Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Biochem Pharmacol ; 226: 116338, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848780

RESUMEN

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.


Asunto(s)
Mitocondrias Cardíacas , Infarto del Miocardio , Miocitos Cardíacos , Animales , Masculino , Ratones , Células Cultivadas , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología
2.
J Biol Chem ; 300(3): 105715, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309503

RESUMEN

NEDD4L is a HECT-type E3 ligase that catalyzes the addition of ubiquitin to intracellular substrates such as the cardiac voltage-gated sodium channel, NaV1.5. The intramolecular interactions of NEDD4L regulate its enzymatic activity which is essential for proteostasis. For NaV1.5, this process is critical as alterations in Na+ current is involved in cardiac diseases including arrhythmias and heart failure. In this study, we perform extensive biochemical and functional analyses that implicate the C2 domain and the first WW-linker (1,2-linker) in the autoregulatory mechanism of NEDD4L. Through in vitro and electrophysiological experiments, the NEDD4L 1,2-linker was determined to be important in substrate ubiquitination of NaV1.5. We establish the preferred sites of ubiquitination of NEDD4L to be in the second WW-linker (2,3-linker). Interestingly, NEDD4L ubiquitinates the cytoplasmic linker between the first and second transmembrane domains of the channel (DI-DII) of NaV1.5. Moreover, we design a genetically encoded modulator of Nav1.5 that achieves Na+ current reduction using the NEDD4L HECT domain as cargo of a NaV1.5-binding nanobody. These investigations elucidate the mechanisms regulating the NEDD4 family and furnish a new molecular framework for understanding NaV1.5 ubiquitination.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Canal de Sodio Activado por Voltaje NAV1.5 , Ubiquitina-Proteína Ligasas Nedd4 , Ubiquitinación , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina/metabolismo , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Células HEK293
3.
ACS Chem Neurosci ; 15(2): 382-393, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38155530

RESUMEN

Major facilitator superfamily domain-containing 2a (Mfsd2a) is a sodium-dependent lysophosphatidylcholine cotransporter that plays an important role in maintaining the integrity of the blood-brain barrier and neurological function. Abnormal degradation of Mfsd2a often leads to dysfunction of the blood-brain barrier, while upregulation of Mfsd2a can retrieve neurological damage. It has been reported that Mfsd2a can be specifically recognized and ubiquitinated by neural precursor cell-expressed developmentally downregulated gene 4 type 2 (NEDD4-2) ubiquitin ligase and finally degraded through the proteasome pathway. However, the structural basis for the specific binding of Mfsd2a to NEDD4-2 is unclear. In this work, we combined deep learning and molecular dynamics simulations to obtain a Mfsd2a structure with high quality and a stable Mfsd2a/NEDD4-2-WW3 interaction model. Moreover, molecular mechanics generalized Born surface area (MM-GBSA) methods coupled with per-residue energy decomposition studies were carried out to analyze the key residues that dominate the binding interaction. Based on these results, we designed three peptides containing the key residues by truncating the Mfsd2a sequences. One of them was found to significantly inhibit Mfsd2a ubiquitination, which was further validated in an oxygen-glucose deprivation (OGD) model in a human microvascular endothelial cell line. This work provides some new insights into the understanding of Mfsd2a and NEDD4-2 interaction and might promote further development of drugs targeting Mfsd2a ubiquitination.


Asunto(s)
Barrera Hematoencefálica , Simulación de Dinámica Molecular , Humanos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Línea Celular , Ubiquitinación
4.
Neurochem Res ; 48(9): 2847-2856, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37178383

