Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1250457, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614951

RESUMEN

Heatstroke can cause multiple organ failure and systemic inflammatory response syndrome as the body temperature rises beyond the body's ability to regulate temperature in a hot environment. Previous studies have indicated that heatstroke-induced acute kidney injury (AKI) can lead to chronic kidney disease. Therefore, there is an urgent need to elucidate the mechanism of heatstroke-induced AKI and to establish methods for its prevention and treatment. Recent reports have revealed that innate immunity, including neutrophils, macrophages, lymphocytes, and mast cells, is deeply involved in heat-induced AKI. In this review, we will discuss the roles of each immune cell in heat-induced renal injury and their potential therapeutic use.

2.
Front Immunol ; 13: 953151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159876

RESUMEN

Chronic hepatitis C virus (HCV) infection is a curable disease, but the absence of a vaccine remains a major problem in infection prevention. The lack of small animal models and limited access to human liver tissue impede the study of hepatic antiviral immunity and the development of new vaccine strategies. We recently developed an immune-competent mouse model using an HCV-related rodent hepacivirus which shares immunological features with human viral hepatitis. In this study, we used this new model to investigate the role of invariant natural killer T (iNKT) cells during hepacivirus infection in vivo. These cells are enriched in the liver, however their role in viral hepatitis is not well defined. Using high-dimensional flow cytometry and NKT cell deficient mice we analyzed a potential role of iNKT cells in mediating viral clearance, liver pathology or immune-regulation during hepacivirus infection. In addition, we identified new immune-dominant MHC class I restricted viral epitopes and analyzed the impact of iNKT cells on virus-specific CD8+ T cells. We found that rodent hepacivirus infection induced the activation of iNKT cell subsets with a mixed NKT1/NKT2 signature and significant production of type 2 cytokines (IL-4 and IL-13) during acute infection. While iNKT cells were dispensable for viral clearance, the lack of these cells caused higher levels of liver injury during infection. In addition, the absence of iNKT cells resulted in increased effector functions of hepatic antiviral T cells. In conclusion, our study reports a regulatory role of hepatic iNKT cells during hepacivirus infection in vivo. Specifically, our data suggest that iNKT cells skewed towards type 2 immunity limit liver injury during acute infection by mechanisms that include the regulation of effector functions of virus-specific T cells.


Asunto(s)
Hepatitis C Crónica , Células T Asesinas Naturales , Animales , Antivirales/metabolismo , Citocinas/metabolismo , Epítopos/metabolismo , Hepacivirus/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Ratones
3.
Curr Res Toxicol ; 2: 99-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345855

RESUMEN

Smoking is a cause of serious diseases in smokers including chronic respiratory diseases. This study aimed to evaluate the tobacco harm reduction (THR) potential of an electronic vapor product (EVP, myblu™) compared to a Kentucky Reference Cigarette (3R4F), and assessed endpoints related to chronic respiratory diseases. Endpoints included: cytotoxicity, barrier integrity (TEER), cilia function, immunohistochemistry, and pro-inflammatory markers. In order to more closely represent the user exposure scenario, we have employed the in vitro 3D organotypic model of human airway epithelium (MucilAir™, Epithelix) for respiratory assessment. The model was repeatedly exposed to either whole aerosol of the EVP, or whole 3R4F smoke, at the air liquid interface (ALI), for 4 weeks to either 30, 60 or 90 puffs on 3-exposure-per-week basis. 3R4F smoke generation used the ISO 20778:2018 regime and EVP aerosol used the ISO 20768:2018 vaping regime. Exposure to undiluted whole EVP aerosol did not trigger any significant changes in the level of pro-inflammatory mediators, cilia beating function, barrier integrity and cytotoxicity when compared with air controls. In contrast, exposure to diluted (1:17) whole cigarette smoke caused significant changes to all the endpoints mentioned above. To our knowledge, this is the first study evaluating the effects of repeated whole cigarette smoke and whole EVP aerosol exposure to a 3D lung model at the ALI. Our results add to the growing body of scientific literature supporting the THR potential of EVPs relative to combustible cigarettes and the applicability of the 3D lung models in human-relevant product risk assessments.

