Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 307-313, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39094491

RESUMEN

High entropy material (HEM) has emerged as an appealing material platform for various applications, and specifically, the electrochemical performances of HEM could be further improved through self-assembled structure design. However, it remains a big challenge to construct such high-entropy self-assemblies primarily due to the compositional complexity. Herein, we propose a bottom-up directional freezing route to self-assemble high-entropy hydrosols into porous nanosheets. Taking Prussian blue analogue (PBA) as an example, the simultaneous coordination-substitution reactions yield stable high-entropy PBA hydrosols. During subsequent directional freezing process, the anisotropic growth of ice crystals could guide the two-dimensional confined assembly of colloidal nanoparticles, resulting in high-entropy PBA nanosheets (HE-PBA NSs). Thanks to the high-entropy and self-assembled structure design, the HE-PBA NSs manifests markedly enhanced sodium storage kinetics and performances in comparison with medium/low entropy nanosheets and high entropy nanoparticles.

2.
Small ; : e2406332, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358947

RESUMEN

Herein, P2-type layered manganese and ruthenium oxide is synthesized as an outstanding intercalation cathode material for high-energy density Na-ion batteries (NIBs). P2-type sodium deficient transition metal oxide structure, Na0.67Mn1-xRuxO2 cathodes where x varied between 0.05 and 0.5 are fabricated. The partially substituted main phase where x = 0.4 exhibits the best electrochemical performance with a discharge capacity of ≈170 mAh g-1. The in situ X-ray Absorption Spectroscopy (XAS) and time-resolved X-ray Diffraction (TR-XRD) measurements are performed to elucidate the neighborhood of the local structure and lattice parameters during cycling. X-ray photoelectron spectroscopy (XPS) revealed the oxygen-rich structure when Ru is introduced. Density of States (DOS) calculations revealed the Fermi-Level bandgap increases when Ru is doped, which enhances the electronic conductivity of the cathode. Furthermore, magnetization calculations revealed the presence of stronger Ru─O bonds and the stabilizing effect of Ru-doping on MnO6 octahedra. The results of Time-of-flight secondary-ion mass spectroscopy (TOF-SIMS) revealed that the Ru-doped sample has more sodium and oxygenated-based species on the surface, while the inner layers mainly contain Ru-O and Mn-O species. The full cell study demonstrated the outstanding capacity retention where the cell maintained 70% of its initial capacity at 1 C-rate after 500 cycles.

3.
ChemSusChem ; : e202400970, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113614

RESUMEN

Biomass-derived carbon materials are gaining attention for their environmental and economic advantages in waste resource recovery, particularly for their potential as high-energy materials for alkali metal ion storage. However, ensuring the reliability of secondary battery anodes remains a significant hurdle. Here, we report Areca Catechu sheath-inner part derived carbon (referred to as ASIC) as a high-performance anode for both rechargeable Li-ion (LIBs) and Na-ion batteries (SIBs). We explore the microstructure and electrochemical performance of ASIC materials synthesized at various pyrolysis temperatures ranging from 700 to 1400 °C. ASIC-9, pyrolyzed at 900 °C, exhibits multilayer stacked sheets with the highest specific surface area, and the least lateral size and stacking height. ASIC-14, pyrolyzed at 1400 °C, demonstrates the most ordered carbon structure with the least defect concentration and the highest stacking height and an increased lateral size. ASIC-9 achieves the highest capacities (676 mAh/g at 0.134 C) and rate performance (94 mAh/g at 13.4 C) for hosting Li+ ions, while ASIC-14 exhibits superior electrochemical performance for hosting Na+ ions, maintaining a high specific capacity after 300 cycles with over 99.5 % Coulombic efficiency. This comprehensive understanding of structure-property relationships paves the way for the practical utilization of biomass-derived carbon in various battery applications.