RESUMEN

Glial cells give rise to glioblastoma multiform as a primary brain tumor. In glioblastomas, neurons are destroyed via excitotoxicity which is the accumulation of excess glutamate in synaptic cavity. Glutamate Transporter 1 (GLT-1) is the main transporter that absorbs the excessive glutamate. Sirtuin 4 (SIRT4) was shown to have a potential protective role against excitotoxicity in previous studies. In this study, the regulation of dynamic GLT-1 expression by SIRT4 was analyzed in glia (immortalized human astrocytes) and glioblastoma (U87) cells. The expression of GLT-1 dimers and trimers were reduced and the ubiquitination of GLT-1 was increased in glioblastoma cells when SIRT4 was silenced; however GLT-1 monomer was not affected. In glia cells, SIRT4 reduction did not affect GLT-1 monomer, dimer, trimer expression or the ubiquitination of GLT-1. The phosphorylation of Nedd4-2 and the expression of PKC did not change in glioblastoma cells when SIRT4 was silenced but increased in glia cells. We also showed that SIRT4 deacetylates PKC in glia cells. In addition, GLT-1 was shown to be deacetylated by SIRT4 which might be a priority for ubiquitination. Therefore, we conclude that GLT-1 expression is regulated differently in glia and glioblastoma cells. SIRT4 activators or inhibitors of ubiquitination may be used to prevent excitotoxicity in glioblastomas.


Asunto(s)
Transportador 2 de Aminoácidos Excitadores , Glioblastoma , Sirtuinas , Humanos , Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Glioblastoma/metabolismo , Ácido Glutámico/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Sirtuinas/metabolismo , Ubiquitinación , Proteolisis
5.
Arch Biochem Biophys ; 742: 109619, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37142076

RESUMEN

Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive disorder characterized by impaired gluconeogenesis caused by mutations in the fructose-1,6-bisphosphatase 1 (FBP1) gene. The molecular mechanisms underlying FBPase deficiency caused by FBP1 mutations require investigation. Herein, we report the case of a Chinese boy with FBPase deficiency who presented with hypoglycemia, ketonuria, metabolic acidosis, and repeated episodes of generalized seizures that progressed to epileptic encephalopathy. Whole-exome sequencing revealed compound heterozygous variants, c.761 A > G (H254R) and c.962C > T (S321F), in FBP1. The variants, especially the novel H254R, reduced protein stability and enzymatic activity in patient-derived leukocytes and transfected HepG2 and U251 cells. Mutant FBP1 undergoes enhanced ubiquitination and proteasomal degradation. NEDD4-2 was identified as an E3 ligase for FBP1 ubiquitination in transfected cells and the liver and brain of Nedd4-2 knockout mice. The H254R mutant FBP1 interacted with NEDD4-2 at significantly higher levels than the wild-type control. Our study identified a novel H254R variant of FBP1 underlying FBPase deficiency and elucidated the molecular mechanism underlying the enhanced NEDD4-2-mediated ubiquitination and proteasomal degradation of mutant FBP1.


Asunto(s)
Deficiencia de Fructosa-1,6-Difosfatasa , Fructosa-Bifosfatasa , Animales , Ratones , Fructosa , Deficiencia de Fructosa-1,6-Difosfatasa/genética , Fructosa-Bifosfatasa/genética , Mutación , Ubiquitinación , Humanos , Masculino , Niño
6.
Mol Immunol ; 157: 176-185, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044043

RESUMEN

BACKGROUND: Cold exposure is a common factor to trigger asthma attacks. However, the underlying mechanism has not been thoroughly elucidated. We aimed to investigate the hypothesis that low temperature reduces occludin expression and compromises epithelial barrier function in airways, which in turn, results in asthma exacerbation. METHODS: We examined occludin expression in human bronchial epithelial cell line (Beas-2B) cells exposed to either 29 °C or 37 °C. The following drugs were administered prior to cold treatment: MG132 (a proteasome inhibitor), cycloheximide (a protein synthesis inhibitor), HC-067047 plus GSK2193874 (transient receptor potential vanilloid 4 [TRPV4] antagonists), or C4-ceramide (a glucocorticoid-inducible kinase [SGK1] activator). siNedd4-2 was transfected into Beas-2B cells to investigate the role that Nedd4-2 plays in mediating occludin instability induced by cold. In animal experiments, we treated ovalbumin (OVA)-induced asthmatic mice with a thermoneutral temperature of 30 °C or cold exposure (10 °C, 6 h/day) for 2 weeks. GSK2193874 or C4-ceramide was administered during the cold treatment. Occludin expression of the lung, pulmonary permeability, serum IgE levels, and lung inflammation were assessed. RESULTS: Low temperature treatment (29 °C) significantly reduced the expression of occludin in Beas-2B cells from 1 to 9 h, which was rescued upon treatment with MG132, HC-067047 plus GSK2193874, C4-ceramide, or Nedd4-2 knockdown. Low temperatures affected occludin stability through SGK1/Nedd4-2-dependent proteolysis. In vivo mice data revealed that cold exposure compromised the airway epithelial barrier function, decreased occludin expression, and exacerbated lung inflammation, which was attenuated by the GSK2193874 or C4-ceramide injection. CONCLUSION: We identified a potential mechanism underlying cold-induced asthma exacerbation involving Nedd4-2-mediated occludin proteolysis and airway epithelial barrier disruption.