4.
Front Immunol ; 11: 581301, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193386

RESUMEN

Murine and human invariant natural killer T (iNKT) lymphocytes are activated by α-galactosylceramide (α-GalCer) presented on CD1d. α-GalCer was first described as a lipid that had strong anti-metastatic effects in a mouse melanoma model, and it has subsequently been shown to induce efficient iNKT cell dependent tumor immunity in several tumor models. We have shown that α-GalCer treatment leads to a weak reduction of polyp burden in the autochthonous ApcMin/+ mouse model for human colon cancer, however this treatment resulted in upregulation of the inhibitory receptor PD-1 on iNKT cells. While anti-PD-1 treatment can prevent immune-suppression in other cancer types, human colon cancer is generally resistant to this treatment. Here we have used the ApcMin/+ model to investigate whether a combined treatment with α-GalCer and PD-1 blockade results in improved effects on polyp development. We find that PD-1 expression was high on T cells in polyps and lamina propria (LP) of ApcMin/+ mice compared to polyp free Apc+/+ littermates. Anti-PD-1 treatment alone promoted Tbet expression in iNKT cells and CD4 T cells, but did not significantly reduce polyp numbers. However, the combined treatment with anti-PD-1 and α-GalCer had synergistic effects, resulting in highly significant reduction of polyp numbers in the small and large intestine. Addition of PD-1 blockade to α-GalCer treatment prevented loss of iNKT cells that were skewed towards a TH1-like iNKT1 phenotype specifically in polyps. It also resulted in TH1 skewing and increased granzyme B expression of CD4 T cells. Taken together this demonstrates that a combination of immune stimulation targeting iNKT cells and checkpoint blockade may be a promising approach to develop for improved tumor immunotherapy.


Asunto(s)
Neoplasias del Colon/inmunología , Neoplasias del Colon/prevención & control , Galactosilceramidas/administración & dosificación , Células T Asesinas Naturales/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteína de la Poliposis Adenomatosa del Colon/deficiencia , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Anticuerpos Bloqueadores/administración & dosificación , Femenino , Humanos , Mucosa Intestinal/inmunología , Pólipos Intestinales/inmunología , Pólipos Intestinales/prevención & control , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/prevención & control , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Células TH1/inmunología
5.
EBioMedicine ; 2(11): 1686-96, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26870795

RESUMEN

Progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations caused by bacterial infections due to Streptococcus pneumoniae. Our objective was to identify during COPD, factors of susceptibility to bacterial infections among cytokine network and their role in COPD exacerbations. S. pneumoniae was used to sub-lethally challenge mice chronically exposed to air or cigarette smoke (CS) and to stimulate peripheral blood mononuclear cells (PBMC) from non-smokers, smokers and COPD patients. The immune response and the cytokine production were evaluated. Delayed clearance of the bacteria and stronger lung inflammation observed in infected CS-exposed mice were associated with an altered production of IL-17 and IL-22 by innate immune cells. This defect was related to a reduced production of IL-1ß and IL-23 by antigen presenting cells. Importantly, supplementation with recombinant IL-22 restored bacterial clearance in CS-exposed mice and limited lung alteration. In contrast with non-smokers, blood NK and NKT cells from COPD patients failed to increase IL-17 and IL-22 levels in response to S. pneumoniae, in association with a defect in IL-1ß and IL-23 secretion. This study identified IL-17 and IL-22 as susceptibility factors in COPD exacerbation. Therefore targeting such cytokines could represent a potent strategy to control COPD exacerbation.


•Increased bacterial susceptibility during COPD is related to a defect in Th17 cytokines.•Cigarette smoke alters the production of immunoregulatory cytokines by lung APC.•Immunotherapy restoring the defective IL-22 response could represent an ideal therapy to prevent exacerbation in COPD patients.The progression of chronic obstructive pulmonary disease (COPD) is linked to episodes of exacerbations mostly due to bacterial infections. It is not well understood why COPD patients are more susceptible to infections. In our experimental model of COPD as well as in COPD patients, we identified a defect in the IL-17/IL-22 response to S. pneumoniae, leading to the bacterial outgrowth. This was mainly due to the alteration of lung antigen-presenting cells by cigarette smoke. Restoring the defective IL-22 response represents a promising therapeutic approach for the treatment and/or the prevention of COPD exacerbations.


Asunto(s)
Interleucinas/deficiencia , Infecciones Neumocócicas/complicaciones , Infecciones Neumocócicas/genética , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/genética , Adulto , Anciano , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Interleucina-17/biosíntesis , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Infecciones Neumocócicas/metabolismo , Infecciones Neumocócicas/microbiología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Células Th17/inmunología , Células Th17/metabolismo , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...