Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1381180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38752179

RESUMEN

Background: The prevalence of autism spectrum disorder (ASD) has significantly risen in the past three decades, prompting researchers to explore the potential contributions of environmental factors during pregnancy to ASD development. One such factor of interest is gestational hypothyroxinemia (HTX), a frequent condition in pregnancy associated with cognitive impairments in the offspring. While retrospective human studies have linked gestational HTX to autistic traits, the cellular and molecular mechanisms underlying the development of ASD-like phenotypes remain poorly understood. This study used a mouse model of gestational HTX to evaluate ASD-like phenotypes in the offspring. Methods: To induce gestational HTX, pregnant mice were treated with 2-mercapto-1-methylimidazole (MMI), a thyroid hormones synthesis inhibitor, in the tap-drinking water from embryonic days (E) 10 to E14. A separate group received MMI along with a daily subcutaneous injection of T4, while the control group received regular tap water during the entire pregnancy. Female and male offspring underwent assessments for repetitive, anxious, and social behaviors from postnatal day (P) 55 to P64. On P65, mice were euthanized for the evaluation of ASD-related inflammatory markers in blood, spleen, and specific brain regions. Additionally, the expression of glutamatergic proteins (NLGN3 and HOMER1) was analyzed in the prefrontal cortex and hippocampus. Results: The HTX-offspring exhibited anxious-like behavior, a subordinate state, and impaired social interactions. Subsequently, both female and male HTX-offspring displayed elevated proinflammatory cytokines in blood, including IL-1ß, IL-6, IL-17A, and TNF-α, while only males showed reduced levels of IL-10. The spleen of HTX-offspring of both sexes showed increased Th17/Treg ratio and M1-like macrophages. In the prefrontal cortex and hippocampus of male HTX-offspring, elevated levels of IL-17A and reduced IL-10 were observed, accompanied by increased expression of hippocampal NLGN3 and HOMER1. All these observations were compared to those observed in the Control-offspring. Notably, the supplementation with T4 during the MMI treatment prevents the development of the observed phenotypes. Correlation analysis revealed an association between maternal T4 levels and specific ASD-like outcomes. Discussion: This study validates human observations, demonstrating for the first time that gestational HTX induces ASD-like phenotypes in the offspring, highlighting the need of monitoring thyroid function during pregnancy.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Trastorno del Espectro Autista/etiología , Trastorno del Espectro Autista/metabolismo , Ratones , Masculino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Fenotipo , Conducta Animal , Hipotiroidismo/metabolismo , Tiroxina/sangre , Biomarcadores/metabolismo , Ratones Endogámicos C57BL , Complicaciones del Embarazo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Conducta Social
2.
J Exp Clin Cancer Res ; 43(1): 28, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254206

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS: A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS: In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION: This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Peptidasa Específica de Ubiquitina 7 , beta Carioferinas , Humanos , Apoptosis , Neoplasias Encefálicas/genética , Glioblastoma/genética , Factores de Transcripción , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
3.
J Neurosci ; 43(44): 7264-7275, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37699715

RESUMEN

Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Sinapsis , Animales , Ratones , Ratas , Moléculas de Adhesión Celular/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fosforilación/fisiología , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Serina/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Dis Model Mech ; 16(3)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36810932

RESUMEN

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Asunto(s)
Trastorno Autístico , Humanos , Trastorno Autístico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955861

RESUMEN

Prader−Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by the deletion or inactivation of paternally expressed imprinted genes at the chromosomal region 15q11−q13. The PWS-critical region (PWScr) harbors tandemly repeated non-protein coding IPW-A exons hosting the intronic SNORD116 snoRNA gene array that is predominantly expressed in brain. Paternal deletion of PWScr is associated with key PWS symptoms in humans and growth retardation in mice (PWScr model). Dysregulation of the hypothalamic−pituitary axis (HPA) is thought to be causally involved in the PWS phenotype. Here we performed a comprehensive reverse transcription quantitative PCR (RT-qPCR) analysis across nine different brain regions of wild-type (WT) and PWScr mice to identify stably expressed reference genes. Four methods (Delta Ct, BestKeeper, Normfinder and Genorm) were applied to rank 11 selected reference gene candidates according to their expression stability. The resulting panel consists of the top three most stably expressed genes suitable for gene-expression profiling and comparative transcriptome analysis of WT and/or PWScr mouse brain regions. Using these reference genes, we revealed significant differences in the expression patterns of Igfbp7, Nlgn3 and three HPA associated genes: Pcsk1, Pcsk2 and Nhlh2 across investigated brain regions of wild-type and PWScr mice. Our results raise a reasonable doubt on the involvement of the Snord116 in posttranscriptional regulation of Nlgn3 and Nhlh2 genes. We provide a valuable tool for expression analysis of specific genes across different areas of the mouse brain and for comparative investigation of PWScr mouse models to discover and verify different regulatory pathways affecting this complex disorder.


