Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Xenobiot ; 14(2): 690-700, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38921649

RESUMEN

Contamination with plastics of small dimensions (<1 µm) represents a health concern for many terrestrial and aquatic organisms. This study examined the use of plastic-binding peptides as a coating probe to detect various types of plastic using a plasmon nano-gold sensor. Plastic-binding peptides were selected for polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS) based on the reported literature. Using nAu with each of these peptides to test the target plastics revealed high signal, at 525/630 nm, suggesting that the target plastic limited HCl-induced nAu aggregation. Testing with other plastics revealed some lack of specificity but the signal was always lower than that of the target plastic. This suggests that these peptides, although reacting mainly with their target plastic, show partial reactivity with the other target plastics. By using a multiple regression model, the relative levels of a given plastic could be corrected by the presence of other plastics. This approach was tested in freshwater mussels caged for 3 months at sites suspected to release plastic materials: in rainfall overflow discharges, downstream a largely populated city, and in a municipal effluent dispersion plume. The data revealed that the digestive glands of the mussels contained higher levels of PP, PE, and PET plastic particles at the rainfall overflow and downstream city sites compared to the treated municipal effluent site. This corroborated earlier findings that wastewater treatment could remove nanoparticles, at least in part. A quick and inexpensive screening test for plastic nanoparticles in biological samples with plasmonic nAu-peptides is proposed.

2.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836831

RESUMEN

Hospitalized patients are severely impacted by delayed wound healing. Recently, there has been a growing focus on enhancing wound healing using suitable dressings. Lavandula angustifolia essential oil (LEO) showed potential antibacterial, anti-inflammatory, and wound healing properties. However, the prepared gold nanoparticles possessed multifunctional properties. Consequently, the present investigation aimed to synthesize a novel nanosystem consisting of nano-Lavandula angustifolia essential oil and gold nanoparticles prepared through ultrasonic nanoemulsifying techniques in order to promote wound healing and combat bacterial infection. LEO showed potent antibacterial activity against Klebsiella pneumoniae, MRSA and Staphylococcus aureus with minimum inhibitory concentration (MIC) values of 32, 16 and 16 µg/mL, respectively, while exhibiting low activity against Proteus mirabilis. Interestingly, the newly formulated nano-gold/nano-Lavandula angustifolia penetrated the preformed P. mirabilis biofilm with a full eradication of the microbial cells, with MIC and MBEC (minimal biofilm eradication concentration) values reaching 8 and 16 µg/mL, respectively. The cytotoxic effect of the novel nanoformula was also assessed against WI-38 fibroblasts vero (normal) cells (IC50 = 0.089 mg/mL) while nano-gold and nano-Lavandula angustifolia showed higher results (IC50 = 0.529, and 0.209 mg/mL, respectively). Nano-gold/nano-Lavandula angustifolia formula possessed a powerful wound healing efficacy with a 96.78% wound closure. These findings revealed that nano-gold/nano-Lavandula angustifolia nanoemulsion can inhibit bacterial growth and accelerate the wound healing rate.


Asunto(s)
Lavandula , Nanopartículas del Metal , Aceites Volátiles , Humanos , Oro/farmacología , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Bacterias
3.
J Biomed Mater Res B Appl Biomater ; 111(7): 1386-1397, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36891913

RESUMEN

In this study, nano-gold (nAu) and nano-silver (nAg) were doped at the molar ratios of Molar5-Molar30 to the Hydroxyapatite (HAp)-based bioceramic bone graft synthesized by the sol-gel method. The effects of nAu and nAg on structural, mechanical, cell viability, and nuclear abnormality of the synthesized bioceramic grafts were evaluated. The chemical and morphological properties of the bone grafts after production were examined through XRD and SEM-EDX analyses and mechanical tests. To determine the biocompatibility of the bone grafts, cell viability tests were performed using human fibroblast cells. In the cytotoxicity analyses, only HAp and HAp-nAu5 grafts did not show toxicological properties at any concentration, while HAp-nAg5 among the nAg-containing grafts gave the best results at the 200-100 µg/mL concentrations and showed significant cytotoxicity in human fibroblast cells. The other nAu-containing grafts showed toxicological properties in the concentration range of 200-50 µg/mL and nAg-containing grafts in the concentration range of 200-100 µg/mL against the negative control. The micronucleus (MN) analyses showed that the lowest total MN and L (lobbed) amounts, while the lowest total N (notched) amount, was obtained from the only HAp graft. It was found that the nAg-doped bone grafts gave higher total MN, L, and N amounts compared to the nAu-doped bone grafts. Furthermore, while the mean nuclear abnormality (NA) values of all grafts gave close results, the highest values were again obtained from the nAg-doped bone grafts.