Asunto(s)
Asma , Ocludina , Neumonía , Animales , Humanos , Ratones , Asma/metabolismo , Células Epiteliales/metabolismo , Pulmón/metabolismo , Ocludina/metabolismo , Neumonía/metabolismo , Temperatura , Canales Catiónicos TRPV/metabolismo
7.
Front Pharmacol ; 13: 942769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059970

RESUMEN

The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (I Kr). Reduction of I Kr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent I Kr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in I Kr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant I Kr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed I Kr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced I Kr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in I Kr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.

8.
Anim Nutr ; 10: 12-18, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35601254

RESUMEN

Peptide transporter 2 (PepT2) transports short peptides from the blood into bovine mammary epithelial cells (BMEC) to stimulate milk protein synthesis. Despite the fact that the effect of PepT2 is acknowledged in BMEC, little is known about its regulation. This study was completed to investigate the role of mammalian target of the rapamycin (mTOR) signaling in regulating the expression and function of PepT2 in BMEC. The regulation of PepT2 by mTOR in BMEC was studied in vitro using peptide transport assay, gene silencing, Western blot. The membrane expression of PepT2 and the uptake of ß-Ala-Lys-N-7-amino-4-methylcoumarin-3-acetic acid (ß-Ala-Lys-AMCA), a model dipeptide, in BMEC were reduced by rapamycin (a mTOR inhibitor) and silencing of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2), stimulated by DEP domain-containing mTOR-interacting protein (DEPTOR, endogenous inhibitor of mTORC1 and mTORC2) silencing. The trafficking of PepT2 to the membrane and the uptake of ß-Ala-Lys-AMCA was promoted by neuronal precursor cell-expressed developmentally down-regulated 4 isoform 2 (Nedd4-2) silencing. The effects of knockdown of mTORC1, but not mTORC2, on cell membrane expression and transport activity of PepT2 was abolished by Nedd4-2 silencing. With immunofluorescence staining, PepT2 was identified to be interacting with Nedd4-2. The Nedd4-2 expression and the interaction between PepT2 and Nedd4-2 was increased through mTORC1 knockdown, indicating an increased ubiquitination of PepT2. The results revealed that mTORC1 can regulate the expression and function of PepT2 through Nedd4-2 in BMEC.

9.
Physiol Rep ; 10(10): e15306, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35581745

RESUMEN

Orai1 is a ubiquitously-expressed plasma membrane Ca2+ channel that is involved in store-operated Ca2+ entry (SOCE): a fundamental biological process that regulates gene expression, the onset of inflammation, secretion, and the contraction of airway smooth muscle (ASM). During SOCE, Ca2+ leaves the endoplasmic reticulum, which then stimulates a second, amplifying wave of Ca2+ influx through Orai1 into the cytoplasm. Short Palate LUng and Nasal epithelial Clone 1 (SPLUNC1; gene name BPIFA1) is a multi-functional, innate defense protein that is highly abundant in the lung. We have previously reported that SPLUNC1 was secreted from epithelia, where it bound to and inhibited Orai1, leading to reduced SOCE and ASM relaxation. However, the underlying mechanism of action is unknown. Here, we probed the SPLUNC1-Orai1 interactions in ASM and HEK293T cells using biochemical and imaging techniques. We observed that SPLUNC1 caused a conformational change in Orai1, as measured using Forster resonance energy transfer (FRET). SPLUNC1 binding also led to Nedd4-2 dependent ubiquitination of Orai1. Moreover, SPLUNC1 internalized Orai1 to lysosomes, leading to Orai1 degradation. Thus, we conclude that SPLUNC1 is an allosteric regulator of Orai1. Our data indicate that SPLUNC1-mediated Orai1 inhibition could be utilized as a therapeutic strategy to reduce SOCE.