4.
Nano Lett ; 24(32): 9839-9845, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087826

RESUMEN

Hard carbon (HC) is a promising anode candidate for Na-ion batteries (NIBs) because of its excellent Na-storage performance, abundance, and low cost. However, a precise understanding of its Na-storage behavior remains elusive. Herein, based on the D2O/H2SO4-based TMS results collected on charged/discharged state HC electrodes, detailed Na-storage mechanisms (the Na-storage states and active sites in different voltage regions), specific SEI dynamic evolution process (formation, rupture, regeneration and loss), and irreversible capacity contribution (dead Na0, NaH, etc.) were elucidated. Moreover, by employing the online electrochemical mass spectrometry (OEMS) to monitor the gassing behavior of HC-Na half-cell during the overdischarging process, a surprising rehydrogen evolution reaction (re-HER) process at around 0.02 V vs Na+/Na was identified, indicating the occurrence of Na-plating above 0 V vs Na+/Na. Additionally, the typical fluorine ethylene carbonate (FEC) additive was demonstrated to reduce the accumulation of dead Na0 and inhibit the re-HER process triggered by plated Na.

5.
ACS Appl Mater Interfaces ; 16(30): 39437-39446, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39031502

RESUMEN

MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P-Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P-Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g-1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g-1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.

6.
Small ; : e2403736, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990899

RESUMEN

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

7.
ACS Nano ; 18(28): 18758-18768, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38965054

RESUMEN

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

8.
Adv Mater ; 36(33): e2310659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871360

RESUMEN

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

9.
Small ; 20(40): e2401915, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38805744

RESUMEN

Designing cathode materials that effectively enhancing structural stability under high voltage is paramount for rationally enhancing energy density and safety of Na-ion batteries. This study introduces a novel P2-Na0.73K0.03Ni0.23Li0.1Mn0.67O2 (KLi-NaNMO) cathode through dual-site synergistic doping of K and Li in Na and transition metal (TM) layers. Combining theoretical and experimental studies, this study discovers that Li doping significantly strengthens the orbital overlap of Ni (3d) and O (2p) near the Fermi level, thereby regulates the phase transition and charge compensation processes with synchronized Ni and O redox. The introduction of K further adjusts the ratio of Nae and Naf sites at Na layer with enhanced structural stability and extended lattice space distance, enabling the suppression of TM dissolution, achieving a single-phase transition reaction even at a high voltage of 4.4 V, and improving reaction kinetics. Consequently, KLi-NaNMO exhibits a high capacity (105 and 120 mAh g-1 in the voltage of 2-4.2 V and 2-4.4 V at 0.1 C, respectively) and outstanding cycling performance over 300 cycles under 4.2 and 4.4 V. This work provides a dual-site doping strategy to employ synchronized TM and O redox with improved capacity and high structural stability via electronic and crystal structure modulation.

10.
Adv Mater ; 36(30): e2312343, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691579

RESUMEN

Seawater batteries that directly utilize natural seawater as electrolytes are ideal sustainable aqueous devices with high safety, exceedingly low cost, and environmental friendliness. However, the present seawater batteries are either primary batteries or rechargeable half-seawater/half-nonaqueous batteries because of the lack of suitable anode working in seawater. Here, a unique lattice engineering to unlock the electrochemically inert anatase TiO2 anode to be highly active for the reversible uptake of multiple cations (Na+, Mg2+, and Ca2+) in aqueous electrolytes is demonstrated. Density functional theory calculations further reveal the origin of the unprecedented charge storage behaviors, which can be attributed to the significant reduction of the cations diffusion barrier within the lattice, i.e., from 1.5 to 0.4 eV. As a result, the capacities of anatase TiO2 with 2.4% lattice expansion are ≈100 times higher than the routine one in natural seawater, and ≈200 times higher in aqueous Na+ electrolyte. The finding will significantly advance aqueous seawater energy storage devices closer to practical applications.

