Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Peptides ; 182: 171311, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39426570

RESUMEN

Antarctic fishes, living in an extreme environment and normally exposed to pathogens, are a promising source of antimicrobial peptides (AMPs). These are emerging as next-generation drugs due to their activity against multidrug resistant (MDR) bacteria. To infect hosts, beyond intrinsic/acquired resistance, MDR species also use virulence factors such as protease secretion. Hence, AMPs targeting virulence factors could represent a novel strategy to counteract the antimicrobial resistance (AMR). In this paper, we focused on a mutant peptide, named KHS-Cnd, that was obtained from the scaffold of the chionodracine (Cnd), a natural peptide identified in the icefish Chionodraco hamatus. We studied different effects caused by the peptide interaction with the cell membrane of two model bacteria, E. coli and B. cereus. First, we investigated its membranolytic activity revealing that the peptide action is more evident on E. coli, with a 69 % uptake of the used dye at 3 µM, whereas for B. cereus we found only a 65 % uptake at 6 µM. Successively, we determined the impact of this lysis on total protein concentration in the medium and an increase was estimated for both bacteria (84 % after 1 h for E. coli and 90 % for B. cereus, respectively). Moreover, we evaluated the changes in the proteolytic activity of the supernatant, that is an important aspect of bacterial resistance, showing that there was a significant reduction for both bacteria, although at higher level in the case of E. coli. The membranolytic activity was evidenced also morphologically with TEM analysis and a different alteration was evidenced for the two bacteria. Moreover, NMR metabolomics analysis showed that peptide induces changes in E. coli and B. cereus extracellular metabolites especially at the higher tested concentrations: this metabolic variation could be used as a fingerprinting of the peptide action on bacteria physiology due to its interaction with cell wall. Finally, we determined the KHS-Cnd cytotoxicity on human primary cell lines to verify its selectivity toward bacterial cell membranes and we found low toxicity until a concentration of 5 µM. Considering that the peptide exerts both membranolytic and anti-virulence activity on E. coli at 1.5 µM, we confirmed the interesting potential of this AMP as a new drug to counteract AMR.

2.
Heliyon ; 10(18): e37466, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309962

RESUMEN

Soybean (Glycine max L.) serves not only as food for humans, animals, and industrial purposes, but is also a plant that can be used to comprehend molecular mechanisms occurring in stress response to various development techniques. To reveal the effect of applying dicarboxylic acids as stress priming agents on a metabolic level in soybean leaf extracts, the chemical profile of methanolic extracts were collected at different time points (1 h, 2 h, 12 h, 24 h, 1 week, 2 weeks and 3 weeks) after spraying were analyzed using 1H-NMR based metabolomics by way of PCA and OPLS-DA. The OPLS-DA revealed several metabolites, including organic acids (fumarate, citrate and malate) and amino acids (asparagine, alanine and GABA), which accumulated in higher amounts, with fumarate accumulating the highest in Glycine max L. leaf extracts compared to untreated leaves. Denaturing 1DE gels were prepared for MS-based protein analysis and the presence of fatty acids (linolenic, oleic and α-linolenic acid) were confirmed by gas chromatography coupled with mass spectrometry (GC-MS), which served as jasmonic acid precursors. The MS-based profiling of proteins on the denaturing 1DE gels revealed several proteins that were differentiated between the treated and untreated leaf extracts. These proteins included ferritins, CaM, ferredoxin-thioredoxin reductase and chalcone-flavanone isomerase 1A. Following the treatment, fumarate was significantly elevated at 12 h to 3 weeks, compared to other compounds. It is, therefore, proposed that elevated quantities of fumarate could be related to the KEAP1-NRF2 metabolic pathway. This study represents the initial investigation of the effect of dicarboxylic acid application as a stress priming agent on Glycine max L. using 1H-NMR metabolomic analysis, GC-MS and proteomic analysis.