Asunto(s)
Síndrome de Prader-Willi , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Exones , Impresión Genómica , Humanos , Ratones , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo
6.
Front Cell Dev Biol ; 9: 662763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485271

RESUMEN

The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.

7.
Theranostics ; 11(17): 8535-8549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373757

RESUMEN

Neuroligin-3 (NLGN3) is necessary and sufficient to promote glioma cell growth. The recruitment of Gαi1/3 to the ligand-activated receptor tyrosine kinases (RTKs) is essential for mediating oncogenic signaling. Methods: Various genetic strategies were utilized to examine the requirement of Gαi1/3 in NLGN3-driven glioma cell growth. Results: NLGN3-induced Akt-mTORC1 and Erk activation was inhibited by decreasing Gαi1/3 expression. In contrast ectopic Gαi1/3 overexpression enhanced NLGN3-induced signaling. In glioma cells, NLGN3-induced cell growth, proliferation and migration were attenuated by Gαi1/3 depletion with shRNA, but facilitated with Gαi1/3 overexpression. Significantly, Gαi1/3 silencing inhibited orthotopic growth of patient-derived glioma xenografts in mouse brain, whereas forced Gαi1/3-overexpression in primary glioma xenografts significantly enhanced growth. The growth of brain-metastatic human lung cancer cells in mouse brain was largely inhibited with Gαi1/3 silencing. It was however expedited with ectopic Gαi1/3 overexpression. In human glioma Gαi3 upregulation was detected, correlating with poor prognosis. Conclusion: Gαi1/3 mediation of NLGN3-induced signaling is essential for neuronal-driven glioma growth.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Glioma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anciano , Animales , Neoplasias Encefálicas/patología , Moléculas de Adhesión Celular Neuronal/fisiología , Línea Celular Tumoral , Proliferación Celular , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Glioma/genética , Glioma/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Persona de Mediana Edad , Proteínas del Tejido Nervioso/fisiología , Neuronas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Extractos Vegetales , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal
8.
Genes Brain Behav ; 20(1): e12723, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347690

RESUMEN

The postsynaptic terminal of vertebrate excitatory synapses contains a highly conserved multiprotein complex that comprises neurotransmitter receptors, cell-adhesion molecules, scaffold proteins and enzymes, which are essential for brain signalling and plasticity underlying behaviour. Increasingly, mutations in genes that encode postsynaptic proteins belonging to the PSD-95 protein complex, continue to be identified in neurodevelopmental disorders (NDDs) such as autism spectrum disorder, intellectual disability and epilepsy. These disorders are highly heterogeneous, sharing genetic aetiology and comorbid cognitive and behavioural symptoms. Here, by using genetically engineered mice and innovative touchscreen-based cognitive testing, we sought to investigate whether loss-of-function mutations in genes encoding key interactors of the PSD-95 protein complex display shared phenotypes in associative learning, updating of learned associations and reaction times. Our genetic dissection of mice with loss-of-function mutations in Syngap1, Nlgn3, Dlgap1, Dlgap2 and Shank2 showed that distinct components of the PSD-95 protein complex differentially regulate learning, cognitive flexibility and reaction times in cognitive processing. These data provide insights for understanding how human mutations in these genes lead to the manifestation of diverse and complex phenotypes in NDDs.


Asunto(s)
Aprendizaje , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Animales , Moléculas de Adhesión Celular Neuronal/genética , Femenino , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Tiempo de Reacción , Proteínas Asociadas a SAP90-PSD95/genética , Proteínas Activadoras de ras GTPasa/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-32848696

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-communication impairments, as well as restricted and repetitive behaviors. Moreover, ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although the underlying etiology of ASD is generally unknown, recent advances in genome sequencing have facilitated the identification of a host of associated genes. Among these, synaptic proteins such as cell adhesion molecules have been strongly linked with ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes, which leads to a shift in focus toward autosomal genes as targets for ASD research. However, there are many genes on the X chromosome that encode synaptic proteins, including strong candidate genes. Here, we review findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4. Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome and were among the first few genes to be linked with ASD and intellectual disability (ID). In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y, which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin isoforms regarding function at the synapse in both rodent models and human-derived differentiated neurons, and highlight the exciting challenges moving forward to a better understanding of ASD/ID.

