Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
ACS Infect Dis ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116454

RESUMEN

Primary amoebic meningoencephalitis is caused by the free-living amoeba Naegleria fowleri. The lack of standardized treatment has significantly contributed to the high fatality rates observed in reported cases. Therefore, this study aims to explore the anti-Naegleria activity of eight synthesized cyanoacrylamides and 5-iminopyrrol-2-ones. Notably, QOET-109, QOET-111, QOET-112, and QOET-114 exhibited a higher selectivity index against Naegleria compared to those of the rest of the compounds. Subsequently, these chemicals were assessed against the resistant stage of N. fowleri, demonstrating activity similar to that observed in the vegetative stage. Moreover, characteristic events of programmed cell death were evidenced, including chromatin condensation, increased plasma membrane permeability, mitochondrial damage, and heightened oxidative stress, among others. Finally, this research demonstrated the in vitro activity of the cyanoacrylamide and 5-iminopyrrol-2-one molecules, as well as the induction of metabolic event characteristics of regulated cell death in Naegleria fowleri.

2.
J Parasitol ; 110(4): 360-374, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39134068

RESUMEN

Naegleria fowleri is a protozoan that causes primary amebic meningoencephalitis (PAM). The infection occurs when the trophozoites enter the nasal cavity, adhere to the nasal mucosa, invade the epithelium, and migrate until they reach the olfactory bulb. Like other pathogens, there is evidence that the adhesion of N. fowleri to host cells is an important factor in the process of cytopathogenicity and disease progression. However, the factors involved in the adhesion of the pathogen to the cells of the nasal epithelium have not been characterized. The objective of this study was to identify a protein on the surface of N. fowleri, which could act as adhesin to the mouse nasal epithelium in the PAM model. The interaction between proteins of extracts of N. fowleri and cells of the nasal epithelium of BALB/c mice was analyzed using overlay and Western blot assays. A 72-kDa band of N. fowleri interacted directly with epithelial cell proteins, this polypeptide band was purified and analyzed by mass spectrometry. Analysis revealed that polypeptide bands of 72 kDa contained peptides that matched the membrane protein, actin 1 and 2, and Hsp70. Moreover, the N. fowleri extracts resolved in 2D-SDS-PAGE showed that 72-kDa spot interacted with proteins of mouse epithelial cells, which include characteristics of the theoretical data of molecular weight and pH obtained in the analysis by mass spectrometry. Immunofluorescence tests showed that this protein is located on the surface of trophozoites and plays an important role in the adhesion of amoeba either in vitro or in vivo assays, suggesting that this protein contributes during the N. fowleri invasion and migration to the brain, causing primary amoebic meningoencephalitis.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Ratones Endogámicos BALB C , Naegleria fowleri , Mucosa Nasal , Proteínas Protozoarias , Trofozoítos , Animales , Ratones , Mucosa Nasal/parasitología , Proteínas Protozoarias/metabolismo , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Western Blotting , Adhesión Celular , Femenino , Amebiasis/parasitología
3.
IDCases ; 37: e02028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109186

RESUMEN

This article presents the diagnostic and therapeutic journey of a 14-year-old male patient diagnosed with Primary Amebic Meningoencephalitis (PAM), incorporates a review of pertinent literature and a discussion on recent advancements in the study of this condition. The patient presented with symptoms of fever and headache for three days, accompanied by seizures and a half-day episode of altered consciousness. Upon admission, clinical findings included a mild coma, respiratory distress, rigidity of limbs, and negative pathological reflexes. The patient's history showed in a local outdoor pond swimming in July and August of the same year. Metagenomic Next-Generation Sequencing (mNGS) of the cerebrospinal fluid identified the presence of Naegleria fowleri. Cranial CT and MRI scans indicated signs of brain edema and meningitis. The patient was confirmed with pediatric primary amebic meningoencephalitis. A 45-day comprehensive treatment regimen was administered, encompassing anti-amebic medications, anticonvulsant therapy, management of brain edema, and intracranial pressure reduction. This case represents the longest survival period recorded for such pediatric cases in China. The purpose of this report is to heighten clinical awareness of PAM, share diagnostic and therapeutic insights, expand upon existing treatment approaches, and ultimately contribute to improving the survival rates of PAM patients.

