Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 50(6): 511-523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718267

RESUMEN

OBJECTIVES: This research aimed to overcome challenges posed by cefepime excessive elimination rate and poor patient compliance by developing transdermal delivery system using nano-transfersomes based chitosan gel. METHODS: Rotary evaporation-sonication method and the Box-Behnken model were used to prepare cefepime loaded nano-transfersomes (CPE-NTFs). The physiochemical characterization of CPE-NTFs were analyzed including DLS, deformability index, DSC and antimicrobial study. Optimized CPE-NTFs loaded into chitosan gel and appropriately characterized. In vitro release, ex vivo and in vivo studies were performed. RESULTS: The CPE-NTFs were physically stable with particle size 222.6 ± 1.8 nm, polydispersity index 0.163 ± 0.02, zeta potential -20.8 ± 0.1 mv, entrapment efficiency 81.4 ± 1.1% and deformability index 71 ± 0.2. DSC analysis confirmed successful drug loading and thermal stability. FTIR analysis showed no chemical interaction among the excipients of CPE-NTFs gel. The antibacterial activity demonstrated a remarkable reduction in the minimum inhibitory concentration of cefepime when incorporated into nano-transfersomes. CPE-NTFs based chitosan gel (CPE-NTFs gel) showed significant physicochemical properties. In vitro release studies exhibited sustained release behavior over 24 h, and ex vivo studies indicated enhanced permeation and retention compared to conventional cefepime gel. In vivo skin irritation studies confirmed CPE-NTFs gel was nonirritating and biocompatible for transdermal delivery. CONCLUSION: This research showed nano-transfersomes based chitosan gel is a promising approach for cefepime transdermal delivery and provides sustained release of cefepime.


Asunto(s)
Administración Cutánea , Antibacterianos , Cefepima , Quitosano , Geles , Tamaño de la Partícula , Absorción Cutánea , Piel , Quitosano/química , Cefepima/administración & dosificación , Cefepima/farmacocinética , Cefepima/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Antibacterianos/química , Antibacterianos/farmacología , Geles/química , Animales , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Ratas , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Pruebas de Sensibilidad Microbiana , Masculino , Portadores de Fármacos/química , Nanopartículas/química , Ratas Wistar
2.
J Pharm Sci ; 113(2): 471-485, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37898166

RESUMEN

Tacrolimus (TRL) is used for the treatment of atopic dermatitis (AD) due to its T-cell stimulation effect. However, its significantly poor water solubility, low penetration and cytotoxicity have reduced its topical applications. Herein, tacrolimus loaded nano transfersomes (TRL-NTs) were prepared, followed by their incorporation into chitosan gel to prepare tacrolimus loaded nano transfersomal gel (TRL-NTsG). TEM analysis of the TRL-NTs was performed to check their morphology. DSC, XRD and FTIR analysis of the TRL-NTs were executed after lyophilization. Similarly, rheology, spreadability and deformability of the TRL-NTsG were investigated. In vitro release, ex vivo permeation and in vitro interaction of TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures were investigated along with their in vitro cell viability analysis. Moreover, in vivo skin deposition, ear thickness, histopathology and IgE level were also determined. Besides, 6 months stability study was also performed. Results demonstrated the uniformly distributed negatively charged nanovesicles with a mean particle size distribution of 163 nm and zeta potential of -27 mV. DSC and XRD exhibited the thermal stability and amorphous form of the drug, respectively. The TRL-NTsG showed excellent deformability, spreadability and rheological behavior. In vitro release studies exhibited an 8-fold better release of TRL from the TRL-NTsG. Similarly, 6-fold better permeation and stability of the TRL-NTsG with keratinocytes and fibroblasts as well as their co-cultures was observed. Furthermore, the ear thickness (0.6 mm) of the TRL-NTsG was found significantly reduced when compared with the untreated (1.7 mm) and TRL conventional gel treated mice (1.3 mm). The H&E staining showed no toxicity of the TRL-NTsG with significantly reduced IgE levels (120 ng/mL). The formulation was found stable for at least 6 months. These results suggested the efficacy of TRL in AD-induced animal models most importantly when incorporated in NTsG.