3.
Molecules ; 29(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274977

RESUMEN

To improve exercise performance, the supplement of nutrients has become a common practice before prolonged exercise. Trimethylamine N-oxide (TMAO) has been shown to ameliorate oxidative stress damage, which may be beneficial in improving exercise capacity. Here, we assessed the effects of TMAO on mice with exhaustive swimming, analyzed the metabolic changes, and identified significantly altered metabolic pathways of skeletal muscle using a nuclear magnetic resonance-based (NMR-based) metabolomics approach to uncover the effects of TMAO improving exercise performance of mice. We found that TMAO pre-administration markedly prolonged the exhaustive time in mice. Further investigation showed that TMAO pre-administration increased levels of 3-hydroxybutyrate, isocitrate, anserine, TMA, taurine, glycine, and glutathione and disturbed the three metabolic pathways related to oxidative stress and protein synthesis in skeletal muscle. Our results provide a metabolic mechanistic understanding of the effects of TMAO supplements on the exercise performance of skeletal muscle in mice. This work may be beneficial in exploring the potential of TMAO to be applied in nutritional supplementation to improve exercise performance. This work will lay a scientific foundation and be beneficial to exploring the potential of TMAO to apply in nutritional supplementation.


Asunto(s)
Metabolómica , Metilaminas , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Metilaminas/metabolismo , Metilaminas/farmacología , Ratones , Metabolómica/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Espectroscopía de Protones por Resonancia Magnética , Natación
4.
Int J Biochem Cell Biol ; 176: 106665, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39322038

RESUMEN

The human islet amyloid polypeptide (hIAPP) tends to misfold and self-assemble to form amyloid fibrils, which has been associated with the loss of function and viability of pancreatic ß-cells in type 2 diabetes mellitus (T2DM). The role of hIAPP in the development of insulin resistance (a hallmark of T2DM) in skeletal muscles - the major sites for glucose utilization - needs further investigation. Even though, insulin-resistant conditions have been known to stimulate hIAPP aggregation, the events that lead to the development of insulin resistance due to hIAPP aggregation in skeletal muscles remain unidentified. Here, we have attempted to identify metabolic perturbations in L6 myotubes that were exposed to increasing concentrations of recombinant hIAPP for different time durations. It was observed that hIAPP exposure was associated with increased mitochondrial and cellular ROS levels, loss in mitochondrial membrane potential and viability of the myotubes. Metabolomic investigations of hIAPP-treated myotubes revealed significant perturbations in o-phosphocholine, sn-glycero-3-phosphocholine and dimethylamine levels (p < 0.05). Therefore, we anticipate that defects in glycerophospholipid metabolism and the associated oxidative stress and membrane damage may play key roles in the development of insulin resistance due to protein misfolding in skeletal muscles. In summary, the perturbed metabolites and their pathways have not only the potential to be used as early biomarkers to predict the onset of insulin resistance and T2DM but also as therapeutic targets for the effective management of the same.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Polipéptido Amiloide de los Islotes Pancreáticos , Fibras Musculares Esqueléticas , Músculo Esquelético , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Humanos , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
5.
Ecotoxicol Environ Saf ; 284: 116873, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39151369

RESUMEN

Sessile intertidal organisms live in a harsh environment with challenging environmental conditions and increasing anthropogenic pressure such as microplastic (MP) pollution. This study focused on effects of environmentally relevant MP concentrations on the metabolism of intertidal Pacific oyster Crassostrea gigas, and its potential MP-induced vulnerability to warming during midday low tide. Oysters experienced a simulated semidiurnal tidal cycle based on their natural habitat, and were exposed to a mixture of polystyrene microbeads (4, 7.5 and 10 µm) at two environmentally relevant concentrations (0.025 µg L-1 and 25 µg L-1) for 16 days, with tissue samplings after 3 and 12 days to address dose-dependent effects over time. On the last day of exposure, the remaining oysters were additionally exposed to low tide warming (3 °C h-1) to investigate possible MP-induced susceptibility to aerial warming. Metabolites of digestive gland and gill tissues were analysed by using untargeted 1H nuclear magnetic resonance (NMR) based metabolomics. For the digestive gland metabolite profiles were comparable to each other independent of MP concentration, exposure time, or warming. In contrast, gill metabolites were significantly affected by high MP exposure and warming irrespective of MP, initiating the same cellular stress response to counteract induced oxidative stress. The activated cascade of antioxidant defence mechanisms required energy on top of the general energy turnover to keep up homeostasis, which in turn may lead to subtle, and likely sub-lethal, effects within intertidal oyster populations. Present results underline the importance of examining the effects of environmentally relevant MP concentrations not only alone but in combination with other environmental stressors.