4.
Emerg Infect Dis ; 30(9): 1922-1925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39174030

RESUMEN

We investigated a fatal case of primary amoebic meningoencephalitis from an indoor surfing center in Taiwan. The case was detected through encephalitis syndromic surveillance. Of 56 environmental specimens, 1 was positive for Naegleria fowleri ameba. This report emphasizes the risk for N. fowleri infection from inadequately disinfected recreational waters, even indoors.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Naegleria fowleri , Humanos , Naegleria fowleri/aislamiento & purificación , Naegleria fowleri/genética , Taiwán/epidemiología , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Infecciones Protozoarias del Sistema Nervioso Central/diagnóstico , Infecciones Protozoarias del Sistema Nervioso Central/epidemiología , Resultado Fatal , Masculino , Meningoencefalitis/parasitología , Meningoencefalitis/diagnóstico , Amebiasis/diagnóstico , Amebiasis/parasitología , Adulto
5.
Parasites Hosts Dis ; 62(2): 169-179, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38835258

RESUMEN

Naegleria fowleri invades the brain and causes a fatal primary amoebic meningoencephalitis (PAM). Despite its high mortality rate of approximately 97%, an effective therapeutic drug for PAM has not been developed. Approaches with miltefosine, amphotericin B, and other antimicrobials have been clinically attempted to treat PAM, but their therapeutic efficacy remains unclear. The development of an effective and safe therapeutic drug for PAM is urgently needed. In this study, we investigated the anti-amoebic activity of Pinus densiflora leaf extract (PLE) against N. fowleri. PLE induced significant morphological changes in N. fowleri trophozoites, resulting in the death of the amoeba. The IC50 of PLE on N. fowleri was 62.3±0.95 µg/ml. Alternatively, PLE did not significantly affect the viability of the rat glial cell line C6. Transcriptome analysis revealed differentially expressed genes (DEGs) between PLE-treated and non-treated amoebae. A total of 5,846 DEGs were identified, of which 2,189 were upregulated, and 3,657 were downregulated in the PLE-treated amoebae. The DEGs were categorized into biological process (1,742 genes), cellular component (1,237 genes), and molecular function (846 genes) based on the gene ontology analysis, indicating that PLE may have dramatically altered the biological and cellular functions of the amoeba and contributed to their death. These results suggest that PLE has anti-N. fowleri activity and may be considered as a potential candidate for the development of therapeutic drugs for PAM. It may also be used as a supplement compound to enhance the therapeutic efficacy of drugs currently used to treat PAM.


Asunto(s)
Naegleria fowleri , Pinus , Extractos Vegetales , Hojas de la Planta , Naegleria fowleri/efectos de los fármacos , Naegleria fowleri/genética , Extractos Vegetales/farmacología , Pinus/química , Hojas de la Planta/química , Animales , Ratas , Antiprotozoarios/farmacología , Línea Celular , Trofozoítos/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Perfilación de la Expresión Génica , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Concentración 50 Inhibidora , Supervivencia Celular/efectos de los fármacos
6.
Sci Total Environ ; 941: 173318, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38777057

RESUMEN

Free-living amoebae (FLA) such as Acanthamoeba, Balamuthia mandrillaris, Naegleria fowleri and Sappinia pedata are naturally widespread in freshwater, causing rare but fatal and debilitating infections in humans. Although recent studies have shown an increase in infection rates, there is a paucity of epidemiological studies regarding the presence of these emerging pathogens in water. Herein, we studied the diversity and relative abundance of thermophilic FLA in different recreational baths in a tropical climate for 5 years. From 2018 to 2022, a total of 96 water samples were collected from 7 recreational baths (natural, tiled, regularly cleaned or not, and with temperatures ranging from 27 to 40 °C). DNA was extracted from FLA cultivated at 37 °C to detect thermophilic culturable FLA. Metabarcoding studies were conducted through FLA 18S rRNA gene amplicons sequencing; amplicon sequence variants (ASV) were extracted from each sample and taxonomy assigned against PR2 database using dada2 and phyloseq tools. We also searched for Naegleria sp. and N. fowleri using PCR targeting ITS and NFITS genes (respectively) and we quantified them using an optimized most probable number (MPN) method for FLA. Our results showed that differences in FLA diversity and abundance were observed amongst the 7 baths, but without a clear seasonal distribution. Naegleria, Vermamoeba and Stenamoeba were the most represented genera, while the genera Acanthamoeba and Vahlkampfia were mainly found in 2 baths. The MPN values for Naegleria sp. (NT/l) increased between 2018 and 2022, but the MPN values for N. fowleri (NF/l) seemed to decrease. Globally, our results showed that since we cannot establish a seasonal distribution of FLA, the regular presence of FLA (namely Naegleria and Acanthamoeba) in recreational waters can pose a potential threat in terms of neuroinfections as well as Acanthamoeba keratitis. It is thus imperious to perform the regular control of these baths as a preventive health measure.