Asunto(s)
Glicoproteínas/metabolismo , Pulmón , Músculo Liso , Fosfoproteínas/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Membrana Celular/metabolismo , Células HEK293 , Humanos , Pulmón/metabolismo , Músculo Liso/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
10.
Front Physiol ; 13: 867244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444557

RESUMEN

Glycemic control is the key to the management of type 2 diabetes. Metformin is an effective, widely used drug for controlling plasma glucose levels in diabetes, but it is often the culprit of gastrointestinal adverse effects such as abdominal pain, nausea, indigestion, vomiting, and diarrhea. Diarrhea is a complex disease and altered intestinal transport of electrolytes and fluid is a common cause of diarrhea. Na+/H+ exchanger 3 (NHE3, SLC9A3) is the major Na+ absorptive mechanism in the intestine and our previous study has demonstrated that decreased NHE3 contributes to diarrhea associated with type 1 diabetes. The goal of this study is to investigate whether metformin regulates NHE3 and inhibition of NHE3 contributes to metformin-induced diarrhea. We first determined whether metformin alters intestinal water loss, the hallmark of diarrhea, in type 2 diabetic db/db mice. We found that metformin decreased intestinal water absorption mediated by NHE3. Metformin increased fecal water content although mice did not develop watery diarrhea. To determine the mechanism of metformin-mediated regulation of NHE3, we used intestinal epithelial cells. Metformin inhibited NHE3 activity and the effect of metformin on NHE3 was mimicked by a 5'-AMP-activated protein kinase (AMPK) activator and blocked by pharmacological inhibition of AMPK. Metformin increased phosphorylation and ubiquitination of NHE3, resulting in retrieval of NHE3 from the plasma membrane. Previous studies have demonstrated the role of neural precursor cell expressed, developmentally down-regulated 4-2 (Nedd4-2) in regulation of human NHE3. Silencing of Nedd4-2 mitigated NHE3 inhibition and ubiquitination by metformin. Our findings suggest that metformin-induced diarrhea in type 2 diabetes is in part caused by reduced Na+ and water absorption that is associated with NHE3 inhibition, probably by AMPK.

11.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35131865

RESUMEN

The antidiabetic drug metformin has been shown to reduce pain hypersensitivity in preclinical models of chronic pain and in neuropathic pain in humans. Multiple intracellular pathways have been described as metformin targets. Among them, metformin is an activator of the adenosine 5'-monophosphate protein kinase that can in turn modulate the activity of the E3 ubiquitin ligase NEDD4-2 and thus post-translational expression of voltage-gated sodium channels (NaVs). In this study, we found that the bulk of the effect of metformin on Na1.7 is dependent on NEDD4-2. In HEK cells, the expression of NaV1.7 at the membrane fraction, obtained by a biotinylation approach, is only reduced by metformin when cotransfected with NEDD4-2. Similarly, in voltage-clamp recordings, metformin significantly reduced NaV1.7 current density when cotransfected with NEDD4-2. In mouse dorsal root ganglion (DRG) neurons, without changing the biophysical properties of NaV1.7, metformin significantly decreased NaV1.7 current densities, but not in Nedd4L knock-out mice (SNS-Nedd4L-/-). In addition, metformin induced a significant reduction in NEDD4-2 phosphorylation at the serine-328 residue in DRG neurons, an inhibitory phosphorylation site of NEDD4-2. In current-clamp recordings, metformin reduced the number of action potentials elicited by DRG neurons from Nedd4Lfl/fl , with a partial decrease also present in SNS-Nedd4L-/- mice, suggesting that metformin can also change neuronal excitability in an NEDD4-2-independent manner. We suggest that NEDD4-2 is a critical player for the effect of metformin on the excitability of nociceptive neurons; this action may contribute to the relief of neuropathic pain.