Asunto(s)
Crassostrea , Microplásticos , Contaminantes Químicos del Agua , Animales , Crassostrea/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/metabolismo , Olas de Marea , Monitoreo del Ambiente , Metabolómica
6.
Int Immunopharmacol ; 140: 112813, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39088916

RESUMEN

Prior research has shown the effectiveness of dalbergin (DL), dalbergin nanoformulation (DLF), and dalbergin-loaded PLGA-galactose-modified nanoparticles (DLMF) in treating hepatocellular carcinoma (HCC) cells. The present investigation constructs upon our previous research and delves into the molecular mechanisms contributing to the anticancer effects of DLF and DLMF. This study examined the anti-cancer effects of DL, DLF, and DLMF by diethyl nitrosamine (DEN)-induced HCC model in albino Wistar rats. In addition, we performed biochemical, antioxidant, lipid profile tests, and histological studies of liver tissue. The anticancer efficacy of DLMF is equivalent to that of 5-fluorouracil, a commercially available therapy for HCC. Immunoblotting studies revealed a reduction in the expression of many apoptotic markers, such as p53, BAX, and Cyt-C, in HCC. Conversely, the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3 was elevated. Nevertheless, the administration of DL, DLF, and DLMF effectively controlled the levels of these apoptotic markers, resulting in a considerable decrease in the expression of Bcl-2, TNF-α, NFκB, p-AKT, and STAT-3. Specifically, the activation of TNF-alpha and STAT-3 triggers the signalling pathways that include the Bcl-2 family of proteins, Cyt-C, caspase 3, and 9. This ultimately leads to apoptosis and the suppression of cell growth. Furthermore, metabolomic analysis using 1H NMR indicated that the metabolites of animals reverted to normal levels after the treatment.


Asunto(s)
Antineoplásicos , Apoptosis , Carcinoma Hepatocelular , Galactosa , Neoplasias Hepáticas , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Nanopartículas/química , FN-kappa B/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos
7.
J Hazard Mater ; 477: 135404, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098204

RESUMEN

Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.


Asunto(s)
Benzo(a)pireno , Metabolómica , Microplásticos , Poliquetos , Contaminantes Químicos del Agua , Poliquetos/efectos de los fármacos , Poliquetos/metabolismo , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sedimentos Geológicos/química
8.
Front Public Health ; 12: 1386441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171307

RESUMEN

Introduction: Metal carpentry includes a wide range of work activities such as welding and cutting metallic components, use of solvents and paints. Therefore, the employees in these types of activities are mainly exposed to welding fumes and volatile organic solvents. Here, we present an NMR-based metabolomic approach for assessing urinary profiles of workers in the same company that are exposed to two different risk factors. Methods: The study enrolled 40 male subjects exposed to welding fumes, 13 male subjects exposed to volatile organic compounds of a metal carpentry company, and 24 healthy volunteers. All samples were collected, in the middle of the working week at fast. Thirty-five urinary metabolites belonging to different chemical classes such as amino acids, organic acids and amines were identified and quantified. Results were processed by multivariate statistical analysis for identifying significant metabolites for each working group examined, compared to controls. Results: Workers exposed to welding fumes displayed urinary increase in glutamine, tyrosine, taurine, creatine, methylguanidine and pseudouridine associated to oxidative impairment, while workers exposed to volatile organic compounds showed higher urinary levels of branched chain aminoacids. Conclusion: Our work identified specific urinary profile related to each occupational exposure, even if it is below the threshold limit values.


Asunto(s)
Contaminantes Ocupacionales del Aire , Espectroscopía de Resonancia Magnética , Metabolómica , Exposición Profesional , Compuestos Orgánicos Volátiles , Soldadura , Humanos , Masculino , Compuestos Orgánicos Volátiles/orina , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Adulto , Contaminantes Ocupacionales del Aire/orina , Contaminantes Ocupacionales del Aire/análisis , Persona de Mediana Edad
9.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125969