Asunto(s)
Amoeba , Guadalupe/epidemiología , Monitoreo del Ambiente , Agua Dulce , Playas
7.
ACS Infect Dis ; 10(6): 2063-2073, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38757533

RESUMEN

Primary amoebic meningoencephalitis (PAM) is a rare and fulminant neurodegenerative disease caused by the free-living amoeba Naegleria fowleri. Currently, there is a lack of standardized protocols for therapeutic action. In response to the critical need for effective therapeutic agents, we explored the Global Health Priority Box, a collection of 240 compounds provided by the Medicines for Malaria Venture (MMV). From this pool, flucofuron emerged as a promising candidate, exhibiting high efficacy against trophozoites of both N. fowleri strains (ATCC 30808 IC50 : 2.58 ± 0.64 µM and ATCC 30215 IC50: 2.47 ± 0.38 µM), being even active against the resistant cyst stage (IC50: 0.88 ± 0.07 µM). Moreover, flucofuron induced diverse metabolic events that suggest the triggering of apoptotic cell death. This study highlights the potential of repurposing medications for treating challenging diseases, such as PAM.


Asunto(s)
Naegleria fowleri , Naegleria fowleri/efectos de los fármacos , Humanos , Trofozoítos/efectos de los fármacos , Antiprotozoarios/farmacología , Reposicionamiento de Medicamentos , Apoptosis/efectos de los fármacos , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología
8.
Int J Parasitol Drugs Drug Resist ; 25: 100545, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38718717

RESUMEN

Naegleria fowleri, known as the brain-eating amoeba, is the pathogen that causes the primary amoebic meningoencephalitis (PAM), a severe neurodegenerative disease with a fatality rate exceeding 95%. Moreover, PAM cases commonly involved previous activities in warm freshwater bodies that allow amoebae-containing water through the nasal passages. Hence, awareness among healthcare professionals and the general public are the key to contribute to a higher and faster number of diagnoses worldwide. Current treatment options for PAM, such as amphotericin B and miltefosine, are limited by potential cytotoxic effects. In this context, the repurposing of existing compounds has emerged as a promising strategy. In this study, the evaluation of the COVID Box which contains 160 compounds demonstrated significant in vitro amoebicidal activity against two type strains of N. fowleri. From these compounds, terconazole, clemastine, ABT-239 and PD-144418 showed a higher selectivity against the parasite compared to the remaining products. In addition, programmed cell death assays were conducted with these four compounds, unveiling compatible metabolic events in treated amoebae. These compounds exhibited chromatin condensation and alterations in cell membrane permeability, indicating their potential to induce programmed cell death. Assessment of mitochondrial membrane potential disruption and a significant reduction in ATP production emphasized the impact of these compounds on the mitochondria, with the identification of increased ROS production underscoring their potential as effective treatment options. This study emphasizes the potential of the mentioned COVID Box compounds against N. fowleri, providing a path for enhanced PAM therapies.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Reposicionamiento de Medicamentos , Naegleria fowleri , Naegleria fowleri/efectos de los fármacos , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Infecciones Protozoarias del Sistema Nervioso Central/parasitología , Humanos , Amebicidas/farmacología , Amebicidas/uso terapéutico , COVID-19
9.
BMC Med Genomics ; 17(1): 125, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715056

RESUMEN

Naegleria fowleri, also known as brain-earing amoeba, causes severe and rapidly fatal CNS infection in humans called primary amebic meningoencephalitis (PAM). The DNA from the N. fowleri clinical isolate was sequenced for circular extrachromosomal ribosomal DNA (CERE - rDNA). The CERE contains 18 S, 5.8 S, and 28 S ribosomal subunits separated by internal transcribed spacers, 5 open reading frames (ORFs), and mostly repeat elements comprising 7268 bp out of 15,786 bp (46%). A wide variety of variations and recombination events were observed. Finally, the ORFs that comprised only 4 hypothetical proteins were modeled and screened against Zinc drug-like compounds. Two compounds [ZINC77564275 (ethyl 2-(((4-isopropyl-4 H-1,2,4-triazol-3-yl) methyl) (methyl)amino) oxazole-4-carboxylate) and ZINC15022129 (5-(2-methoxyphenoxy)-[2,2'-bipyrimidine]-4,6(1 H,5 H)-dione)] were finalized as potential druggable compounds based on ADME toxicity analysis. We propose that the compounds showing the least toxicity would be potential drug candidates after laboratory experimental validation is performed.