Asunto(s)
Metformina , Canales de Sodio Activados por Voltaje , Animales , Ganglios Espinales/metabolismo , Hipoglucemiantes/farmacología , Metformina/metabolismo , Metformina/farmacología , Ratones , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitina/metabolismo , Ubiquitina/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
12.
J Extracell Vesicles ; 11(2): e12188, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35106941

RESUMEN

Extracellular vesicles (EVs) are important mediators of intercellular communication. However, EV biogenesis remains poorly understood. We previously defined a role for Arrdc4 (Arrestin domain containing protein 4), an adaptor for Nedd4 family ubiquitin ligases, in the biogenesis of EVs. Here we report that ubiquitination of Arrdc4 is critical for its role in EV secretion. We identified five potential ubiquitinated lysine residues in Arrdc4 using mass spectrometry. By analysing Arrdc4 lysine mutants we discovered that lysine 270 (K270) is critical for Arrdc4 function in EV biogenesis. Arrdc4K270R mutation caused a decrease in the number of EVs released by cells compared to Arrdc4WT , and a reduction in trafficking of divalent metal transporter (DMT1) into EVs. Furthermore, we also observed a decrease in DMT1 activity and an increase in its intracellular degradation in the presence of Arrdc4K270R . K270 was found to be ubiquitinated with K-29 polyubiquitin chains by the ubiquitin ligase Nedd4-2. Thus, our results uncover a novel role of K-29 polyubiquitin chains in Arrdc4-mediated EV biogenesis and protein trafficking.


Asunto(s)
Vesículas Extracelulares , Ubiquitina-Proteína Ligasas , Vesículas Extracelulares/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/genética , Poliubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
Acta Otolaryngol ; 142(1): 6-12, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34962430

RESUMEN

BACKGROUND: The mechanisms of association between diabetes and inner ear dysfunction are unknown, although endolymphatic hydrops may be involved. We have previously shown that insulin signaling components are expressed in human saccule and that insulin signaling takes place in HEI-OC1 auditory cells. AIM: To explore Nedd4-2 as a target for insulin signaling. MATERIALS AND METHODS: Effects of insulin were analyzed using western blot and confocal microscopy in HEI-OC1 auditory cells. RESULTS: Insulin induced phosphorylation of Nedd4-2 and increased the amount of ENaC at the plasma membrane. Also, protein kinase B (PKB) and NDRG1, a substrate for SGK1 (serum and glucocorticoid stimulated kinase), were phosphorylated in response to insulin. The SGK1 inhibitor GSK650394 prevented insulin-induced phosphorylation of NRDG1, but not of PKB and Nedd4-2, whereas the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin and the PKB inhibitor MK2206 inhibited phosphorylation of all components. Ceramides prevented insulin-induced phosphorylation of PKB and NDRG1, but not of Nedd4-2. The ceramide metabolite sphingosine 1-phosphate induced phosphorylation of Nedd4-2. CONCLUSIONS: Insulin induces phosphorylation of Nedd4-2, most likely involving PI3K/PKB signaling. Sphingosine 1-phosphate might protect Nedd4-2 against ceramide-induced insulin resistance. SIGNIFICANCE: Insulin-mediated regulation of Nedd4-2 might impact on inner ear sodium homeostasis with implications for diabetes-induced inner ear damage.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canales Epiteliales de Sodio/metabolismo , Insulina/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Represoras/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Animales , Línea Celular , Ceramidas/farmacología , Oído Interno/citología , Fosforilación
14.
J Neurochem ; 160(6): 613-624, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34935153

RESUMEN

The neural precursor cell expressed developmentally down-regulated protein 4-like (Nedd4-2) is an E3 ubiquitin ligase critical for neurodevelopment and homeostasis of neural circuit excitability. While dysregulation of Nedd4-2 has been linked to elevated seizure susceptibility through impaired ubiquitination of multiple direct substrates, it remains largely unclear whether Nedd4-2 interconnects other cellular pathways that affect neuronal activity and seizure susceptibility. Here, we first showed that Nedd4-2 associates with the endoplasmic reticulum (ER) and regulates the expression of multiple ER-resident proteins. Furthermore, utilizing Nedd4-2 conditional knockout mice, we showed that Nedd4-2 is required for the maintenance of spontaneous neural activity and excitatory synapses following the induction of ER stress. When analyzing activation of the canonical pathways of ER stress response, we found that Nedd4-2 is required for phosphorylation of eIF2α. While phosphorylation of eIF2α has been shown to reduce seizure susceptibility, attempts to facilitate phosphorylation of eIF2α in Nedd4-2 conditional knockout mice failed to produce such a beneficial function, suggesting a role for Nedd4-2 in integrating the ER stress response to modulate seizure susceptibility. Altogether, our study demonstrates neuroprotective functions of Nedd4-2 during ER stress in neurons and could provide insight into neurological diseases in which the expression or activity of Nedd4-2 is impaired.