RESUMEN

To date, not many studies have presented evidence of SARS-CoV-2 infecting the female reproductive system. Furthermore, so far, no effect of the administration of anti-COVID 19 vaccines has been reported to affect the quality of oocytes retrieved from women who resorted to assisted reproduction technology (ART). The FF metabolic profiles of women who had been infected by SARS-CoV-2 before IVF treatments or after COVID-19 vaccination were examined by 1H NMR. Immunochemical characterization of proteins and cytokines involved in the redox and inflammatory pathways was performed. The increased expression of SOD2 and NQO1, the lack of alteration of IL-6 and CXCL10 levels, as well as the increased expression of CD39, suggested that, both sharing similar molecular mechanisms or proceeding along different routes, the redox balance is controlled in the FF of both vaccinated and recovered women compared to controls. The lower amount of metabolites known to have proinflammatory activity, i.e., TMAO and lipids, further supported the biochemical results, suggesting that the FF microenvironment is controlled so as to guarantee oocyte quality and does not compromise the outcome of ART. In terms of the number of blastocysts obtained after ICSI and the pregnancy rate, the results are also comforting.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Líquido Folicular , Metabolómica , Oxidación-Reducción , SARS-CoV-2 , Humanos , Femenino , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/metabolismo , Líquido Folicular/metabolismo , Adulto , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Embarazo , Metabolómica/métodos , Superóxido Dismutasa/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Vacunación , Antígenos CD/metabolismo , Metaboloma , Apirasa
10.
Crit Rev Anal Chem ; : 1-25, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990786

RESUMEN

Plant metabolomics, a rapidly advancing field within plant biology, is dedicated to comprehensively exploring the intricate array of small molecules in plant systems. This entails precisely gathering comprehensive chemical data, detecting numerous metabolites, and ensuring accurate molecular identification. Nuclear magnetic resonance (NMR) spectroscopy, with its detailed chemical insights, is crucial in obtaining metabolite profiles. Its widespread application spans various research disciplines, aiding in comprehending chemical reactions, kinetics, and molecule characterization. Biotechnological advancements have further expanded NMR's utility in metabolomics, particularly in identifying disease biomarkers across diverse fields such as agriculture, medicine, and pharmacology. This review covers the stages of NMR-based metabolomics, including historical aspects and limitations, with sample preparation, data acquisition, spectral processing, analysis, and their application parts.

11.
Nat Prod Res ; : 1-7, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824635

RESUMEN

Thyme is a commercial spice widely used in food, cosmetics, and pharmaceutical industries. Three popular genera in food and traditional medicine, including Zataria Boiss., Thymus L., and Ziziphora L., are considered as thyme-like plants in Iran. Thyme has been standardised based on phenolic monoterpenes, which are abundant in the essential oils of these three genera. Apart from monoterpenes, the flavonoid naringenin, the triterpene oleanolic acid, and phytosterols such as ß-sitosterol were abundant in Zataria, Thymus, and Ziziphora samples, respectively. Therefore, employing current analytical techniques on the basis of thymol and carvacrol may be insufficient to differentiate Thymus spp from similar medicinal plants including Zataria and Ziziphora spp. In this study, we applied NMR-based metabolomics using multivariate analyses to develop quality control of thyme and their similar products. Our findings revealed that NMR-based metabolomics can be a useful approach in differentiating Zataria, Thymus, and Ziziphora.

12.
Toxics ; 12(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535915

RESUMEN

Due to its chemical properties, styrene is largely employed in the manufacturing of several products including rubber, polymers and resins, and it is particularly suitable for shipbuilding industry purposes. In this context, the main exposure to styrene occurs in occupational settings. Despite its widespread use, its long-term effects on human health at the occupational level are still unclear. The aim of this pilot study was to evaluate changes in styrene exposure biomarkers related to the metabolic and oxidative stress profiles in the urine of seventeen shipyard workers and seventeen non-exposed subjects. Urinary metabolites were assessed by means of NMR spectroscopy, including mandelic and phenylglyoxylic acids; four oxidative stress biomarkers, namely 8-oxo-7,8-dihydroguanine, 8-oxo-7,8-dihydroguanosine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine and 3-nitrotyrosine, were evaluated via HPLC-MS/MS. The metabolic profiles of exposed workers showed both long- and short-term metabolic responses to styrene exposure compared to non-exposed subjects. From the comparison between non-exposed and before-shift workers, only 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine levels were significantly different (long term exposure response). At the same time, comparing the non-exposed group with after-shift workers, we observed lower levels of pseudouridine and 1-methylnicotinamide and higher glutamine levels in after-shift workers. The comparison between before-shift and after-shift workers showed that 8-oxo-7,8-dihydroguanine significantly increased after the shift, suggesting its involvement in the exposure to styrene (short-term exposure response). The obtained results, although preliminary, allow us to lay the basis for further human studies aimed at establishing a global understanding of styrene metabolism.