10.
J Biol Chem ; 295(25): 8589-8595, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32381505

RESUMEN

Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin (Nlgn) genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that Nlgn1 and Nlgn3 are the major murine Nlgn genes and that the expression levels of the Nlgn splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of Nlgn genes on the E-I balance in the murine hippocampus.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/fisiología , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Potenciales Postsinápticos Excitadores , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN
11.
Expert Rev Anticancer Ther ; 20(5): 355-363, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32301635

RESUMEN

Introduction: Recent discoveries in the molecular makeup of gliomas, the relationship of certain molecular drivers, and the patient's response to therapy and overall prognosis have resulted in a paradigm shift and redefined our understanding of glioma and revealed potential vulnerabilities within this recalcitrant and lethal disease.Areas covered: We summarize the current classification of malignant glioma in the context of the historical background, current data-driven treatment strategies, and recent discoveries of the mechanisms of pathogenesis of this disease which recapitulates the developing brain. We describe the relationship to common genetic alterations found in glioma, and possible avenues to exploit these newly revealed mechanisms.Expert opinion: Improved understanding of the molecular underpinnings of this disease has been directly translated into treatment decisions and an improved ability to counsel patients regarding their prognosis. We are beginning to see the first glimmer of a return on the investment in regard to immunotherapy in malignant glioma, with further anticipated successful exploitations of the unique pathophysiology of glioma.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Humanos , Inmunoterapia/métodos , Pronóstico
12.
Theranostics ; 9(18): 5347-5358, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410219

RESUMEN

Rationale: Glioma is the most common malignant primary brain tumor in the central nervous system (CNS). The lack of reliable noninvasive diagnostic and prognostic methods is one of the main reasons for the high mortality of glioma. Serum has become a useful biomarker for the diagnosis and prognosis prediction of glioma because extracellular vesicles (EVs) carry molecular components from their parental cells. Methods: To detect EVs and perform molecular analysis of serum EVs, we established and optimized a microbead-assisted method based on flow cytometry and estimated the efficacy of EGFR protein expression and NLGN3 and PTTG1 mRNA in serum EVs from glioma patients (n=23) and healthy individuals (n=12). We evaluated the ability of EGFR+ EVs to differentiate high-grade and low-grade glioma patients and checked the correlation between EGFR in EVs and the ki-67 labeling index (LI) in the tumor tissue. Results: We demonstrated that EGFR+ EVs are effective diagnostic and prognostic markers of glioma. The expression of EGFR in serum EVs can accurately differentiate high-grade and low-grade glioma patients, and EGFR in EVs positively correlates with ki-67 LI in the tumor tissue. We also showed the potential of NLGN3 and PTTG1 mRNA in EVs for detecting glioma patients. Conclusions: We demonstrate that the protein expression of EGFR in serum EVs is an effective diagnostic marker of glioma. EGFR in EVs highly correlates with the malignancy of glioma. We also show the potential of NLGN3 and PTTG1 in EVs for detecting glioma. The optimized flow cytometry with the aid of microbead-based EV enrichment show its potential as a noninvasive method for the detection of glioma and will be beneficial to the management of glioma.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/sangre , Vesículas Extracelulares/metabolismo , Glioma/sangre , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/ultraestructura , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Receptores ErbB/sangre , Vesículas Extracelulares/ultraestructura , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/ultraestructura , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Securina/genética , Securina/metabolismo
13.
Eur J Pharmacol ; 857: 172423, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31150649

