Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894327

RESUMEN

BACKGROUND: Over the last few decades of treatment, the outcomes for at least some subsets of neuroendocrine neoplasms (NENs) have improved. However, the identification of new vulnerabilities for this heterogeneous group of cancers remains a priority. METHODS: Using two libraries of compounds selected for potential repurposing, we identified the inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) and histone deacetylases (HDAC) as the agents with the highest activity. We validated the hits in an expanded set of neuroendocrine cell lines and examined the mechanisms of action. RESULTS: In Kelly, NH-6, and NCI-H82, which are two neuroblastoma and one small cell lung cancer cell lines, respectively, metabolic studies suggested that cell death following NAMPT inhibition is the result of a reduction in basal oxidative phosphorylation and energy production. NAMPT is the rate-limiting enzyme in the production of NAD+, and in the three cell lines, NAMPT inhibition led to a marked reduction in the ATP and NAD+ levels and the catalytic activity of the citric acid cycle. Moreover, comparative analysis of the mRNA expression in drug-sensitive and -insensitive cell lines found less dependency of the latter on oxidative phosphorylation for their energy requirement. Further, the analysis of HDAC and NAMPT inhibitors administered in combination found marked activity using low sub-lethal concentrations of both agents, suggesting a synergistic effect. CONCLUSION: These data suggest NAMPT inhibitors alone or in combination with HDAC inhibitors could be particularly effective in the treatment of neuroendocrine neoplasms.

2.
Eur J Med Chem ; 258: 115607, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413882

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Descubrimiento de Drogas
3.
Eur J Med Chem ; 250: 115170, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787658

RESUMEN

Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Leucemia , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , NAD/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Antineoplásicos/farmacología , Leucemia/metabolismo , Relación Estructura-Actividad , Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología
4.
J Transl Med ; 20(1): 118, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272691

RESUMEN

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis, is up-regulated in several cancers, including metastatic melanoma (MM). The BRAF oncogene is mutated in different cancer types, among which MM and thyroid carcinoma (THCA) are prominent. Drugs targeting mutant BRAF are effective, especially in MM patients, even though resistance rapidly develops. Previous data have linked NAMPT over-expression to the acquisition of BRAF resistance, paving the way for therapeutic strategies targeting the two pathways. METHODS: Exploiting the TCGA database and a collection of MM and THCA tissue microarrays we studied the association between BRAF mutations and NAMPT expression. BRAF wild-type (wt) cell lines were genetically engineered to over-express the BRAF V600E construct to demonstrate a direct relationship between over-activation of the BRAF pathway and NAMPT expression. Responses of different cell line models to NAMPT (i)nhibitors were studied using dose-response proliferation assays. Analysis of NAMPT copy number variation was performed in the TCGA dataset. Lastly, growth and colony forming assays were used to study the tumorigenic functions of NAMPT itself. RESULTS: The first finding of this work is that tumor samples carrying BRAF-mutations over-express NAMPT, as demonstrated by analyzing the TCGA dataset, and MM and THC tissue microarrays. Importantly, BRAF wt MM and THCA cell lines modified to over-express the BRAF V600E construct up-regulated NAMPT, confirming a transcriptional regulation of NAMPT following BRAF oncogenic signaling activation. Treatment of BRAF-mutated cell lines with two different NAMPTi was followed by significant reduction of tumor growth, indicating NAMPT addiction in these cells. Lastly, we found that several tumors over-expressing the enzyme, display NAMPT gene amplification. Over-expression of NAMPT in BRAF wt MM cell line and in fibroblasts resulted in increased growth capacity, arguing in favor of oncogenic properties of NAMPT. CONCLUSIONS: Overall, the association between BRAF mutations and NAMPT expression identifies a subset of tumors more sensitive to NAMPT inhibition opening the way for novel combination therapies including NAMPTi with BRAFi/MEKi, to postpone and/or overcome drug resistance. Lastly, the over-expression of NAMPT in several tumors could be a key and broad event in tumorigenesis, substantiated by the finding of NAMPT gene amplification.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Carcinogénesis/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Humanos , Melanoma/patología , Mutación/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas B-raf/genética
5.
Nutrients ; 13(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34068917

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.