11.
ACS Appl Mater Interfaces ; 16(21): 27352-27359, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753419

RESUMEN

Layered O3-type oxides are one of the most promising cathode materials for Na-ion batteries owing to their high capacity and straightforward synthesis. However, these materials often experience irreversible structure transitions at elevated cutoff voltages, resulting in compromised cycling stability and rate performance. To address such issues, understanding the interplay of the composition, structure, and properties is crucial. Here, we successfully introduced a P-type characteristic into the O3-type layered structure, achieving a P3-dominated solid-solution phase transition upon cycling. This modification facilitated a reversible transformation of the O3-P3-P3' structure with minimal and gradual volume changes. Consequently, the Na0.75Ni0.25Cu0.10Fe0.05Mn0.15Ti0.45O2 cathode exhibited a specific capacity of approximately 113 mAh/g, coupled with exceptional cycling performance (maintaining over 70% capacity retention after 900 cycles). These findings shed light on the composition-structure-property relationships of Na-ion layered oxides, offering valuable insights for the advancement of Na-ion batteries.

12.
J Colloid Interface Sci ; 668: 565-574, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691965

RESUMEN

The escalating global demand for clean energy has spurred substantial interest in sodium-ion batteries (SIBs) as a promising solution for large-scale energy storage systems. However, the insufficient reaction kinetics and considerable volume changes inherent to anode materials present significant hurdles to enhancing the electrochemical performance of SIBs. In this study, hierarchical MoS2/WS2 heterostructures were constructed into dual carbon layers (HC@MoS2/WS2@NC) and assessed their suitability as anodes for SIBs. The internal hard carbon core (HC) and outer nitrogen-doped carbon shell (NC) effectively anchor MoS2/WS2, thereby significantly improving its structural stability. Moreover, the conductive carbon components expedite electron transport during charge-discharge processes. Critically, the intelligently engineered interface between MoS2 and WS2 modulates the interfacial energy barrier and electric field distribution, promoting faster ion transport rates. Capitalizing on these advantageous features, the HC@MoS2/WS2@NC nanocomposite exhibits outstanding electrochemical performance when utilized as an anode in SIBs. Specifically, it delivers a high capacity of 415 mAh/g at a current density of 0.2 A/g after 100 cycles. At a larger current density of 2 A/g, it maintains a commendable capacity of 333 mAh/g even after 1000 cycles. Additionally, when integrated into a full battery configuration with a Na3V2(PO4)3 cathode, the Na3V2(PO4)3//HC@MoS2/WS2@NC full cell delivers a high capacity of 120 mAh/g after 300 cycles at 1 A/g. This work emphasizes the substantial improvement in battery performance that can be attained through the implementation of dual carbon confinement, offering a constructive approach to guide the design and development of next-generation anode materials for SIBs.

13.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38727398

RESUMEN

Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers.

14.
ACS Appl Mater Interfaces ; 16(20): 26280-26287, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38720529

RESUMEN

Na-ion batteries (NIBs) hold promise as a leading option for large-scale energy storage. However, their development faces challenges due to the lack of high-performance cathode materials. P2-type layered oxides are seen as potential cathode materials for NIBs due to higher structure stability, yet their commercialization is hindered by limited capacity and subpar phase transitions during Na extraction and insertion at high voltages. In this study, we introduce a new P2-type cathode material, Na0.76Ni0.23Li0.1Ti0.02Mn0.65O1.998F0.02 (NLTMOF), synthesized with ternary Li/Ti/F substitution. This modification of ternary Li/Ti/F substitution significantly tailors the electronic structures, increasing the number of valence electrons near the Fermi energy level. This facilitates the electronic conductivity and their involvement in charge compensation, thereby enhancing reversible capacity. Additionally, ternary doping synergistically adjusts the Na occupancy at the Na layer for favorable Na extraction without P2-O2 phase transitions even under a high voltage of 4.4 V, boosting cycling stability. As a result, NLTMOF demonstrates a reversible capacity of 110.0 and 132.2 mAh g-1 at 2-4.2 and 2-4.4 V, respectively, and maintains greatly enhanced cycling stability over long cycles. This study sheds light on the design of transition metal oxides for advanced cathode materials through the modulation of electronic structure and Na occupancy in cathode materials, thus promoting the development of NIBs.