13.
Sci Total Environ ; 912: 169190, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092204

RESUMEN

The bisindolic alkaloid caulerpin (CAU) is a bioactive compound isolated from green algae of the genus Caulerpa that are highly invasive in the Mediterranean Sea. On the other side, the purine alkaloid caffeine (CAF) is one of the most globally consumed psychoactive substances and a widespread anthropogenic water pollutant. Both compounds display a large panel of biological properties and are well known to accumulate in the tissues of aquatic organisms and, in certain circumstances, co-occur in the human diet. On this premise, the present study aimed to investigate possible synergistic interactions between CAU and CAF by using the bivalve Mytilus galloprovincialis as a model organism. Mussels were exposed to CAF via medium while they were fed with food enriched with CAU. After treatments, biochemical analysis confirmed the toxic potential of CAF, with increased AChE activity and lipid peroxidation. Also, histopathological alterations were observed in the gills and digestive tubules. The NMR-based metabolomics analysis detected higher levels of free amino acids under CAF treatments. Conversely, the food administration of CAU did not affect the above toxicological biomarkers. In addition, we did not observe any cumulative effect between CAF and CAU toward increased cellular damage and neurotoxicity. On the other hand, a possible action of CAU in decreasing CAF toxicity could be hypothesized based on our results. This hypothesis is supported by the activity of CAU as an agonist of peroxisome proliferator-activated receptors (PPARs). PPARs mediate xenobiotic detoxification via cytochromes P450, which is involved in CAF metabolism. Overall, the results obtained not only rule out any cumulative adverse effects of CAF and CAU but also encourage further research to evaluate the possible use of CAU, a compound easily obtained through the valorization of biomass from invasive species, as a food additive to improve the clearance of xenobiotics.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Humanos , Alcaloides/toxicidad , Alcaloides/metabolismo , Cafeína/toxicidad , Cafeína/metabolismo , Indoles/metabolismo , Indoles/toxicidad , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
14.
Sci Total Environ ; 912: 169196, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38097075

RESUMEN

The safety of drinking water has always been a concern for people all over the world. N-nitrosamines (NAs), a kind of nitrogenous disinfection by-products (N-DBPs), are generally detected as a mixture in drinking water at home and abroad. Studies have shown that individual NAs posed strong carcinogenicity at high concentrations. However, health risks of NAs at environmental levels (concentrations in drinking water) are still unclear. Therefore, the potential health risks of environmentally relevant NAs exposure in drinking water needs to be conducted. In this study, blood biochemical analysis and metabolomics based on nuclear magnetic resonance (NMR) were performed to comprehensively investigate NAs induced metabolic disturbance in infant rats at environmental levels. Results of blood biochemical indices analysis indicated that AST in the serum of male rats in NAs-treated group exhibited a significant gender-specific difference. Multivariate statistics showed that two and eight significantly disturbed metabolic pathways were identified in the serum samples of NAs-treated male and female rats, respectively. In the urine samples of NAs-treated female rats, glycine, serine, and threonine metabolism pathway was significantly disturbed; while three significantly disturbed metabolic pathways were found in the urine of NAs-treated male rats. Finally, results of spearman correlation coefficients suggested that the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota (data derived from our published paper). Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management. ENVIRONMENTAL IMPLICATION: N-nitrosamines (NAs) are a kind of nitrogenous disinfection by-products (N-DBPs) generated during drinking water disinfection processes. Herein, health risks of NAs at environmental levels (concentrations in drinking water) are investigated using blood biochemical analysis and nuclear magnetic resonance (NMR)-based metabolomics. Results confirmed NAs induced gender-specific on the metabolism in rat and the disturbances of metabolism profile in serum and urine were correlated with changes in the gut microbiota. Data presented here aimed to generate new health risk data of NAs mixture exposure at environmental levels and provide theoretical support for drinking water safety management.