Asunto(s)
Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fármacos Neuroprotectores , Ubiquitina-Proteína Ligasas , Animales , Estrés del Retículo Endoplásmico , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
BMC Mol Cell Biol ; 22(1): 53, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663225

RESUMEN

BACKGROUND: Organic anion transporter 1 (OAT1) is a drug transporter expressed on the basolateral membrane of the proximal tubule cells in kidneys. It plays an essential role in the disposition of numerous clinical therapeutics, impacting their pharmacological and toxicological properties. The activation of protein kinase C (PKC) is shown to facilitate OAT1 internalization from cell surface to intracellular compartments and thereby reducing cell surface expression and transport activity of the transporter. The PKC-regulated OAT1 internalization occurs through ubiquitination, a process catalyzed by a E3 ubiquitin ligase, neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2). Nedd4-2 directly interacts with OAT1 and affects ubiquitination, expression and stability of the transporter. However, whether Nedd4-2 is a direct substrate for PKC-induced phosphorylation is unknown. RESULTS: In this study, we investigated the role of Nedd4-2 phosphorylation in the PKC regulation of OAT1. The results showed that PKC activation enhanced the phosphorylation of Nedd4-2 and increased the OAT1 ubiquitination, which was accompanied by a decreased OAT1 cell surface expression and transport function. And the effects of PKC could be reversed by PKC-specific inhibitor staurosporine. We further discovered that the quadruple mutant (T197A/S221A/S354A/S420A) of Nedd4-2 partially blocked the effects of PKC on Nedd4-2 phosphorylation and on OAT1 transport activity. CONCLUSIONS: Our investigation demonstrates that PKC regulates OAT1 likely through direct phosphorylation of Nedd4-2. And four phosphorylation sites (T197, S221, S354, and S420) of Nedd4-2 in combination play an important role in this regulatory process.


Asunto(s)
Transportadores de Anión Orgánico , Ubiquitina , Animales , Células COS , Chlorocebus aethiops , Endocitosis , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
16.
EMBO Rep ; 22(10): e52645, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34342389

RESUMEN

Individuals affected by infantile spasms (IS), such as those carrying mutations in an IS-linked gene, neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4-2), exhibit developmental delays and learning disabilities, but the underlying mechanism is unknown. Using conditional Nedd4-2 knockout mice, we uncover that Nedd4-2 functions to maintain the excitatory synapses in hippocampal neurons and allows for late-phase long-term synaptic potentiation (L-LTP) at Schaffer collateral synapses in the hippocampus. We also find that Nedd4-2 is required for multiple forms of hippocampus-dependent learning and memory. Mechanistically, we show that loss of Nedd4-2 leads to a decrease in actin polymerization caused by reduced phosphorylation of the actin depolymerizing protein cofilin. A cell-permeable peptide promoting phosphorylation of endogenous cofilin in Nedd4-2 knockout neurons restores the number of hippocampal excitatory synapses and hippocampal L-LTP and partially restores hippocampus-dependent learning in mice. Taken together, our results reveal a novel mechanism underlying IS-associated learning disabilities and may provide information for future therapeutic strategies for IS.


Asunto(s)
Factores Despolimerizantes de la Actina , Espasmos Infantiles , Factores Despolimerizantes de la Actina/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Lactante , Aprendizaje , Potenciación a Largo Plazo , Ratones , Plasticidad Neuronal , Espasmos Infantiles/genética , Sinapsis/metabolismo
17.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200296

RESUMEN

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFß signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


Asunto(s)
Células Epiteliales/patología , Pulmón/patología , Ubiquitina-Proteína Ligasas Nedd4/fisiología , Alveolos Pulmonares/patología , Fibrosis Pulmonar/patología , Animales , Animales Recién Nacidos , Células Epiteliales/metabolismo , Femenino , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Fibrosis Pulmonar/etiología
18.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299227