Asunto(s)
Antineoplásicos/farmacología , NAD/biosíntesis , NAD/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Vías Biosintéticas , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Citocinas , Daño del ADN , Reparación del ADN , Humanos , Niacina/farmacología , Niacinamida/farmacología , Nicotinamida Fosforribosiltransferasa , Estrés Oxidativo
6.
Aging (Albany NY) ; 12(23): 23425-23426, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318311
7.
Data Brief ; 28: 105034, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32226807

RESUMEN

In the related research article, entitled "Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity" [1], we reported the in vitro hepatic metabolism data for compounds 30c, 48b, and 31b (here named as E5, A6, and T1), in comparison with the reference compounds GPP78 and FK866 [1-3]. In this article, we retrieved the available data about the hepatic microsomal stability and metabolites structural characterization of the entire library of triazole-based NAMPT inhibitors, also implementing the given information with data regarding aqueous solubility and CYP inhibition. Compounds are divided in subclasses based on the hydrolytic resistant groups replacing the amide function of GPP78 [1, 2].

8.
Cell Metab ; 31(3): 564-579.e7, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130883

RESUMEN

Nicotinamide adenine dinucleotide (NAD), a cofactor for hundreds of metabolic reactions in all cell types, plays an essential role in metabolism, DNA repair, and aging. However, how NAD metabolism is impacted by the environment remains unclear. Here, we report an unexpected trans-kingdom cooperation between bacteria and mammalian cells wherein bacteria contribute to host NAD biosynthesis. Bacteria confer resistance to inhibitors of NAMPT, the rate-limiting enzyme in the amidated NAD salvage pathway, in cancer cells and xenograft tumors. Mechanistically, a microbial nicotinamidase (PncA) that converts nicotinamide to nicotinic acid, a precursor in the alternative deamidated NAD salvage pathway, is necessary and sufficient for this protective effect. Using stable isotope tracing and microbiota-depleted mice, we demonstrate that this bacteria-mediated deamidation contributes substantially to the NAD-boosting effect of oral nicotinamide and nicotinamide riboside supplementation in several tissues. Collectively, our findings reveal an important role of bacteria-enabled deamidated pathway in host NAD metabolism.


Asunto(s)
Amidas/metabolismo , Vías Biosintéticas , Mamíferos/microbiología , Mycoplasma/fisiología , NAD/metabolismo , Administración Oral , Animales , Línea Celular Tumoral , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Metabolismo Energético , Femenino , Microbioma Gastrointestinal , Humanos , Masculino , Metaboloma , Ratones Endogámicos C57BL , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamidasa/metabolismo , Mononucleótido de Nicotinamida/administración & dosificación , Mononucleótido de Nicotinamida/química , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Compuestos de Piridinio/metabolismo
9.
EBioMedicine ; 48: 49-57, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31631039

RESUMEN

BACKGROUND: End-induction minimal residual disease (MRD) is the strongest predictor of relapse in paediatric acute lymphoblastic leukaemia (ALL), but an understanding of the biological pathways underlying early treatment response remains elusive. We hypothesized that metabolomic profiling of diagnostic bone marrow plasma could provide insights into the underlying biology of early treatment response and inform treatment strategies for high-risk patients. METHODS: We performed global metabolomic profiling of samples from discovery (N = 93) and replication (N = 62) cohorts treated at Texas Children's Hospital. Next, we tested the cytotoxicity of drugs targeting central carbon metabolism in cell lines and patient-derived xenograft (PDX) cells. FINDINGS: Metabolite set enrichment analysis identified altered central carbon and amino acid metabolism in MRD-positive patients from both cohorts at a 5% false discovery rate. Metabolites from these pathways were used as inputs for unsupervised hierarchical clustering. Two distinct clusters were identified, which were independently associated with MRD after adjustment for immunophenotype, cytogenetics, and NCI risk group. Three nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, which reduce glycolytic/TCA cycle activities, demonstrated nanomolar-range cytotoxicity in B- and T-ALL cell lines and PDX cells. INTERPRETATION: This study provides new insights into the role of central carbon metabolism in early treatment response and as a potential targetable pathway in high-risk disease. FUNDING: American Society of Hematology; Baylor College of Medicine Department of Paediatrics; Cancer Prevention and Research Institute of Texas; the Lynch family; St. Baldrick's Foundation with support from the Micaela's Army Foundation; United States National Institutes of Health.