Asunto(s)
Desinfectantes , Agua Potable , Nitrosaminas , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Lactante , Ratas , Masculino , Femenino , Animales , Nitrosaminas/toxicidad , Nitrosaminas/análisis , Agua Potable/química , Purificación del Agua/métodos , Desinfección/métodos , Espectroscopía de Resonancia Magnética , Contaminantes Químicos del Agua/análisis , Desinfectantes/análisis
15.
Front Mol Biosci ; 10: 1295216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033387

RESUMEN

COVID-19 was the most significant infectious-agent-related cause of death in the 2020-2021 period. On average, over 60% of those admitted to ICU facilities with this disease died across the globe. In severe cases, COVID-19 leads to respiratory and systemic compromise, including pneumonia-like symptoms, acute respiratory distress syndrome, and multiorgan failure. While the upper respiratory tract and lungs are the principal sites of infection and injury, most studies on the metabolic signatures in COVID-19 patients have been carried out on serum and plasma samples. In this report we attempt to characterize the metabolome of lung parenchyma extracts from fatal COVID-19 cases and compare them with that from other respiratory diseases. Our findings indicate that the metabolomic profiles from fatal COVID-19 and non-COVID-19 cases are markedly different, with the former being the result of increased lactate and amino acid metabolism, altered energy pathways, oxidative stress, and inflammatory response. Overall, these findings provide additional insights into the pathophysiology of COVID-19 that could lead to the development of targeted therapies for the treatment of severe cases of the disease, and further highlight the potential of metabolomic approaches in COVID-19 research.

16.
Metabolomics ; 19(12): 98, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999866

RESUMEN

INTRODUCTION: Separately, both exercise and protein ingestion have been shown to alter the blood and urine metabolome. This study goes a step further and examines changes in the metabolome derived from blood, urine and muscle tissue extracts in response to resistance exercise combined with ingestion of three different protein sources. METHODS: In an acute parallel study, 52 young males performed one-legged resistance exercise (leg extension, 4 × 10 repetitions at 10 repetition maximum) followed by ingestion of either cricket (insect), pea or whey protein (0.25 g protein/kg fat free mass). Blood and muscle tissue were collected at baseline and three hours after protein ingestion. Urine was collected at baseline and four hours after protein ingestion. Mixed-effects analyses were applied to examine the effect of the time (baseline vs. post), protein (cricket, pea, whey), and time x protein interaction. RESULTS: Nuclear magnetic resonance (NMR)-based metabolomics resulted in the annotation and quantification of 25 metabolites in blood, 35 in urine and 21 in muscle tissue. Changes in the muscle metabolome after combined exercise and protein intake indicated effects related to the protein source ingested. Muscle concentrations of leucine, methionine, glutamate and myo-inositol were higher after intake of whey protein compared to both cricket and pea protein. The blood metabolome revealed changes in a more ketogenic direction three hours after exercise reflecting that the trial was conducted after overnight fasting. Urinary concentration of trimethylamine N-oxide was significantly higher after ingestion of cricket than pea and whey protein. CONCLUSION: The blood, urine and muscle metabolome showed different and supplementary responses to exercise and ingestion of the different protein sources, and in synergy the summarized results provided a more complete picture of the metabolic state of the body.


Asunto(s)
Críquet , Entrenamiento de Fuerza , Masculino , Humanos , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Suero Lácteo/metabolismo , Pisum sativum/metabolismo , Proteínas de la Leche/metabolismo , Metabolómica , Músculo Esquelético/metabolismo , Metaboloma
17.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003362

RESUMEN

More than 12 million people around the world suffer a stroke every year, one every 3 s. Stroke has a variety of causes and is often the result of a complex interaction of risk factors related to age, genetics, gender, lifestyle, and some cardiovascular and metabolic diseases. Despite this evidence, it is not possible to prevent the onset of stroke. The use of innovative methods for metabolite analysis has been explored in the last years to detect new stroke biomarkers. We use NMR spectroscopy to identify small molecule variations between different stages of stroke risk. The Framingham Stroke Risk Score was used in people over 63 years of age living in long-term care facilities (LTCF) to calculate the probability of suffering a stroke. Using this parameter, three study groups were formed: low stroke risk (LSR, control), moderate stroke risk (MSR) and high stroke risk (HSR). Univariate statistical analysis showed seven metabolites with increasing plasma levels across different stroke risk groups, from LSR to HSR: isoleucine, asparagine, formate, creatinine, dimethylsulfone and two unidentified molecules, which we termed "unknown-1" and "unknown-3". These metabolic markers can be used for early detection and to detect increasing stages of stroke risk more efficiently.