RESUMEN

Neuroblastoma is the most common extracranial solid tumor of childhood, previous studies show synaptic protein neuroligin-3 (NLGN3) promotes glioma proliferation and growth, However, no investigation about the role of NLGN3 in neuroblastoma was reported. Here, we found NGLGN3 was significantly upregulated in neuroblastoma cells and tissues, its overexpression significantly promoted neuroblastoma cell proliferation and growth determined by MTT analysis, colony formation assay, cell cycle progression analysis, BrdU incorporation assay and animal model, while its knockdown inhibited cell proliferation and growth. Then we found NLGN3 could increase the phosphorylation level of AKT and the transcription activity of FOXO family, suggesting NLGN3 activated PI3K/AKT pathway, inhibition of PI3K/AKT pathway in NLGN3 overexpressing cells inhibited cell proliferation, confirming NLGN3 promoted neuroblastoma proliferation through activating PI3K/AKT pathway. In summary, we found NLGN3 promoted neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway and providing a new target for neuroblastoma therapy.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Apoptosis , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fosforilación
14.
Fetal Pediatr Pathol ; 38(3): 239-244, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30757938

RESUMEN

BACKGROUND: Alterations of Neuroligin 3 (NLGN3), located on Xq13, have been reported in autism spectrum disorder (ASD), and include the less frequent Xq13 duplication. CASE REPORT: A boy with an aggressive behavior, no speech and weak social relationships had a de novo Xq13.1 microduplication detected by microarray analysis. CONCLUSION: NLGN3, TAF1, and MED12 alterations, located on Xq13.1, have been associated with ASD. TAF and MED12 have other clinical features not present in our case. This supports that duplication of NLGN3 may be associated with ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Moléculas de Adhesión Celular Neuronal/genética , Trastornos del Desarrollo del Lenguaje/genética , Complejo Mediador/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Trastorno del Espectro Autista/diagnóstico , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Preescolar , Humanos , Trastornos del Desarrollo del Lenguaje/diagnóstico , Masculino
15.
J Neurooncol ; 140(2): 403-412, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30094719

RESUMEN

INTRODUCTION: Diffuse gliomas have local and global effects on neurophysiological brain functioning, which are often seen as 'passive' consequences of the tumor. However, seminal preclinical work has shown a prominent role for neuronal activity in glioma growth: mediated by neuroligin-3 (NLGN3), increased neuronal activity causes faster glioma growth. It is unclear whether the same holds true in patients. Here, we investigate whether lower levels of oscillatory brain activity relate to lower NLGN3 expression and predict longer progression free survival (PFS) in diffuse glioma patients. METHODS: Twenty-four newly diagnosed patients with diffuse glioma underwent magnetoencephalography and subsequent tumor resection. Oscillatory brain activity was approximated by calculating broadband power (0.5-48 Hz) of the magnetoencephalography. NLGN3 expression in glioma tissue was semi-quantitatively assessed by immunohistochemistry. Peritumor and global oscillatory brain activity was then compared between different levels of NLGN3 expression with Kruskal-Wallis tests. Cox proportional hazards analyses were performed to estimate the predictive value of oscillatory brain activity for PFS. RESULTS: Patients with low expression of NLGN3 had lower levels of global oscillatory brain activity than patients with higher NLGN3 expression (P < 0.001). Moreover, lower peritumor (hazard ratio 2.17, P = 0.008) and global oscillatory brain activity (hazard ratio 2.10, P = 0.008) predicted longer PFS. CONCLUSIONS: Lower levels of peritumor and global oscillatory brain activity are related to lower NLGN3 expression and longer PFS, corroborating preclinical research. This study highlights the important interplay between macroscopically measured brain activity and glioma progression, and may lead to new therapeutic interventions in diffuse glioma patients.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatología , Ondas Encefálicas , Moléculas de Adhesión Celular Neuronal/metabolismo , Glioma/diagnóstico , Glioma/fisiopatología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adolescente , Adulto , Biomarcadores de Tumor/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Neoplasias Encefálicas/patología , Ondas Encefálicas/fisiología , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Magnetoencefalografía , Masculino , Persona de Mediana Edad , Pronóstico , Supervivencia sin Progresión
16.
Biochem Biophys Res Commun ; 501(4): 933-940, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29775613