Asunto(s)
Durapatita , Humanos , Durapatita/farmacología , Durapatita/química , Supervivencia Celular
4.
Biomedicines ; 11(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672713

RESUMEN

Prostate cancer is the second leading cause of cancer-related death worldwide. This is because it is still unknown why indolent prostate cancer becomes an aggressive one, though many risk factors for this type of cancer have been suggested. Currently, many diagnostic markers have been suggested for predicting malignant prostatic carcinoma cancer; however, only a few, such as PSA (prostate-specific antigen), Prostate Health Index (PHI), and PCA3, have been approved by the FDA. However, each biomarker has its merits as well as shortcomings. The serum PSA test is incapable of differentiating prostate cancer from BPH and also has an about 25% false-positive prediction rate for the malignant status of cancer. The PHI test has the potential to replace the PSA test for the discrimination of BPH from prostate cancer and for the prediction of high-grade cancer avoiding unnecessary biopsies; however, the free form of PSA is unstable and expensive. PCA3 is not associated with locally advanced disease and is limited in terms of its prediction of aggressive cancer. Currently, several urine biomarkers have shown high potential in terms of being used to replace circulating biomarkers, which require a more invasive method of sample collection, such as via serum. Currently, the combined multiple tumor biomarkers may turn out to be a major trend in the diagnosis and assessment of the treatment effectiveness of prostate cancer. Thus, there is still a need to search for more novel biomarkers to develop a perfect cocktail, which consists of multiple biomarkers, in order to predict malignant prostate cancer and follow the efficacy of the treatment. We have discovered that METCAM, a cell adhesion molecule in the Ig-like superfamily, has great potential regarding its use as a biomarker for differentiating prostate cancer from BPH, predicting the malignant propensity of prostate cancer at the early premalignant stage, and differentiating indolent prostate cancers from aggressive cancers. Since METCAM has also been shown to be able to initiate the spread of prostate cancer cell lines to multiple organs, we suggest that it may be used as a therapeutic target for the clinical treatment of patients with malignant prostate cancer.

5.
Clin Chim Acta ; 540: 117228, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646368

RESUMEN

BACKGROUND: The current hepatocellular carcinoma (HCC) diagnostic approaches lack adequate sensitivity and specificity. So, this study was performed to develop an innovative model of surface-enhanced Raman spectroscopy (SERS) that can detect HCC patients by identifying the circulating tumor-derived exosomes. METHODOLOGY: Sixty participants, including normal controls, hepatitis C virus (HCV)-infected patients, and HCV-associated HCC patients, had their whole blood samples and exosomes separated from these samples analyzed using Raman spectroscopy (RS). A revolutionary model of SERS, based on an innovative glass and nano-gold, was designed to directly identify exosomes. Its measurements were simulated by Comsol Multiphysics (5.6). RESULTS: The RS examination of the whole blood samples revealed no Raman peaks. Yet, the isolated exosomes from these samples generated Raman peaks at 400 and 1000 cm-1 wavenumbers in the HCV group. A Raman shift was detected in HCC patients at 812, 852, and 878 cm-1 wavenumbers with intensity ratios of 120, 130, and 60, respectively. The RS had a sensitivity and specificity of 95 % and 100 %, respectively, for detecting HCC. However, the newly-designed SERS was able to identify the HCC-derived exosomes, at 812 and 878 cm-1 wavenumbers, with boosted intensity ratios of 9*106 and 4*106, respectively, in the whole blood samples. CONCLUSION: The newly-developed SERS model has the potential to detect HCC patients through recognizing the tumor-derived exosomes non-invasively, with high accuracy, and without the need for laborious exosomal separation. Nonetheless, bringing this technology into the clinic demands the establishment of spectral databases and their validation using the current gold standards.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Hepatitis C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Espectrometría Raman/métodos , Neoplasias Hepáticas/diagnóstico , Exosomas/química
6.
J Biomater Sci Polym Ed ; 34(7): 875-892, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36576144

RESUMEN

A solvent casting technique was used for the preparation of biomimetic nanocomposites scaffolds at three various concentrations of Curcumin loaded gold nanoparticles (Cur-AuNPs-1, 1.5, and 2 ml) as filler materials with chitosan-sodium alginate composite. The physico-chemical properties of prepared Cu-Au NPs and biomimetic nanocomposites were analyzed using various characterization techniques. In vitro biocompatibility of biomimetic nanocomposites are determined using simulated body fluid for biomineralization property, HAp formation and phosphate buffer saline (PBS) for swelling property, protein adsorption. Antibacterial activity of Cur-Au NPs and their nanocomposites carried out against Escherichia coli (E. coli) and Staphylococcus aureus. In vitro cytotoxicity of Cur-AuNPs is identified against UC-6 and MDA-MB 231 cell lines. The use of above studies and activity of Cur-AuNPs with contain biomimetic nanocomposites can adoptable for nanotheranostics.