Asunto(s)
Dermatitis , Liposomas , Ratones , Animales , Liposomas/metabolismo , Tacrolimus , Administración Cutánea , Piel/metabolismo , Dermatitis/metabolismo , Dermatitis/patología , Inmunoglobulina E/metabolismo , Inmunoglobulina E/farmacología
3.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519525

RESUMEN

The most commonly used vesicular systems in the food industry include liposomes, niosomes, phytosomes, or transfersomes. This review focuses on showing how nano-vesicular carriers (NVCs) amend the properties of bioactive compounds (bioactives), making them suitable for food applications, especially functional foods. In this research, we elaborate on the question of whether bioactive-loaded NVCs affect various food aspects such as their antioxidant capacity, or sensory properties. This review also shows how NVCs improve the long-term release profile of bioactives during storage and at different pH values. Besides, the refinement of digestibility and bioaccessibility of diverse bioactives through NVCs in the gastrointestinal tract is elucidated. NVCs allow for stable vesicle formation (e.g. from anthocyanins) which reduces their cytotoxicity and proliferation of cancer cells, prolongs the release bioactives (e.g. d-limonene) with no critical burst, reduces the biofilm formation capacity of both Gram-positive/negative strains and their biofilm gene expression is down-regulated (in the case of tannic acid), low oxidation (e.g. iron) is endured when exposed to simulated gastric fluid, and unpleasant smell and taste are masked (in case of omega-3 fatty acids). After the incorporation of bioactive-loaded NVCs into food products, their antioxidant capacity is enhanced, maintaining high encapsulation efficiency and enduring pasteurization conditions, and they are not distinguished from control samples in sensory evaluation despite the reverse situation about free bioactives.

4.
Pharmaceutics ; 14(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35057105

RESUMEN

Photodynamic therapy (PDT) is a non-invasive and tumour-specific therapy. Photosensitizers (PSs) (essential ingredients in PDT) aggregate easily owing to their lipophilic properties. The aim of this study was to synthesise a PS (methyl pheophorbide a, MPa) and design a biocompatible lipid-based nanocarrier to improve its bioavailability and pharmacological effects. MPa-loaded nano-transfersomes were fabricated by sonication. The characteristics of synthesised PS and nano-transfersomes were assessed. The effects of PDT were evaluated by 1,3-diphenylisobenzofuran assay and by measuring photo-cytotoxicity against HeLa and A549 cell lines. The mean particle size and zeta potential for nano-transfersomes ranged from 95.84 to 267.53 nm and -19.53 to -45.08 mV, respectively. Nano-transfersomes exhibited sustained drug release for 48 h in a physiological environment (as against burst release in an acidic environment), which enables its use as a pH-responsive drug release system in PDT with enhanced photodynamic activity and reduced side effects. The formulations showed light cytotoxicity, but no dark toxicity, which meant that light irradiation resulted in anti-cancer effects. Additionally, formulations with the smallest size exhibited photodynamic activity to a larger extent than those with the highest loading capacity or free MPa. These results suggest that our MPa-loaded nano-transfersome system is a promising anti-cancer strategy for PDT.

5.
Expert Opin Drug Deliv ; 17(1): 97-110, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786952

RESUMEN

Objective: To test the hypothesis that miltefosine (MTF)-polyphenol co-loaded second-generation nano-transfersomes (SGNTs) can be an effective approach for the topical treatment of cutaneous leishmaniasis (CL).Methods: The co-loaded SGNTs with various MTF-polyphenol combinations were developed, evaluated and compared for the entrapment efficiency, vesicle size, deformability index, ex-vivo permeation, cytotoxicity, and anti-leishmanial potential, using both in-vitro and in-vivo models.Results: The co-loaded SGNTs were spherical in shape, with an average size of 119 ± 1.5 nm and a high entrapment efficiency of 73.7 ± 3.7%. The ex-vivo study displayed a 3.2-fold higher permeation of MTF when entrapped in co-loaded SGNTs, whereas cytotoxicity potential of co-loaded SGNTs was 43.2% higher than the MTF solution. A synergistic interaction was observed between MTF and apigenin (APG) among all polyphenols and an 8.0-fold lower IC50 was found against amastigotes of DsRed Leishmania mexicana, compared with the plain MTF solution. Moreover, the in-vivo studies displayed a 9.5-fold reduced parasitic burden in the L. mexicana infected BALB/c mice treated with MTF-APG co-loaded SGNTs gel.Conclusions: The potential of MTF-APG co-loaded SGNTs topical formulation is established for the first time as an effective drug delivery strategy against CL.


Asunto(s)
Antiprotozoarios/administración & dosificación , Portadores de Fármacos/química , Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Liposomas/química , Fosforilcolina/análogos & derivados , Administración Tópica , Animales , Antiprotozoarios/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Sistemas de Liberación de Medicamentos , Femenino , Leishmaniasis Cutánea/parasitología , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Pruebas de Sensibilidad Parasitaria , Fosfatidilcolinas/química , Fosforilcolina/administración & dosificación , Fosforilcolina/química , Polifenoles/uso terapéutico , Espectrometría de Masas en Tándem
6.
Saudi Pharm J ; 25(7): 1040-1046, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29158713