15.
ACS Appl Mater Interfaces ; 16(19): 24431-24441, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38693838

RESUMEN

The Na super ionic conductor (NASICON), which has outstanding structural stability and a high operating voltage, is an appealing material for overcoming the limits of low specific energy and larger volume distortion of sodium-ion batteries. In this study, to discover ideal NASICON cathode materials, a screening platform based on density functional theory (DFT) calculations and machine learning (ML) is developed. A training database was generated utilizing the previous 124 545 electrode databases, and a test set of 3126 potential NASICON structures [NaxMyM'1-y(PO4)3] with 27 dopants at the metal site and 6 dopants at the polyanion central site was constructed. The developed ML surrogate model identifies 796 materials that satisfy the following criteria: formation energy of <0.0 eV/atom, energy above hull of ≤0.025 eV/atom, volume change of ≤4%, and theoretical capacity of ≥50 mAh/g. The thermodynamically stable configurations of doped NASICON structures were then selected using machine learning interatomic potential (MLIP), enabling rapid consideration of various dopant site configurations. DFT calculations are followed on 796 screened materials to obtain energy density, average voltage, and volume change. Finally, 50 candidates with an average voltage of ≥3.5 V are identified. The suggested platform accelerates the exploration for optimal NASICON materials by narrowing the focus on materials with desired properties, saving considerable resources.

16.
J Colloid Interface Sci ; 671: 385-393, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38815374

RESUMEN

The sodium superionic conductor Na4MnCr(PO4)3 gains increasing attention owing to its three-dimensional structure and the three-electron reaction. However, rapid structure degradation during cycling is the major challenge for its practical application. Herein, Ti4+ is utilized to replace a portion of Mn2+ in Na4MnCr(PO4)3. The low redox voltage and d0 electronic configuration of the Ti4+ ions are helpful to suppress the structure alteration and improve electronic conduction. Consequently, the as-prepared Na3.4Mn0.7Ti0.3Cr(PO4)3/C cathode exhibits a remarkable good 91.0% capacity retention after 500 cycles at 10C rate, with exceptional rate capacities of 99.5 mAh g-1 and 81.0 mAh g-1 at 5C and 10C rate, respectively. Furthermore, based on ≈2.86-electron reactions involving Mn2+/Mn3+ (3.5 V), Mn3+/Mn4+ (4.1 V), Cr3+/Cr4+ (4.3 V), and Ti3+/Ti4+ (2.1 V), the material can provide an energy density of approximately 541.6 Wh kg-1, slightly surpassing that of Na4MnCr(PO4)3. Ex-situ XRD investigation further elucidates that throughout the entire charge-discharge process, the Ti-substituted material experiences highly reversible solid-solution and two-phase reactions. Additionally, Ti substitution can greatly promote the interfacial charge transfer of the material and suppress the decomposition of the electrolyte during cycling. This work might open a new insight for designing sodium-ion battery cathode materials with good cycling stability and high energy density.

17.
Small ; 20(34): e2311778, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593361

RESUMEN

Resin-derived hard carbons have shown great advantages in serving as promising anode materials for sodium-ion batteries due to their flexible microstructure tunability. However, it remains a daunting challenge to rationally regulate the pseudo-graphitic crystallite and defect of hard carbon toward advanced sodium storage performance. Herein, a molecular engineering strategy is demonstrated to modulate the cross-linking degree of phenolic resin and thus optimize the microstructure of hard carbon. Remarkably, the resorcinol endows resin with a moderate cross-linking degree, which can finely tune the pseudo-graphitic structure with enlarged interlayer spacing and restricted surface defects. As a consequence, the optimal hard carbon delivers a notable reversible capacity of 334.3 mAh g-1 at 0.02 A g-1, a high initial Coulombic efficiency of 82.1%, superior rate performance of 103.7 mAh g-1 at 2 A g-1, and excellent cycling durability over 5000 cycles. Furthermore, kinetic analysis and in situ Raman spectroscopy are performed to reveal the electrochemical advantage and sodium storage mechanism. This study fundamentally sheds light on the molecular design of resin-based hard carbons to advance sodium energy for scale-up applications.

