge from the biological treatment tank of Tsingtao Brewery Plant sewage treatment station) and Slab (sludge from laboratory) were fed with brewery wastewater at CODCr/NO3--N (C/N) ratios of 8.0-10.0 and 5.0 for 95 days at 25 ± 1 °C, respectively. The mean NO3--N to NO2--N transformation ratio (NTR) in long-term operation was 40.0% in the Sbre system and 83.2% in the Slab system. Batch tests with C/N ratio of 2.2-4.4 were  conducted after 95 days incubation and the result suggested that C/N ratio of 4.3 ± 0.1 contributed more to NO2--N accumulation in both systems. Thauera bacteria, known to be beneficial for NO2--N accumulation, became the dominant community. The relative abundances of Thauera on day 95 in the Sbre and Slab system were 83.36% and 79.11%, respectively.


Asunto(s)
Desnitrificación , Aguas Residuales , Reactores Biológicos , Carbono , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...