Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1203614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600815

RESUMEN

Introduction: Early recovery of donor-derived invariant natural killer T (iNKT) cells are associated with reduced risk of graft-versus-host disease (GvHD) and overall survival. Patients with severe GvHD, however, had much slower iNKT cell reconstitution relative to conventional T cells. Methods: To characterize the delay of iNKT cell reconstitution and explore its possible causes, we used a haploidentical bone marrow transplantation (haplo-BMT) mouse model with GvHD. We found the delayed recovery of thymic and peripheral iNKT cell numbers with markedly decreased thymic NKT1 subset in GvHD mice. The defective generation of thymic iNKT precursors with egress capability contributed to the reduced peripheral iNKT cells in GvHD mice. We further identified intermediate NK1.1- NKT1 precursor subpopulations under steady-state conditions and found that the differentiation of these subpopulations was impaired in the thymi of GvHD mice. Detailed characterization of iNKT precursors and thymic microenvironment showed a close association of elevated TCR/co-stimulatory signaling provided by double positive thymocytes and macrophages with defective down-regulation of proliferation, metabolism, and NKT2 signature in iNKT precursor cells. Correspondingly, NKT2 but not NKT1 differentiation was favored in GvHD mice. Discussion: These data underline the important roles of TCR and co-stimulatory signaling in the differentiation of thymic iNKT subsets under transplantation conditions.


Asunto(s)
Enfermedad Injerto contra Huésped , Células T Asesinas Naturales , Animales , Ratones , Trasplante de Médula Ósea , Diferenciación Celular , Receptores de Antígenos de Linfocitos T/genética
2.
Front Immunol ; 11: 815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457751

RESUMEN

Following positive selection, NKT cell precursors enter an "NK-like" program and progress from an NK- to an NK+ maturational stage to give rise to NKT1 cells. Maturation takes place in the thymus or after emigration of NK- NKT cells to the periphery. In this study, we followed the fate of injected NKT cells at the NK- stage of their development in the thymus of a series of mice with differential CD1d expression. Our results indicate that CD1d-expressing cortical thymocytes, and not epithelial cells, macrophages, or dendritic cells, are necessary and sufficient to promote the maturation of thymic NKT1 cells. Migration out of the thymus of NK- NKT cells occurred in the absence of CD1d expression, however, CD1d expression is required for maturation in peripheral organs. We also found that the natural ligand Isoglobotriosylceramide (iGb3), and the cysteine protease Cathepsin L, both localizing with CD1d in the endosomal compartment and crucial for NKT cell positive selection, are also required for NK- to NK+ NKT cell transition. Overall, our study indicates that the maturational transition of NKT cells require continuous TCR/CD1d interactions and suggest that these interactions occur in the thymic cortex where DP cortical thymocytes are located. We thus concluded that key components necessary for positive selection of NKT cells are also required for subsequent maturation.


Asunto(s)
Antígenos CD1d/metabolismo , Diferenciación Celular/inmunología , Células T Asesinas Naturales/inmunología , Timocitos/inmunología , Timo/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos CD1d/genética , Diferenciación Celular/genética , Células Epiteliales/inmunología , Técnicas de Inactivación de Genes , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/metabolismo , Timocitos/metabolismo
3.
Immunol Cell Biol ; 98(5): 358-368, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32187747

RESUMEN

Almost 20 years ago, CD1d tetramers were developed to track invariant natural killer T (NKT) cells based on their specificity, and to define developmental steps during which differentiation markers and functional features are progressively acquired from early NKT cell precursor to fully mature NKT cell subsets. Based on these findings, a linear developmental model was proposed and subsequently used by all studies investigating the specific role of factors that control NKT cell development. More recently, based on intracellular staining patterns of lineage-specific transcription factors such as T-bet, GATA-3, promyelocytic leukemia zinc finger and RORγt, a lineage differentiation model was proposed for NKT cell development. Currently, studies on NKT cells development present lineage differentiation model data in addition to the linear maturation model. In the perspective presented here, we discuss current knowledge relating to NKT cell developmental models and particularly focus on the approaches and strategies, some of which appear nebulous, used to define NKT cell developmental stages and subsets.


Asunto(s)
Diferenciación Celular , Células T Asesinas Naturales , Factor de Transcripción GATA3 , Humanos , Activación de Linfocitos , Células T Asesinas Naturales/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Proteínas de Dominio T Box , Subgrupos de Linfocitos T/inmunología
4.
Immunol Cell Biol ; 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29504657

RESUMEN

Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4+ and are biased toward Vß8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets.

5.
Front Immunol ; 8: 974, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878768

RESUMEN

Natural IgM anti-leukocyte autoantibodies (IgM-ALAs) inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs) are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI) via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...