Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Protein Pept Lett ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39039677

RESUMEN

BACKGROUND: Peptide drugs are advantageous because they are subject to rational design and exhibit highly diverse structures and broad biological activities. The NS2B-NS3 protein is a particularly promising flavivirus therapeutic target, with extensive research on the development of inhibitors as therapeutic candidates, and was used as a model in this work to determine the mechanism by which GA-Hecate inhibits ZIKV replication. OBJECTIVE: The present study aimed to evaluate the potential of GA-Hecate, a new antiviral developed by our group, against the Brazilian Zika virus and to evaluate the mechanism of action of this compound on the flavivirus NS2B-NS3 protein. METHODS: Solid-phase peptide Synthesis, High-Performance Liquid Chromatography, and Mass Spectrometry were used to obtain, purify, and characterize the synthesized compound. Real-time and enzymatic assays were used to determine the antiviral potential of GA-Hecate against ZIKV. RESULTS: The RT-qPCR results showed that GA-Hecate decreased the number of ZIKV RNA copies in the virucidal, pre-treatment, and post-entry assays, with 5- to 6-fold fewer RNA copies at the higher nontoxic concentration in Vero cells (HNTC: 10 µM) than in the control cells. Enzymatic and kinetic assays indicated that GA-Hecate acts as a competitive ZIKV NS2B-NS3 protease inhibitor with an IC50 of 32 nM and has activity against the yellow fever virus protease. CONCLUSION: The results highlight the antiviral potential of the GA-Hecate bioconjugate and open the door for the development of new antivirals.

2.
Int J Biol Macromol ; : 133791, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992553

RESUMEN

Dengue virus (DENV2) is the cause of dengue disease and a worldwide health problem. DENV2 replicates in the host cell using polyproteins such as NS3 protease in conjugation with NS2B cofactor, making NS3 protease a promising antiviral drug-target. This study investigated the efficacy of 'Niloticin' against NS2B/NS3-protease. In silico and in vitro analyses were performed which included interaction of niloticin with NS2B/NS3-protease, protein stability and flexibility, mutation effect, betweenness centrality of residues and analysis of cytotoxicity, protein expression and WNV NS3-protease activity. Similar like acyclovir, niloticin forms strong H-bonds and hydrophobic interactions with residues LEU149, ASN152, LYS74, GLY148 and ALA164. The stability of the niloticin-NS2B/NS3-protease complex was found to be stable compared to the apo NS2B/NS3-protease in structural deviation, PCA, compactness and FEL analysis. The IC50 value of niloticin was 0.14 µM in BHK cells based on in vitro cytotoxicity analysis and showed significant activity at 2.5 µM in a concentration-dependent manner. Western blotting and qRT-PCR analyses showed that niloticin reduced DENV2 protein transcription in a dose-dependent manner. Besides, niloticin confirmed the inhibition of NS3-protease by the SensoLyte 440 WNV protease detection kit. These promising results suggest that niloticin could be an effective antiviral drug against DENV2 and other flaviviruses.

3.
Mol Biotechnol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834897

RESUMEN

Dengue fever (DF) is an endemic disease that has become a public health concern around the globe. The NS3 protease-helicase enzyme is an important target for the development of antiviral drugs against DENV (dengue virus) due to its impact on viral replication. Inhibition of the activity of the NS3 protease-helicase enzyme complex significantly inhibits the infection associated with DENV. Unfortunately, there are no scientifically approved antiviral drugs for its prevention. However, this study has been developed to find natural bioactive molecules that can block the activity of the NS3 protease-helicase enzyme complex associated with DENV infection through molecular docking, MM-GBSA (molecular mechanics-generalized born surface area), and molecular dynamics (MD) simulations. Three hundred forty-two (342) compounds selected from twenty traditional medicinal plants were retrieved and screened against the NS3 protease-helicase protein by molecular docking and MM-GBSA studies, where the top six phytochemicals have been identified based on binding affinities. The six compounds were then subjected to pharmacokinetics and toxicity analysis, and we conducted molecular dynamics simulations on three protein-ligand complexes to validate their stability. Through computational analysis, this study revealed the potential of the two selected natural bioactive inhibitors (CID-440015 and CID-7424) as novel anti-dengue agents.