RESUMEN

Depression, regulated by central nervous system (CNS), is a significant inflammatory disorder. Neuroligin3 (NLGN3) has been implicated in brain functions. In the study, a chronic unpredictable mild stress (CUMS) model in wild type (WT) or NLGN3-knockout (KO) mice was established to explore the role of NLGN3 in regulating depression and to reveal the underlying molecular mechanism. The results indicated that NLGN3-knockout markedly reversed the loss of body weight, the reduction of sucrose consumption, the decrease of immobile time in the forced swimming tests (FST) and tail suspension tests (TST) induced by CUMS paradigm. CUMS up-regulated corticosterone (CORT) in serum, and down-regulated serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in hippocampus of mice, which were significantly reversed by NLGN3 deficiency. The results further demonstrated that NLGN3-knockout improved the degenerative neurons in cortex and hippocampus of CUMS-treated mice, accompanied with a significant decrease of ionized calciumbinding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) expressions. Additionally, NLGN3-KO mice challenged with CUMS showed a significant reduction of pro-inflammatory cytokines and chemokine, including tumor necrosis factor-alpha (TNF-α), interleukin-18 (IL-18), interleukin-1 beta (IL-1ß), interleukin-4 (IL-4), CC-chemokine ligand-1 (CCL-1) and CXC-chemokine ligand-1 (CXCL-1), in cortex, hippocampus and amygdala tissue samples. Western blot analysis suggested that NLGN3-knockout inhibited the activation of nod-like receptor protein 3 (NLRP3) inflammasome and its adaptor of apoptosis-associated speck like protein (ASC), and reduced the expression of Caspase-1, along with the inactivation of nuclear factor-κB (NF-κB) in CUMS-challenged mice. The role of NLGN3 in regulating depression in mice was confirmed in vitro using astrocytes stimulated by LPS that NLGN3 knockdown reduced LPS-induced inflammation. Importantly, the suppressive effects of NLGN3-knockdown on inflammatory response were reversed by NLRP3 or ASC over-expression in AST exposed to LPS. In sum, our findings indicated that suppressing NLGN3 played a potential antidepressant role in CUMS animal model by inactivating NLRP3 inflammasome, providing a new therapeutic avenue for depression.


Asunto(s)
Conducta Animal , Depresión/etiología , Depresión/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Psicológico/complicaciones , Amígdala del Cerebelo/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Corteza Cerebral/metabolismo , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Hipocampo/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo
17.
Cancer Med ; 7(7): 2848-2859, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29777576

RESUMEN

Glioblastoma (GBM) is the most aggressive glioma in the brain. Recurrence of GBM is almost inevitable within a short term after tumor resection. In a retrospective study of 386 cases of GBM collected between 2013 and 2016, we found that recurrence of GBM mainly occurs in the deep brain regions, including the basal ganglia, thalamus, and corpus callosum. But the mechanism underlying this phenomenon is not clear. Previous studies suggest that neuroligin-3 (NLGN3) is necessary for GBM growth. Our results show that the levels of NLGN3 in the cortex are higher than those in the deep regions in a normal human brain, and similar patterns are also found in a normal mouse brain. In contrast, NLGN3 levels in the deep brain regions of GBM patients are high. We also show that an increase in NLGN3 concentration promotes the growth of U251 cells and U87-MG cells. Respective use of the cortex neuron culture medium (C-NCM) and basal ganglia neuron culture medium (BG-NCM) with DMEM to cultivate U251, U87-MG and GBM cells isolated from patients, we found that these cells grew faster after treatment with C-NCM and BG-NCM in which the cells treated with C-NCM grew faster than the ones treated with BG-NCM group. Inhibition of NLGN3 release by ADAM10i prevents NCM-induced cell growth. Together, this study suggests that increased levels of NLGN3 in the deep brain region under the GBM pathological circumstances may contribute to GBM recurrence in the basal ganglia, thalamus, and corpus callosum.

18.
Mol Brain ; 10(1): 10, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28385162

RESUMEN

Human studies demonstrate that sleep impairment is a concurrent comorbidity of autism spectrum disorders (ASD), but its etiology remains largely uncertain. One of the prominent theories of ASD suggests that an imbalance in synaptic excitation/inhibition may contribute to various aspects of ASD, including sleep impairments. Following the identification of Nlgn3R451C mutation in patients with ASD, its effects on synaptic transmission and social behaviours have been examined extensively in the mouse model. However, the contributory role of this mutation to sleep impairments in ASD remains unknown. In this study, we showed that Nlgn3R451C knock-in mice, an established genetic model for ASD, exhibited normal duration and distribution of sleep/wake states but significantly altered electroencephalography (EEG) power spectral profiles for wake and sleep.


Asunto(s)
Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Moléculas de Adhesión Celular Neuronal/genética , Electroencefalografía , Proteínas de la Membrana/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Animales , Modelos Animales de Enfermedad , Electromiografía , Masculino , Ratones Mutantes , Sueño REM/fisiología , Factores de Tiempo , Vigilia/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...