Asunto(s)
Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/etiología , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Factores de Riesgo , Biomarcadores , Metabolómica/métodos
18.
Aquat Toxicol ; 264: 106736, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37913686

RESUMEN

Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Branquias/metabolismo , Microplásticos/metabolismo , Mytilus/metabolismo , Plásticos , Poliestirenos/metabolismo , Contaminantes Químicos del Agua/toxicidad
19.
Harmful Algae ; 129: 102529, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951624

RESUMEN

The increasing occurrence of harmful algal blooms, mostly of the dinoflagellate Alexandrium catenella in Canada, profoundly disrupts mussel aquaculture. These filter-feeding shellfish feed on A. catenella and accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making them unsafe for human consumption. Algal toxins also have detrimental effects upon several physiological functions in mussels, but particularly on the activity of hemocytes - the mussel immune cells. The objective of this work was to determine the effects of experimental exposure to A. catenella upon hemocyte metabolism and activity in the blue mussel, Mytilus edulis. To do so, mussels were exposed to cultures of the toxic dinoflagellate A. catenella for 120 h. The resulting mussel saxitoxin load had measurable effects upon survival of hemocytes and induced a stress response measured as increased ROS production. The neutral lipid fraction of mussel hemocytes decreased two-fold, suggesting a differential use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis showed that A. catenella modified the energy metabolism of hemocytes as well as hemocyte osmolyte composition. The modified energy metabolism was reenforced by contrasting plasma metabolomes between control and exposed mussels, suggesting that the blue mussel may reduce feed assimilation when exposed to A. catenella.


Asunto(s)
Dinoflagelados , Mytilus edulis , Animales , Humanos , Dinoflagelados/fisiología , Saxitoxina , Toxinas Marinas/toxicidad , Lipidómica
20.
BMC Plant Biol ; 23(1): 490, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37828439

RESUMEN

BACKGROUND: Arbutus unedo L. is a wild tree of Mediterranean regions used as food and in traditional medicine and important for afforestation programs. There is no detailed information available on the variation of A. unedo leaves metabolome across the seasons. The leaves were analyzed by Proton nuclear magnetic resonance (1 H NMR)-based metabolomics, comparing samples harvested across the seasons and in ten different natural habitats of Sardinia (Italy). RESULTS: Multivariate analysis showed the impact of seasonal variation on the metabolome: glucose and quinic acid increased in summer, while in spring sucrose was accumulated. ß-Arbutin, the main known active principle of A. unedo, generally reached the highest concentration in autumn. In winter, O-ß-methylglucose, γ-aminobutyric acid (GABA), flavonols (quercetin-3-O-α-rhamnoside, myricetin-3-O-α-rhamnoside, kaempferol-3-O-α-rhamnoside), catechin, and gallocatechin increased. Characteristic metabolomic features were found also for samples collected in different locations. For instance, trees growing at the highest altitude and exposed to lower temperatures produced less flavonols and catechins. The only sample collected on trees growing on limestones, dolomites, and dolomitic limestones type of soil showed generally the highest content of arbutin. The highest phenolics content was found during spring, while samples collected on flowering branches in winter were the ones with the highest flavonoid content. The antioxidant activity was also variated, ranging from 1.3 to 10.1 mg of Trolox equivalents (TE)/mL of extract, and it was positively correlated to both total phenolics and flavonoid content. Winter samples showed the lowest antibacterial activity, while summer and autumn ones exhibited the highest activity (IC50 values ranging from 17.3 to 42.3 µg/mL against Staphylococcal species). CONCLUSION: This work provides 1 H-NMR fingerprinting of A. unedo leaves, elucidating the main metabolites and their variations during seasons. On the basis of arbutin content, autumn could be considered the balsamic period of this taxon. Samples collected in this season were also the most active ones as antibacterial. Moreover, an interesting metabolomic profile enriched in catechins and flavonols was observed in leaves collected in winter on flowering branches which were endowed with high antioxidant potential.


Asunto(s)
Antioxidantes , Arbutina , Estaciones del Año , Arbutina/análisis , Arbutina/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Fenoles/metabolismo , Flavonoles/metabolismo , Extractos Vegetales/análisis , Ecosistema , Antibacterianos , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...