4.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869150

RESUMEN

Viral helicases are promising targets for the development of antiviral therapies. Given their vital function of unwinding double-stranded nucleic acids, inhibiting them blocks the viral replication cycle. Previous studies have elucidated key structural details of these helicases, including the location of substrate binding sites, flexible domains, and the discovery of potential inhibitors. Here we present a series of new Galaxy tools and workflows for performing and analyzing molecular dynamics simulations of viral helicases. We first validate them by demonstrating recapitulation of data from previous simulations of Zika (NS3) and SARS-CoV-2 (NSP13) helicases in apo and complex with inhibitors. We further demonstrate the utility and generalizability of these Galaxy workflows by applying them to new cases, proving their usefulness as a widely accessible method for exploring antiviral activity.


Asunto(s)
Simulación de Dinámica Molecular , SARS-CoV-2 , SARS-CoV-2/enzimología , Virus Zika/enzimología , Flujo de Trabajo , ARN Helicasas/química , ARN Helicasas/metabolismo , Humanos , ADN Helicasas/química , ADN Helicasas/metabolismo , Antivirales/química , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Sitios de Unión , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
5.
J Biomol Struct Dyn ; : 1-12, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881303

RESUMEN

The rise in dengue cases in tropical and sub-tropical areas has become a significant health concern. At present, there is no definitive cure for dengue fever, which underscores the importance of identifying potent inhibitors. Dengue NS2B-NS3 protease is the prime drug target due to its vital function for replication. Quercetin, a flavone, has anti-dengue virus properties but is limited by low bioavailability. Previous studies have shown that methoxy substitution in flavones improves bioavailability and metabolic stability. Azaleatin is a derivative of quercetin with a methoxy substitution at the C5 position, however its ability to inhibit dengue is unknown. In this study, azaleatin was investigated for its inhibition against dengue NS2B-NS3 protease using in vitro and in silico techniques. The fluorescence assay was used to determine the IC50 value and inhibition kinetics. The molecular interaction between azaleatin and NS2B-NS3 was studied using CB-Dock2 and AutoDock Vina. The complex's stability was then analysed using GROMACS. Besides, the ADMETlab 2.0 was utilized to predict pharmacokinetic of the azaleatin. Results showed that azaleatin inhibits dengue NS2B-NS3 protease non-competitively with a Ki of 26.82 µg/ml and an IC50 of 38 µg/ml. Molecular docking indicated binding of the azaleatin to the allosteric pocket of NS2B-NS3 with a docking score of -8.2 kcal/mol. Azaleatin was found stable in the pocket along 100 ns, supporting its inhibitory mode. The compound has favourable pharmacokinetic profiles and conformed to Lipinski's Rule of Five. Taken together, azaleatin inhibits NS2B-NS3 protease in a non-competitive mode, suggesting its potential as safer anti-dengue compound.Communicated by Ramaswamy H. Sarma.

6.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894201

RESUMEN

Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a paramount role in network performance. Therefore, the in-network caching policy is one of the hotspot problems. Especially, compared to caching traditional internet content, in-networking caching IoT content is more challenging, since the IoT content lifetime is small and transient. In this paper, firstly, the framework of the LEO satellite mega-constellation Information-Centric Networking for IoT (LEO-SMC-ICN-IoT) is proposed. Then, introducing the concept of "viscosity", the proposed Caching Algorithm based on the Random Forest (CARF) policy of satellite nodes combines both content popularity prediction and satellite nodes location prediction, for achieving good cache matching between the satellite nodes and content. And using the matching rule, the Random Forest (RF) algorithm is adopted to predict the matching relationship among satellite nodes and content for guiding the deployment of caches. Especially, the content is cached in advance at the future satellite to maintain communication with the current ground segment at the time of satellite switchover. Additionally, the policy considers both the IoT content lifetime and the freshness. Finally, a simulation platform with LEO satellite mega-constellation based on ICN is developed in Network Simulator 3 (NS-3). The simulation results show that the proposed caching policy compared with the Leave Copy Everywhere (LCE), the opportunistic (OPP), the Leave Copy down (LCD), and the probabilistic algorithm which caches each content with probability 0.5 (prob 0.5) yield a significant performance improvement, such as the average number of hops, i.e., delay, cache hit rate, and throughput.