Asunto(s)
ADN Ribosómico , Secuenciación de Nucleótidos de Alto Rendimiento , Naegleria fowleri , Naegleria fowleri/genética , Humanos , ADN Ribosómico/genética , Encéfalo/metabolismo , Genotipo , Sistemas de Lectura Abierta
10.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652173

RESUMEN

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Asunto(s)
Acanthamoeba , Compuestos de Cloro , Desinfectantes , Naegleria fowleri , Óxidos , Compuestos de Cloro/farmacología , Naegleria fowleri/efectos de los fármacos , Acanthamoeba/efectos de los fármacos , Óxidos/farmacología , Desinfectantes/farmacología , Factores de Tiempo , Análisis de Supervivencia , Amebicidas/farmacología
11.
Ann Med Surg (Lond) ; 86(4): 2032-2048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38576920

RESUMEN

This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.

13.
Emerg Infect Dis ; 30(4): 803-805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526236

RESUMEN

Primary amebic meningoencephalitis caused by Naegleria fowleri is a rare but nearly always fatal parasitic infection of the brain. Globally, few survivors have been reported, and the disease has no specific treatment. We report a confirmed case in Pakistan in a 22-year-old man who survived after aggressive therapy.


Asunto(s)
Infecciones Protozoarias del Sistema Nervioso Central , Naegleria fowleri , Masculino , Humanos , Adulto Joven , Adulto , Infecciones Protozoarias del Sistema Nervioso Central/diagnóstico , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Encéfalo , Pakistán/epidemiología , Sobrevivientes
14.
Water Res ; 254: 121426, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471203

RESUMEN

Naegleria fowleri has been detected in drinking water distribution systems (DWDS) in Australia, Pakistan and the United States and is the causative agent of the highly fatal disease primary amoebic meningoencephalitis. Previous small scale field studies have shown that Meiothermus may be a potential biomarker for N. fowleri. However, correlations between predictive biomarkers in small sample sizes often breakdown when applied to larger more representative datasets. This study represents one of the largest and most rigorous temporal investigations of Naegleria fowleri colonisation in an operational DWDS in the world and measured the association of Meiothermus and N. fowleri over a significantly larger space and time in the DWDS. A total of 232 samples were collected from five sites over three-years (2016-2018), which contained 29 positive N. fowleri samples. Two specific operational taxonomic units assigned to M. chliarophilus and M. hypogaeus, were significantly associated with N. fowleri presence. Furthermore, inoculation experiments demonstrated that Meiothermus was required to support N. fowleri growth in field-collected biofilms. This validates Meiothermus as prospective biological tool to aid in the identification and surveillance of N. fowleri colonisable sites.


Asunto(s)
Agua Potable , Naegleria fowleri , Estudios Prospectivos , Bacterias , Biopelículas
15.
Front Microbiol ; 15: 1369665, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38511008

RESUMEN

In industrial water systems, the occurrence of biofilm-associated pathogenic free-living amoebae (FLA) such as Naegleria fowleri is a potential hygienic problem, and factors associated with its occurrence remain poorly understood. This study aimed to evaluate the impact of four cooling circuit materials on the growth of N. fowleri in a freshwater biofilm formed at 42°C and under a hydrodynamic shear rate of 17 s-1 (laminar flow): polyvinyl chloride, stainless steel, brass, and titanium. Colonization of the freshwater biofilms by N. fowleri was found to be effective on polyvinyl chloride, stainless steel, and titanium. For these three materials, the ratio of (bacterial prey)/(amoeba) was found to control the growth of N. fowleri. All materials taken together, a maximum specific growth rate of 0.18 ± 0.07 h-1 was associated with a generation time of ~4 h. In contrast, no significant colonization of N. fowleri was found on brass. Therefore, the contribution of copper is strongly suspected.

16.
Front Microbiol ; 15: 1356452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426057

RESUMEN

Introduction: Free-living amoebae are an extensive group of protistans that can be found in a wide variety of environments. Among them, the Acanthamoeba genus and Naegleria fowleri stand out as two of the most pathogenic amoebae and with a higher number of reported cases. N. fowleri is mainly found in warm freshwater water bodies whereas amoebae of the Acanthamoeba genus are broadly distributed through natural and anthropogenic environments. In this regard, the management and the control of the amoebic populations in swimming pools has become a major public health challenge for institutions. Methods: The aim of this work was to evaluate the growth pattern of trophozoites of A. griffini and N. fowleri at different temperatures and salt concentrations. Results and discussion: Our results showed that A. griffini resisted a higher concentration of salt than N. fowleri. Moreover, no trophozoites could withstand the salt levels of the sea in in vitro conditions. This work supports the contention that salinity could represent an important and useful tool for the control of the most pathogenic amoebic populations in recreational water bodies.