RESUMEN

The objective of the present work was to formulate, optimize and evaluate the potential of novel soft nanovesicles i.e. nano-transfersomes, containing eprosartan mesylate (EM) for transdermal delivery. Nano-transfersomes of EM were developed using Phospholipon 90G, Span 80 (SP) and sodium deoxycholate (SDC) and characterized for vesicle size, shape, entrapment efficiency, in vitro skin permeation study and confocal laser scanning microscopy. The optimized nano-transfersomes formulation showed vesicles size of 108.53 ± 0.06 nm and entrapment efficiency of 63.00 ± 2.76%. The optimized nano-transfersomes provided an improved transdermal flux of 27.22 ± 0.29 µg/cm2/h with an enhancement ratio of 16.80 over traditional liposomes through Wistar rat skin. Confocal laser microscopy of rat skin treated with the optimized formulation showed that the formulation was eventually distributed and permeated deep into the rat skin. The present investigation has shown that the nature and concentration of surfactants (edge activators) influence immense control on the characteristics of nano-transfersomes. It was concluded that the developed nano-transfersomes surmount the limitation of low penetration ability of the traditional liposomes across the rat skin. Improved drug delivery presented by nano-transfersomes establishes this system as an encouraging dosage form for the delivery of EM via skin route.

7.
Int J Pharm ; 465(1-2): 175-86, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24548719

RESUMEN

The objective was to develop a stable, reproducible and patient non-infringing novel transdermal drug delivery system "nano-carrier transdermal gel" (NCTG) in combination of partial dose replacement of diclofenac diethylamine (DDEA) by curcumin (CRM). The drug content of gel was 99.30 and 97.57% for DDEA and CRM. Plasma samples were analyzed by liquid chromatography with triple-quadrupole tandem mass spectrometer (LC-MS/MS). Data were integrated with Analyst™ and analyzed by WinNonlin; stability parameters were analyzed using Tukey-Kramer multiple comparison test. Its average skin irritation scored 0.49 concluded to be non-irritant, safe for human use and in vivo studies revealed significantly greater extent of absorption and highly significant inhibition (%) of carrageenan induced paw edema. The results also demonstrated that encapsulation of drugs in nano-carrier increases its biological activity due to superior skin penetration potential. Hence, a novel once day transdermal gel of nano-carrier (nano-transfersomes; deformable vesicular) is achieved, to increase systemic availability, subsequent reduction in dose and toxicity of DDEA was developed for the treatment of inflammation.


Asunto(s)
Antiinflamatorios/administración & dosificación , Curcumina/administración & dosificación , Diclofenaco/administración & dosificación , Portadores de Fármacos , Inflamación/prevención & control , Nanopartículas , Acrilatos/química , Administración Cutánea , Animales , Antiinflamatorios/sangre , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antiinflamatorios/toxicidad , Disponibilidad Biológica , Carragenina , Química Farmacéutica , Cromatografía Liquida , Curcumina/química , Curcumina/farmacocinética , Curcumina/toxicidad , Diclofenaco/sangre , Diclofenaco/química , Diclofenaco/farmacocinética , Diclofenaco/toxicidad , Modelos Animales de Enfermedad , Esquema de Medicación , Combinación de Medicamentos , Estabilidad de Medicamentos , Geles , Inflamación/inducido químicamente , Masculino , Nanotecnología , Ratas Wistar , Piel/efectos de los fármacos , Piel/patología , Pruebas de Irritación de la Piel , Espectrometría de Masas en Tándem , Tecnología Farmacéutica/métodos
8.
Int J Pharm ; 454(1): 367-80, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23871739

RESUMEN

The aim of this study was to design and optimize a nano-transfersomes of Diclofenac diethylamine (DDEA) and Curcumin (CRM). A 3(3) factorial design (Box-Behnken) was used to derive a polynomial equation (second order) to construct 2-D (contour) and 3-D (Response Surface) plots for prediction of responses. The ratio of lipid to surfactant (X1), weight of lipid to surfactant (X2) and sonication time (X3) (independent variables) and dependent variables [entrapment efficiency of DDEA (Y1), entrapment efficiency of CRM (Y2), effect on particle size (Y3), flux of DDEA (Y4), and flux of CRM (Y5)] were studied. The 2-D and 3-D plots were drawn and a statistical validity of the polynomials was established to find the compositions of optimized formulation. The design established the role of the derived polynomial equation, 2-D and 3-D plots in predicting the values of dependent variables for the preparation and optimization of nano-transfersomes for transdermal drug release.


Asunto(s)
Curcumina/química , Diclofenaco/química , Portadores de Fármacos , Lípidos/química , Modelos Estadísticos , Nanopartículas , Administración Cutánea , Animales , Química Farmacéutica , Curcumina/administración & dosificación , Curcumina/metabolismo , Diclofenaco/administración & dosificación , Diclofenaco/metabolismo , Cinética , Masculino , Nanotecnología , Tamaño de la Partícula , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Piel/metabolismo , Absorción Cutánea , Solubilidad , Sonicación , Tensoactivos/química , Tecnología Farmacéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...