7.
Antiviral Res ; 228: 105939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909960

RESUMEN

Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.


Asunto(s)
Virus del Dengue , Dengue , Glucoquinasa , Glucólisis , NAD , Proteínas no Estructurales Virales , Replicación Viral , Glucólisis/efectos de los fármacos , Virus del Dengue/efectos de los fármacos , Glucoquinasa/metabolismo , Glucoquinasa/antagonistas & inhibidores , Humanos , Replicación Viral/efectos de los fármacos , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Animales , Dengue/tratamiento farmacológico , Dengue/virología , Dengue/metabolismo , NAD/metabolismo , NAD/biosíntesis , Línea Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Glucosa/metabolismo , Hígado/virología , Hígado/metabolismo , Antivirales/farmacología , Proteasas Virales , Serina Endopeptidasas , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-box
8.
Int J Biol Macromol ; 272(Pt 1): 132855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834129

RESUMEN

Approximately 3.9 billion individuals are vulnerable to dengue infection, a prevalent cause of tropical diseases worldwide. Currently, no drugs are available for preventing or treating Flavivirus diseases, including Dengue, West Nile, and the more recent Zika virus. The highly conserved Flavivirus NS2B-NS3 protease, crucial for viral replication, is a promising therapeutic target. This study employed in-silico methodologies to identify novel and potentially effective anti-dengue small molecules. A pharmacophore model was constructed using an experimentally validated NS2B-NS3 inhibitor, with the Gunner Henry score confirming the model's validity. The Natural Product Activity and Species Source (NPASS) database was screened using the validated pharmacophore model, yielding a total of 60 hits against the NS2B-NS3 protease. Furthermore, the docking finding reveals that our newly identified compounds from the NPASS database have enhanced binding affinities and established significant interactions with allosteric residues of the target protein. MD simulation and post-MD analysis further validated this finding. The free binding energy was computed in terms of MM-GBSA analysis, with the total binding energy for compound 1 (-57.3 ± 2.8 and - 52.9 ± 1.9 replica 1 and 2) indicating a stronger binding affinity for the target protein. Overall, this computational study identified these compounds as potential hit molecules, and these findings can open up a new avenue to explore and develop inhibitors against Dengue virus infection.


Asunto(s)
Antivirales , Virus del Dengue , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas , Serina Endopeptidasas , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Virus del Dengue/efectos de los fármacos , Virus del Dengue/enzimología , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Evaluación Preclínica de Medicamentos , Unión Proteica , Proteasas Virales
9.
Chem Biol Interact ; 396: 111040, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38735453

RESUMEN

Global warming and climate change have made dengue disease a global health issue. More than 50 % of the world's population is at danger of dengue virus (DENV) infection, according to the World Health Organization (WHO). Therefore, a clinically approved dengue fever vaccination and effective treatment are needed. Peptide medication development is new pharmaceutical research. Here we intend to recognize the structural features inhibiting the DENV NS2B/NS3 serine protease for a series of peptide-hybrid inhibitors (R1-R2-Lys-R3-NH2) by the 3D-QSAR technique. Comparative molecular field analysis (q2 = 0.613, r2 = 0.938, r2pred = 0.820) and comparative molecular similarity indices analysis (q2 = 0.640, r2 = 0.928, r2pred = 0.693) were established, revealing minor, electropositive, H-bond acceptor groups at the R1 position, minor, electropositive, H-bond donor groups at the R2 position, and bulky, hydrophobic groups at the R3 position for higher inhibitory activity. Docking studies revealed extensive H-bond and hydrophobic interactions in the binding of tripeptide analogues to the NS2B/NS3 protease. This study provides an insight into the key structural features for the design of peptide-based inhibitors of DENV NS2B/NS3 protease.