18.
ACS Appl Mater Interfaces ; 16(11): 13828-13838, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38448219

RESUMEN

Alluaudite sodium iron sulfate (NFS) exhibits great potential for use in sodium-ion battery cathodes due to its elevated operating potential and abundant element reserves. However, conventional solid-state methods demonstrate a low heating/cooling rate and sluggish reaction kinetics, requiring a long thermal treatment to effectively fabricate NFS cathodes. Herein, we propose a thermal shock (TS) strategy to synthesize alluaudite sodium iron sulfate cathodes using either hydrous or anhydrous raw materials. The analysis of the phase formation process reveals that TS treatment can significantly facilitate the removal of crystal water and decomposition of the intermediate phase Na2Fe(SO4)2 in the hydrous precursor. In the case of the anhydrous precursor, the kinetics of the combination reaction between Na2SO4 and FeSO4 can be also accelerated by TS treatment. Consequently, pure NFS phase formation can be completed after a substantially shorter time of post-sintering, thereby saving significant time and energy. The TS-treated NFS cathode derived from hydrous precursor exhibits higher retention after 200 cycles at 1C and better rate capability than the counterpart prepared by conventional long-term tube furnace sintering, demonstrating the great potential of this novel strategy.

19.
Adv Mater ; 36(27): e2403073, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38553938

RESUMEN

Na-ion batteries (NIBs) are sustainable alternatives to Li-ion technologies due to the abundant and widely-distributed resources. However, the most promising cathode materials of NIBs so far, O3 layered oxides, suffer from serious air instability issues, which significantly increases the manufactural cost and carbon footprint because of the long-term use of dry rooms. While some feasible strategies are proposed via case studies, universal design strategies for air-stable cathodes are yet to be established. Herein, the air degradation mechanisms of O3 cathodes are investigated via combined first-principles and experimental approaches, with bond dissociation energy proposed as an effective descriptor for predicting air stability. Experimental validations in various unary, binary, and ternary O3 cathodes confirm that the air stability can indeed be effectively improved via simple compositional design. Guided by the predictive model, the designed material can sustain 30-day air-storage without structural or electrochemical degradation. It is calculated that such air-stable cathodes can significantly reduce both energy consumption (≈4 100 000 kWh) and carbon footprint (≈2200-ton CO2) annually for a 2 GWh NIBs manufactory. Therefore, the fundamental understandings and universal design strategy presented open an avenue for rational materials design of NIBs toward both elemental and manufactural sustainability.

20.
J Colloid Interface Sci ; 664: 220-227, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461788

RESUMEN

Na4Fe3(PO4)2(P2O7) is regarded as a promising cathode material for sodium-ion batteries due to its affordability, non-toxic nature, and excellent structural stability. However, its electrochemical performance is hampered by its poor electronic conductivity. Meanwhile, most of the previous studies utilized spray-drying and sol-gel methods to synthesize Na4Fe3(PO4)2(P2O7), and the large-scale synthesis of the cathode material is still challenging. This study presents a composite cathode material, Na4Fe2.94Al0.04(PO4)2(P2O7)/C, prepared via a straightforward ball-milling technique. By substituting Al3+ minimally into the Fe2+ site of NFPP, Fe defects are introduced into the structure, hindering the formation of NaFePO4 and thereby enhancing Na-ion diffusion kinetics and conductivity. Additionally, the average length of AlO bonds (2.18 Å) is slightly smaller than that of FeO bonds (2.19 Å), contributing to the superior structural stability. The smaller ionic radii of Al3+ induce lattice contraction, further enhancing the structural stability. Moreover, the surface of material particles is coated with a thin layer of carbon, ensuring excellent electrical conductivity and outstanding structure stability. As a result, the Na4Fe2.94Al0.04(PO4)2(P2O7)/C cathode exhibits excellent electrochemical performance, leading to high discharge capacity (128.1 mAh g-1 at 0.2 C), outstanding rate performance (98.1 mAh g-1 at 10 C), and long cycle stability (83.7 % capacity retention after 3000 cycles at 10 C). This study demonstrates a low-cost, ultra-stable, and high-rate cathode material prepared by simple mechanical activation for sodium-ion batteries which has application prospects for large-scale production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...