Asunto(s)
Quitosano , Curcumina , Nanopartículas del Metal , Nanocompuestos , Nanopartículas , Quitosano/química , Oro/química , Curcumina/farmacología , Curcumina/química , Nanopartículas del Metal/química , Alginatos/química , Escherichia coli , Nanomedicina Teranóstica , Nanopartículas/química , Nanocompuestos/química , Antibacterianos/farmacología , Antibacterianos/química
7.
Foods ; 12(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38231882

RESUMEN

The accumulation of pesticide residues poses a significant threat to the health of people and the surrounding ecological systems. However, traditional methods are not only costly but require expertise in analysis. An electrochemiluminescence (ECL) aptasensor was developed using chitosan and molybdenum disulfide (CTS-MoS2), along with acetylene black (AB@CTS) for the rapid detection of malathion residues. Due to the weak interaction force, simple composite may lead to uneven dispersion; MoS2 and AB were dissolved in CTS solution, respectively, and utilized the biocompatibility of CTS to interact with each other on the electrode. The MoS2 nanosheets provided a large specific surface area, enhancing the utilization rate of catalytic materials, while AB exhibited excellent conductivity. Additionally, the dendritic polylysine (PLL) contained numerous amino groups to load abundant luminol to catalyze hydrogen peroxide (H2O2) and generate reactive oxygen species (ROS). The proposed ECL aptasensor obtained a low detection limit of 2.75 × 10-3 ng/mL (S/N = 3) with a good detection range from 1.0 × 10-2 ng/mL to 1.0 × 103 ng/mL, demonstrating excellent specificity, repeatability, and stability. Moreover, the ECL aptasensor was successfully applied for detecting malathion pesticide residues in authentic samples with recovery rates ranging from 94.21% to 99.63% (RSD < 2.52%). This work offers valuable insights for advancing ECL sensor technology in future applications.

8.
Mikrochim Acta ; 189(9): 365, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048255

RESUMEN

Since Salmonella can cause foodborne disease and public health safety issues and requires a robust, rapid, on-site detection method, a novel visual qualitative method with nano-gold-enhanced loop-mediated isothermal amplification (LAMP) reaction was established for detecting Salmonella in an integrated tube. During the experiment, nano-gold were used to enhance LAMP amplification, improving amplification efficiency and shortening the reaction time to within 30 min. Visual qualitative detection is achieved via negative staining, involving the addition of CuSO4 to the final products of the LAMP reaction. Ring-like white accumulation occurs in the absence of Salmonella targets but not when they are present. After completing the LAMP reaction, the integration tube was shaken gently for 1 min to observe the liquid phase system changes, realizing the closed tube detection of Salmonella. The process resolved the challenge presented by cross-contamination, false positives, and nonspecific amplification during the LAMP reaction. This method was used to detect Salmonella in milk, further highlighting its prospects in the field of rapid food safety detection.


Asunto(s)
Microbiología de Alimentos , Leche , Animales , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Salmonella/genética
9.
Food Chem ; 393: 133321, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35653988

RESUMEN

Colorimetric and fluorescent sensors were developed for the detection of profenofos. The colorimetric assay relied on the aggregation of cysteine modified gold nanoparticles (Au-cys) composite caused by the hydrogen bond and Au-S bond between profenofos and Au-cys. The further addition of S, N-doped carbon quantum dots (CDs) (fluorescence quantum yield up to 98%) into the Au-cys system depended on the change of fluorescence intensity of Au-cys-CDs owing to the inner filter effect between Au-cys and CDs. Under the optimal conditions, the sensor exhibits good linearity within 0.2-1.2 mg L-1 and 20-320 µg L-1, and limit of detection of 21.7 µg L-1 and 5.5 µg L-1 in colorimetry and fluorescence mode, respectively. The developed sensor did not only possess favorable selectivity and sensitivity, but also feasibility of usage in the actual detection of profenofos in farmland system samples.


Asunto(s)
Nanopartículas del Metal , Puntos Cuánticos , Carbono/química , Colorimetría , Cisteína/química , Granjas , Colorantes Fluorescentes/química , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Organotiofosfatos , Puntos Cuánticos/química
10.
Nanomaterials (Basel) ; 11(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34443967

RESUMEN

A long-range surface plasmonic resonance (LR-SPR) biosensor modified with double-antibody sandwich immunoassay and plasmonic coupling is demonstrated for human-immunoglobulin G detection with a low limit of detection (LOD). The double-antibody sandwich immunoassay dramatically changes the average refractive index of the medium layer on the sensor surface. The near-field electron coupling between the localized surface plasmon and the long-range surface plasmon leads to a significant perturbation of the evanescent field. The large penetration depth and the long propagation distance of the long-range surface plasmonic waves facilitate the LR-SPR sensor in the detection of biological macromolecules. The unique light absorption characteristic of the nanocomposite material in the sensor provides the in situ self-compensation for the disturbance. Therefore, besides the inherent advantages of optical fiber sensors, the developed biosensor can realize the detection of biomolecules with high sensitivity, low LOD and high accuracy and reliability. Experimental results demonstrate that the LOD of the biosensor is as low as 0.11 µg/mL in the detection of the phosphate-buffered saline sample, and the spike-and-repetition rate is 105.56% in the detection of the real serum sample, which partly shows the practicability of the biosensor. This indicates that the LR-SPR biosensor provides better response compared with existing similar sensors and can be regarded as a valuable method for biochemical analysis and disease detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...