Asunto(s)
Redes y Vías Metabólicas , Metaboloma , Metabolómica , Neoplasia Residual/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Aminoácidos/metabolismo , Biomarcadores de Tumor , Metabolismo de los Hidratos de Carbono , Línea Celular Tumoral , Niño , Preescolar , Femenino , Variación Genética , Humanos , Masculino , Metabolómica/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Curva ROC
10.
Bioorg Med Chem Lett ; 27(15): 3317-3325, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28610984

RESUMEN

Herein we disclose SAR studies that led to a series of isoindoline ureas which we recently reported were first-in-class, non-substrate nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. Modification of the isoindoline and/or the terminal functionality of screening hit 5 provided inhibitors such as 52 and 58 with nanomolar antiproliferative activity and preclinical pharmacokinetics properties which enabled potent antitumor activity when dosed orally in mouse xenograft models. X-ray crystal structures of two inhibitors bound in the NAMPT active-site are discussed.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Citocinas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Urea/análogos & derivados , Urea/farmacología , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Citocinas/química , Citocinas/metabolismo , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Humanos , Isoindoles/química , Isoindoles/farmacocinética , Isoindoles/farmacología , Isoindoles/uso terapéutico , Ratones , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nicotinamida Fosforribosiltransferasa/química , Nicotinamida Fosforribosiltransferasa/metabolismo , Relación Estructura-Actividad , Urea/farmacocinética , Urea/uso terapéutico
11.
Bioorg Med Chem Lett ; 26(3): 765-768, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26755394

RESUMEN

Nicotinamide phosphoribosyltransferase (Nampt) is an attractive therapeutic target for cancer. A Nampt inhibitor with novel benzothiophene scaffold was discovered by high throughput screening. Herein the structure-activity relationship of the benzothiophene Nampt inhibitor was investigated. Several new inhibitors demonstrated potent activity in both biochemical and cell-based assays. In particular, compound 16b showed good Nampt inhibitory activity (IC50=0.17 µM) and in vitro antitumor activity (IC50=3.9 µM, HepG2 cancer cell line). Further investigation indicated that compound 16b could efficiently induce cancer cell apoptosis. Our findings provided a good starting point for the discovery of novel antitumor agents.


Asunto(s)
Amidas/química , Antineoplásicos/química , Inhibidores Enzimáticos/química , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Tiofenos/química , Amidas/síntesis química , Amidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Nicotinamida Fosforribosiltransferasa/metabolismo , Relación Estructura-Actividad
12.
Chem Biol Drug Des ; 86(4): 881-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25850461

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is a rate limiting enzyme that plays an important role in the synthesis of nicotinamide adenine dinucleotide (NAD) via a salvage pathway. Along with a role in bioenergetics, NAMPT regulates the activity of proteins such as SIRT-1 that utilize NAD as a cofactor. As NAD metabolism is usually high in diseased conditions, it has been hypothesized and proven that NAMPT is over expressed in various cancers and inflammatory disorders. Inhibitors targeting NAMPT could therefore be useful in treating disorders arising from aberrant NAMPT signalling. In this study, inhibitors against NAMPT were designed using an energy-based pharmacophore strategy and evaluated for efficacy in cellular assays. Besides reducing cellular pools of NAD and NMN, NAMPT inhibitors decreased concentrations of reactive oxygen species as well as mRNA levels of TNFα and IL6, thereby implicating their potential in alleviating the inflammatory process. In addition, reduced NAD levels corroborated with an induction of apoptosis in prostate cancer cell lines.


Asunto(s)
Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Citocinas/antagonistas & inhibidores , Diseño de Fármacos , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citocinas/inmunología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Modelos Moleculares , NAD/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Nicotinamida Fosforribosiltransferasa/inmunología , Especies Reactivas de Oxígeno/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...