Asunto(s)
Virus del Dengue , Simulación del Acoplamiento Molecular , Péptidos , Relación Estructura-Actividad Cuantitativa , Serina Endopeptidasas , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Virus del Dengue/efectos de los fármacos , Virus del Dengue/enzimología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Péptidos/química , Péptidos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Sitios de Unión , Enlace de Hidrógeno , Antivirales/química , Antivirales/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Proteasas Virales
10.
bioRxiv ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38746241

RESUMEN

The Zika virus (ZIKV), discovered in Africa in 1947, swiftly spread across continents, causing significant concern due to its recent association with microcephaly in newborns and Guillain-Barré syndrome in adults. Despite a decrease in prevalence, the potential for a resurgence remains, necessitating urgent therapeutic interventions. Like other flaviviruses, ZIKV presents promising drug targets within its replication machinery, notably the NS3 helicase (NS3Hel) protein, which plays critical roles in viral replication. However, a lack of structural information impedes the development of specific inhibitors targeting NS3Hel. Here we applied high-throughput crystallographic fragment screening on ZIKV NS3Hel, which yielded structures that reveal 3D binding poses of 46 fragments at multiple sites of the protein, including 11 unique fragments in the RNA-cleft site. These fragment structures provide templates for direct design of hit compounds and should thus assist the development of novel direct-acting antivirals against ZIKV and related flaviviruses, thus opening a promising avenue for combating future outbreaks.

11.
Arch Pharm (Weinheim) ; : e2400250, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809037

RESUMEN

Three new series of macrocyclic active site-directed inhibitors of the Zika virus (ZIKV) NS2B-NS3 protease were synthesized. First, attempts were made to replace the basic P3 lysine residue of our previously described inhibitors with uncharged and more hydrophobic residues. This provided numerous compounds with inhibition constants between 30 and 50 nM. A stronger reduction of the inhibitory potency was observed when the P2 lysine was replaced by neutral residues, all of these inhibitors possess Ki values >1 µM. However, it is possible to replace the P2 lysine with the less basic 3-aminomethylphenylalanine, which provides a similarly potent inhibitor of the ZIKV protease (Ki = 2.69 nM). Crystal structure investigations showed that the P2 benzylamine structure forms comparable interactions with the protease as lysine. Twelve additional structures of these inhibitors in complex with the protease were determined, which explain many, but not all, SAR data obtained in this study. All individual modifications in the P2 or P3 position resulted in inhibitors with low antiviral efficacy in cell culture. Therefore, a third inhibitor series with combined modifications was synthesized; all of them contain a more hydrophobic  d-cyclohexylalanine in the linker segment. At a concentration of 40 µM, two of these compounds possess similar antiviral potency as ribavirin at 100 µM. Due to their reliable crystallization in complex with the ZIKV protease, these cyclic compounds are very well suited for a rational structure-based development of improved inhibitors.

12.
J Basic Microbiol ; 64(6): e2300279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616711

RESUMEN

Hepatitis C virus (HCV) is the most common infection worldwide. The correlation between HCV and renal cell carcinoma (RCC) is still mysterious. Therefore, the relationship between HCV and RCC was investigated. The study included 100 patients with RCC; 32 with HCV infection, and 68 without HCV infection. Expressions of viral proteins (NS3 and NS5A) were tested using an immune electron-microscope (IEM) and immunohistochemistry (IHC). IHC and quantitative real time-PCR investigated the presentation of human proteins TP53 and p21 genes. Transmission electron (TEM) detected viral-like particles in infected RCC tissues. The gene and protein expression of P53 was higher in HCV positive versus HCV negative patients and p21 was lower in HCV positive versus HCV negative in both tumor and normal tissue samples. Viral like particles were observed by TEM in the infected tumor and normal portion of the RCC tissues and the plasma samples. The IEM showed the depositions of NS3 and NS5A in infected renal tissues, while in noninfected samples, were not observed. The study hypothesizes that a correlation between HCV and RCC could exist through successfully detecting HCV-like particles, HCV proteins, and (p53 and p21) in RCC-infected patients.


Asunto(s)
Carcinoma de Células Renales , Genotipo , Hepacivirus , Neoplasias Renales , Proteína p53 Supresora de Tumor , Proteínas no Estructurales Virales , Humanos , Carcinoma de Células Renales/virología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Neoplasias Renales/virología , Neoplasias Renales/patología , Neoplasias Renales/genética , Masculino , Proteína p53 Supresora de Tumor/genética , Femenino , Persona de Mediana Edad , Hepatitis C/virología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Anciano , Adulto , Inmunohistoquímica , Proteasas Virales , ARN Polimerasa Dependiente del ARN , ARN Helicasas DEAD-box , Nucleósido-Trifosfatasa , Serina Endopeptidasas
13.
Sensors (Basel) ; 24(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38676051