17.
Front Microbiol ; 15: 1346021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38374922

RESUMEN

Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a rapid and acute infection of the central nervous system with a fatal outcome in >97% of cases. Due to the infrequent report of cases and diagnostic gaps that hinder the possibility of recovering clinic isolates, studies related to pathogenesis of the disease are scarce. However, the secretion of cytolytic molecules has been proposed as a factor involved in the progression of the infection. Several of these molecules could be included in extracellular vesicles (EVs), making them potential virulence factors and even modulators of the immune response in this infection. In this work, we evaluated the immunomodulatory effect of EVs secreted by two clinic isolates of Naegleria fowleri using in vitro models. For this purpose, characterization analyses between EVs produced by both isolates were first performed, for subsequent gene transcription analyses post incubation of these vesicles with primary cultures from mouse cell microglia and BV-2 cells. Analyses of morphological changes induced in primary culture microglia cells by the vesicles were also included, as well as the determination of the presence of nucleic acids of N. fowleri in the EV fractions. Results revealed increased expression of NOS, proinflammatory cytokines IL-6, TNF-α, and IL-23, and the regulatory cytokine IL-10 in primary cultures of microglia, as well as increased expression of NOS and IL-13 in BV-2 cells. Morphologic changes from homeostatic microglia, with small cellular body and long processes to a more amoeboid morphology were also observed after the incubation of these cells with EVs. Regarding the presence of nucleic acids, specific Naegleria fowleri DNA that could be amplified using both conventional and qPCR was confirmed in the EV fractions. Altogether, these results confirm the immunomodulatory effects of EVs of Naegleria fowleri over microglial cells and suggest a potential role of these vesicles as biomarkers of primary acute meningoencephalitis.

19.
Pathogens ; 13(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38251351

RESUMEN

Naegleria fowleri is a ubiquitous free-living amoeba that causes primary amoebic meningoencephalitis. As a part of the innate immune response at the mucosal level, the proteins lactoferrin (Lf) and lysozyme (Lz) are secreted and eliminate various microorganisms. We demonstrate that N. fowleri survives the individual and combined effects of bovine milk Lf (bLf) and chicken egg Lz (cLz). Moreover, amoebic proliferation was not altered, even at 24 h of co-incubation with each protein. Trophozoites' ultrastructure was evaluated using transmission electron microscopy, and these proteins did not significantly alter their organelles and cytoplasmic membranes. Protease analysis using gelatin-zymograms showed that secreted proteases of N. fowleri were differentially modulated by bLf and cLz at 3, 6, 12, and 24 h. The bLf and cLz combination resulted in the inhibition of N. fowleri-secreted proteases. Additionally, the use of protease inhibitors on bLf-zymograms demonstrated that secreted cysteine proteases participate in the degradation of bLf. Nevertheless, the co-incubation of trophozoites with bLf and/or cLz reduced the cytopathic effect on the MDCK cell line. Our study suggests that bLf and cLz, alone or together, inhibited secreted proteases and reduced the cytopathic effect produced by N. fowleri; however, they do not affect the viability and proliferation of the trophozoites.

20.
Gene ; 902: 148192, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253295

RESUMEN

Naegleria fowleri, the brain-eating amoeba, is a free-living amoeboflagellate with three different life cycles (trophozoite, flagellated, and cyst) that lives in a variety of habitats around the world including warm freshwater and soil. It causes a disease called naegleriasis leading meningitis and primary amoebic meningoencephalitis (PAM) in humans. N. fowleri is transmitted through contaminated water sources such as insufficiently chlorinated swimming pool water or contaminated tap water, and swimmers are at risk. N. fowleri is found all over the world, and most infections were reported in both developed and developing countries with high mortality rates and serious clinical findings. Until now, there is no FDA approved vaccine and early diagnosis is urgent against this pathogen. In this study, by analyzing the N. fowleri vaccine candidate proteins (Mp2CL5, Nfa1, Nf314, proNP-A and proNP-B), it was aimed to discover diagnostic/vaccine candidate epitopes and to design a multi-epitope peptide vaccine against this pathogen. After the in silico evaluation, three prominent diagnostic/vaccine candidate epitopes (EAKDSK, LLPHIRILVY, and FYAKLLPHIRILVYS) with the highest antigenicities were discovered and a potentially highly immunogenic/antigenic multi-epitope peptide vaccine (NaeVac) was designed against the brain-eating amoeba N. fowleri causing human meningitis.


Asunto(s)
Amoeba , Meningitis , Naegleria fowleri , Vacunas , Humanos , Vacunas de Subunidades Proteicas , Epítopos , Agua , Encéfalo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...