RESUMEN

Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood-gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/ultraestructura , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Células Epiteliales Alveolares/fisiología , Animales , Células Epiteliales/metabolismo , Femenino , Fibrosis/metabolismo , Fibrosis/patología , Pulmón/patología , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Alveolos Pulmonares/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Surfactantes Pulmonares , Mucosa Respiratoria/metabolismo
19.
Cell Rep ; 36(1): 109327, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34233198

RESUMEN

The low level of transcytosis is a unique feature of cerebrovascular endothelial cells (ECs), ensuring restrictive blood-brain barrier (BBB) permeability. Major facilitator superfamily domain-containing 2a (MFSD2A) is a key regulator of the BBB function by suppressing caveolae-mediated transcytosis. However, the mechanisms regulating MFSD2A at the BBB have been barely explored. Here, we show that cerebrovascular EC-specific deletion of Pten (phosphatase and tensin homolog) results in a dramatic increase in vesicular transcytosis by the reduction of MFSD2A, leading to increased transcellular permeability of the BBB. Mechanistically, AKT signaling inhibits E3 ubiquitin ligase NEDD4-2-mediated MFSD2A degradation. Consistently, cerebrovascular Nedd4-2 overexpression decreases MFSD2A levels, increases transcytosis, and impairs BBB permeability, recapitulating the phenotypes of Pten-deficient mice. Furthermore, Akt deletion decreases phosphorylated NEDD4-2 levels, restores MFSD2A levels, and normalizes BBB permeability in Pten-mutant mice. Altogether, our work reveals the essential physiological function of the PTEN/AKT/NEDD4-2/MFSD2A axis in the regulation of BBB permeability.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Simportadores/metabolismo , Animales , Barrera Hematoencefálica/anomalías , Barrera Hematoencefálica/ultraestructura , Caveolas/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Ratones Transgénicos , Mutación/genética , Fosfohidrolasa PTEN/genética , Permeabilidad , Fenotipo , Poliubiquitina/metabolismo , Proteolisis , Transcitosis , Ubiquitinación
20.
J Cell Mol Med ; 25(11): 5082-5098, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33949117

RESUMEN

The current study aimed to investigate the mechanism by which miR-454 influences the progression of heart failure (HF) in relation to the neural precursor cell expressed, developmentally downregulated 4-2 (NEDD4-2)/tropomyosin receptor kinase A (TrkA)/cyclic adenosine 3',5'-monophosphate (cAMP) axis. Sprague-Dawley rats were used to establish a HF animal model via ligation of the left anterior descending branch of the coronary artery. The cardiomyocyte H9c2 cells were treated with H2 O2 to stimulate oxidative stress injury in vitro. RT-qPCR and Western blot assay were subsequently performed to determine the expression patterns of miR-454, NEDD4-2, TrkA, apoptosis-related proteins and cAMP pathway markers. Dual-luciferase reporter gene assay coupled with co-immunoprecipitation was performed to elucidate the relationship between miR-454, NEDD4-2 and TrkA. Gain- or loss-of-function experiments as well as rescue experiments were conducted via transient transfection (in vitro) and adenovirus infection (in vivo) to examine their respective functions on H9c2 cell apoptosis and myocardial damage. Our results suggested that miR-454 was aberrantly downregulated in the context of HF, while evidence was obtained suggesting that it targeted NEDD4-2 to downregulate NEDD4-2 in cardiomyocytes. miR-454 exerted anti-apoptotic and protective effects on cardiomyocytes through inhibition of NEDD4-2, while NEDD4-2 stimulated ubiquitination and degradation of TrkA protein. Furthermore, miR-454 activated the cAMP pathway via the NEDD4-2/TrkA axis, which ultimately suppressed cardiomyocyte apoptosis and attenuated myocardial damage. Taken together, the key findings of the current study highlight the cardioprotective role of miR-454, which is achieved through activation of the cAMP pathway by impairing NEDD4-2-induced TrkA ubiquitination.


Asunto(s)
Cardiotónicos/farmacología , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Insuficiencia Cardíaca/prevención & control , MicroARNs/genética , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Receptor trkA/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Persona de Mediana Edad , Ubiquitina-Proteína Ligasas Nedd4/genética , Pronóstico , Ratas , Ratas Sprague-Dawley , Receptor trkA/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...