RESUMEN

Through the use of Underwater Smart Sensor Networks (USSNs), Marine Observatories (MOs) provide continuous ocean monitoring. Deployed sensors may not perform as intended due to the heterogeneity of USSN devices' hardware and software when combined with the Internet. Hence, USSNs are regarded as complex distributed systems. As such, USSN designers will encounter challenges throughout the design phase related to time, complexity, sharing diverse domain experiences (viewpoints), and ensuring optimal performance for the deployed USSNs. Accordingly, during the USSN development and deployment phases, a few Underwater Environmental Constraints (UECs) should be taken into account. These constraints may include the salinity level and the operational depth of every physical component (sensor, server, etc.) that will be utilized throughout the duration of the USSN information systems' development and implementation. To this end, in this article we present how we integrated an Artificial Intelligence (AI) Database, an extended ArchiMO meta-model, and a design tool into our previously proposed Enterprise Architecture Framework. This addition proposes adding new Underwater Environmental Constraints (UECs) to the AI Database, which is accessed by USSN designers when they define models, with the goal of simplifying the USSN design activity. This serves as the basis for generating a new version of our ArchiMO design tool that includes the UECs. To illustrate our proposal, we use the newly generated ArchiMO to create a model in the MO domain. Furthermore, we use our self-developed domain-specific model compiler to produce the relevant simulation code. Throughout the design phase, our approach contributes to the handling and controling of the uncertainties and variances of the provided quality of service that may occur during the performance of the USSNs, as well as reducing the design activity's complexity and time. It provides a way to share the different viewpoints of the designers in the domain of USSNs.

14.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673962

RESUMEN

In the global pandemic scenario, dengue and zika viruses (DENV and ZIKV, respectively), both mosquito-borne members of the flaviviridae family, represent a serious health problem, and considering the absence of specific antiviral drugs and available vaccines, there is a dire need to identify new targets to treat these types of viral infections. Within this drug discovery process, the protease NS2B/NS3 is considered the primary target for the development of novel anti-flavivirus drugs. The NS2B/NS3 is a serine protease that has a dual function both in the viral replication process and in the elusion of the innate immunity. To date, two main classes of NS2B/NS3 of DENV and ZIKV protease inhibitors have been discovered: those that bind to the orthosteric site and those that act at the allosteric site. Therefore, this perspective article aims to discuss the main features of the use of the most potent NS2B/NS3 inhibitors and their impact at the social level.


Asunto(s)
Antivirales , Dengue , Inhibidores de Proteasas , Infección por el Virus Zika , Animales , Humanos , Antivirales/uso terapéutico , Antivirales/farmacología , ARN Helicasas DEAD-box , Dengue/tratamiento farmacológico , Dengue/virología , Virus del Dengue/efectos de los fármacos , Nucleósido-Trifosfatasa , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteasas Virales , Virus Zika/efectos de los fármacos , Virus Zika/enzimología , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/virología
15.
Antiviral Res ; 226: 105878, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582134

RESUMEN

Flaviviruses can cause severe illness in humans. Effective and safe vaccines are available for some species; however, for many flaviviruses disease prevention or specific treatments remain unavailable. The viral replication cycle depends on the proteolytic activity of the NS2B-NS3 protease, which releases functional viral proteins from a non-functional polyprotein precursor, rendering the protease a promising drug target. In this study, we characterised recombinant NS2B-NS3 proteases from ten flaviviruses including three unreported proteases from the Usutu, Kyasanur forest disease and Powassan viruses. All protease constructs comprise a covalent Gly4-Ser-Gly4 linker connecting the NS3 serine protease domain with its cofactor NS2B. We conducted a comprehensive cleavage site analysis revealing areas of high conversion. While all proteases were active in enzymatic assays, we noted a 1000-fold difference in catalytic efficiency across proteases from different flaviviruses. Two bicyclic peptide inhibitors displayed anti-pan-flaviviral protease activity with inhibition constants ranging from 10 to 1000 nM.


Asunto(s)
Antivirales , Flavivirus , Serina Endopeptidasas , Proteínas no Estructurales Virales , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Flavivirus/efectos de los fármacos , Flavivirus/enzimología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química , Antivirales/farmacología , Antivirales/química , Humanos , ARN Helicasas/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteasas Virales , Nucleósido-Trifosfatasa , ARN Helicasas DEAD-box
16.
J Virol ; 98(4): e0125823, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38546211

RESUMEN

Dengue fever, an infectious disease prevalent in subtropical and tropical regions, currently lacks effective small-molecule drugs as treatment. In this study, we used a fluorescence peptide cleavage assay to screen seven compounds to assess their inhibition of the dengue virus (DENV) NS2B-NS3 protease. DV-B-120 demonstrated superior inhibition of NS2B-NS3 protease activity and lower toxicity compared to ARDP0006. The selectivity index of DV-B-120 was higher than that of ARDP0006. In vivo assessments of the antiviral efficacy of DV-B-120 against DENV replication demonstrated delayed mortality of suckling mice treated with the compound, with 60-80% protection against life-threatening effects, compared to the outcomes of DENV-infected mice treated with saline. The lower clinical scores of DENV-infected mice treated with DV-B-120 indicated a reduction in acute-progressive illness symptoms, underscoring the potential therapeutic impact of DV-B-120. Investigations of DV-B-120's ability to restore the antiviral type I IFN response in the brain tissue of DENV-infected ICR suckling mice demonstrated its capacity to stimulate IFN and antiviral IFN-stimulated gene expression. DV-B-120 not only significantly delayed DENV-2-induced mortality and illness symptoms but also reduced viral numbers in the brain, ultimately restoring the innate antiviral response. These findings strongly suggest that DV-B-120 holds promise as a therapeutic agent against DENV infection and highlight its potential contribution in addressing the current lack of effective treatments for this infectious disease.IMPORTANCEThe prevalence of dengue virus (DENV) infection in tropical and subtropical regions is escalating due to factors like climate change and mosquito vector expansion. With over 300 million annual infections and potentially fatal outcomes, the urgent need for effective treatments is evident. While the approved Dengvaxia vaccine has variable efficacy, there are currently no antiviral drugs for DENV. This study explores seven compounds targeting the NS2B-NS3 protease, a crucial protein in DENV replication. These compounds exhibit inhibitory effects on DENV-2 NS2B-NS3, holding promise for disrupting viral replication and preventing severe manifestations. However, further research, including animal testing, is imperative to assess therapeutic efficacy and potential toxicity. Developing safe and potent treatments for DENV infection is critical in addressing the rising global health threat posed by this virus.


Asunto(s)
Virus del Dengue , Dengue , Piperidinas , Animales , Ratones , Antivirales/química , Antivirales/uso terapéutico , Enfermedades Transmisibles , Dengue/tratamiento farmacológico , Virus del Dengue/fisiología , Endopeptidasas/farmacología , Ratones Endogámicos ICR , Piperidinas/administración & dosificación , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales/química
17.
Biomedicines ; 12(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540137

RESUMEN

Efficient delivery of a DNA plasmid into antigen-presenting cells (APCs) is a potential strategy to enhance the immune responses of DNA vaccines. The bacterial ghost (BG) is a potent DNA vaccine delivery system that targets APCs. In the present work, we describe a new strategy of using E. coli BGs as carriers for an Ii-linked Hepatitis C Virus (HCV) NS3 DNA vaccine that improved both the transgene expression level and the antigen-presentation level in APCs. BGs were prepared from DH5α cells, characterized via electron microscopy and loaded with the DNA vaccine. The high transfection efficiency mediated using BGs was first evaluated in vitro, and then, the immune protective effect of the BG-Ii-NS3 vaccine was determined in vivo. It was found that the antibody titer in the sera of BG-Ii-NS3-challenged mice was higher than that of Ii-NS3-treated mice, indicating that the BGs enhanced the humoral immune activity of Ii-NS3. The cellular immune protective effect of the BG-Ii-NS3 vaccine was determined using long-term HCV NS3 expression in a mouse model in which luciferase was used as a reporter for HCV NS3 expression. Our results showed that the luciferase activity in BG-Ii-NS3-treated mice was significantly reduced compared with that in Ii-NS3-treated mice. The CTL assay results demonstrated that BG-Ii-NS3 induced a greater NS3-specific T-cell response than did Ii-NS3. In summary, our study demonstrated that BGs enhanced both the humoral and cellular immune response to the Ii-NS3 DNA vaccine and improved its immune protection against HCV infection.

18.
Sensors (Basel) ; 24(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475236

RESUMEN

The Multi-Point Relay (MPR) is one of the core technologies for Optimizing Link State Routing (OLSR) protocols, offering significant advantages in reducing network overhead, enhancing throughput, maintaining network scalability, and adaptability. However, due to the restriction that only MPR nodes can forward control messages in the network, the current evaluation criteria for selecting MPR nodes are relatively limited, making it challenging to flexibly choose MPR nodes based on current link states in dynamic networks. Therefore, the selection of MPR nodes is crucial in dynamic networks. To address issues such as unstable links, poor transmission accuracy, and lack of real-time performance caused by mobility in dynamic networks, we propose a comprehensive evaluation algorithm of MPR based on link-state awareness. This algorithm defines five state evaluation parameters from the perspectives of node mobility and load. Subsequently, we use the entropy weight method to determine weight coefficients and employing the method of Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for comprehensive evaluation to select MPR nodes. Finally, the Comprehensive Evaluation based on Link-state awareness of OLSR (CEL-OLSR) protocol is proposed, and simulated experiments are conducted using NS-3. The results indicate that, compared to PM-OLSR, ML-OLSR, LD-OLSR, and OLSR, CEL-OLSR significantly improves network performance in terms of packet delivery rate, average end-to-end delay, network throughput, and control overhead.

19.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373021

RESUMEN

Despite a major threat to the public health in tropical and subtropical regions, dengue virus (DENV) infections are untreatable. Therefore, efforts are needed to investigate cost-effective therapeutic agents that could cure DENV infections in future. The NS2B-NS3 protease encoded by the genome of DENV is considered a critical target for the development of anti-dengue drugs. The objective of the current study was to find out a specific inhibitor of the NS2B-NS3 proteases from all four serotypes of DENV. To begin with, nine plant extracts with a medicinal history were evaluated for their role in inhibiting the NS2B-NS3 proteases by Fluorescence Resonance Energy Transfer (FRET) assay. Among the tested extracts, Punica granatum was found to be the most effective one. The metabolic profiling of this extract revealed the presence of several active compounds, including ellagic acid, punicalin and punicalagin, which are well-established antiviral agents. Further evaluation of IC50 values of these three antiviral molecules revealed punicalagin as the most potent anti-NS2B-NS3 protease drug with IC50 of 0.91 ± 0.10, 0.75 ± 0.05, 0.42 ± 0.03, 1.80 ± 0.16 µM against proteases from serotypes 1, 2, 3 and 4, respectively. The docking studies demonstrated that these compounds interacted at the active site of the enzyme, mainly with His and Ser residues. Molecular dynamics simulations analysis also showed the structural stability of the NS2B-NS3 proteases in the presence of punicalagin. In summary, this study concludes that the punicalagin can act as an effective inhibitor against NS2B-NS3 proteases from all four serotypes of DENV.Communicated by Ramaswamy H. Sarma.

20.
Heliyon ; 10(2): e24202, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293469

RESUMEN

A series of new imidazole-phenazine derivatives were synthesized via a two-step process. The condensation of 2,3-diaminophenazine and benzaldehyde derivatives proceeds with intermediate formation of an aniline Schiff base, which undergoes subsequent cyclodehydrogenation in situ. The structures of the synthesized compounds were characterized by 1D and 2D NMR, FTIR and HRMS. A total of thirteen imidazole phenazine derivatives were synthesized and validated for their inhibitory activity as anti-dengue agents by an in vitro DENV2 NS2B-NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Two para-substituted imidazole phenazines, 3e and 3k, were found to be promising lead molecules for novel NS2B-NS3 protease inhibitors with IC50 of 54.8 µM and 71.9 µM, respectively, compared to quercetin as a control (IC50 104.8 µM). The in silico study was performed using AutoDock Vina to identify the binding energy and conformation of 3e and 3k with the active site of the DENV2 NS2B-NS3 protease Wichapong model. The results indicate better binding properties of 3e and 3k with calculated binding energies of -8.5 and -8.4 kcal mol-1, respectively, compared to the binding energy of quercetin of -7.2 kcal mol-1, which corroborates well with the experimental observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...