RESUMEN
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-ß1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-ß1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1ß, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1ß signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
RESUMEN
Background: The NLRP3 inflammasome is a cytoplasmic polymeric protein complex composed of the cytoplasmic sensor NLRP3, the apoptosis-related spot-like protein ASC, and the inflammatory protease caspase-1. NLRP3 activates and releases IL-1ß through classical pathways, and IL-18 mediates inflammation and activates gasdermin-D protein to induce cellular pyroptosis. Numerous studies have also emphasized the non-classical pathway activated by the NLRP3 inflammasome in chronic kidney disease (CKD) and the inflammasome-independent function of NLRP3. Summary: The NLRP3-targeting inflammasome and its associated pathways have thus been widely studied in models of CKD treatment, but no drug that targets NLRP3 has thus far been approved for the treatment of CKD. Key Messages: We herein reviewed the current interventional methods for targeting the NLRP3 inflammasome in various CKD models, analyzed their underlying mechanisms of action, classified and compared them, and discussed the advantages and follow-up directions of various interventional methods. This review therefore provides novel ideas and a reference for the development of targeted NLRP3-inflammasome therapy in CKD.
RESUMEN
Background: The current study was initiated to evaluate renal nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome pathway activation and macrophage subtype distribution and their clinicopathological significance in a cohort of oxalate-induced acute kidney injury. Methods: Twelve patients with biopsy-proven acute oxalate nephropathy (AON) from January 2016 to October 2022 were retrospectively enrolled, with estimated glomerular filtration rate (eGFR)-matched 24 patients with acute tubulointerstitial nephritis (ATIN) as disease control. Pathological lesions as well as markers of NLRP3 inflammasome pathway and macrophage phenotype detected by immunohistochemistry staining were semi-quantitatively analyzed. Results: Oxalate depositions were found in 5% to 20% of tubules with a positive correlation with Sirius Red staining in AON specimens (rp = 0.668, p = 0.02). Disruption of tubular basement membrane and inflammatory cell reaction was more prominent in specimens of AON (both p < 0.05) as compared with ATIN specimens. The expressions of NLRP3, caspase-1, and gasdermin D were significantly increased in AON specimens as well (all p < 0.05). Patients with M1/M2 macrophage ratio <1 were found with more chronic tubulointerstitial lesions and presented with lower eGFR at the last follow-up (24.8 ï± 10.6 mL/min/1.73 m2 vs. 55.1 ï± 21.2 mL/min/1.73 m2, p = 0.02) in the AON group. Conclusion: The NLRP3 inflammasome pathway was activated in the kidneys of AON patients, and the ratio of M1 and M2 macrophages was associated with chronicity of pathological changes, which needs further exploration.
RESUMEN
Objective: The NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome-driven immune-inflammatory response has been shown to play a critical role in epilepsy progression across multiple studies. While Ulinastatin (UTI), an immunomodulatory agent known to target the NLRP3 pathway in neurological disorders, its implications in epilepsy have not been extensively studied. This investigation aims to explore UTI's role and underlying mechanisms in epilepsy. Methods: To assess UTI's effects on epilepsy severity, neuroinflammation, and BBB integrity, a pentylenetetrazole (PTZ)-induced epilepsy model in mice and a co-culture system involving BV2 and HT22 cells stimulated by lipopolysaccharide (LPS) and ATP were employed. Techniques utilized included qPCR, Western blotting, ELISA, immunohistochemistry (IHC) staining, Evans Blue dye extravasation, glutamate assays, the Morris water maze, and Annexin V apoptosis assays. Results: In the PTZ model, UTI administration led to a substantial decrease in seizure intensity and susceptibility, inhibited NLRP3 inflammasome activation, reduced neuroinflammatory interactions, lowered hippocampal and systemic inflammatory mediator levels, and improved cognitive performance. Furthermore, UTI upregulated claudin-5 expression, a tight junction protein in the endothelium, and diminished Evans Blue dye leakage, indicating improved BBB integrity. In BV2 and HT22 cell co-culture models, UTI exerted neuroprotective effects by mitigating microglia-mediated neurotoxicity and fostering neuronal recovery. Conclusions: The findings demonstrate that UTI exerts transformative regulatory effects on the NLRP3 inflammasome in epilepsy models. This intervention effectively suppresses neuroinflammation, lessens seizure severity and susceptibility, and ameliorates epilepsy-related BBB dysfunction and cognitive impairments.
RESUMEN
Increased energy intake from carbohydrates has been associated with major cardiovascular outcomes. Mice fed a highly-refined carbohydrate (HC) diet develop cardiac hypertrophy and inflammation. During cardiac injury, NLRP3 inflammasome is activated which results in a local inflammatory response. In this study, we hypothesized that a nom-hypoglycemic dose of glibenclamide may reverses sugar diet-induced cardiac damage by NRLP3 inflammasome inhibition. Mice were fed the HC diet for eight weeks and divided into a group treated with glibenclamide (20 mg/kg, gavage) and another with vehicle for four weeks. Afterward, hearts were excised for morphometric analysis and ex vivo function determination. NLRP3 inflammasome activation was investigated by western blotting and in situ fluorescent detection of reactive oxygen species (ROS) and active caspase-1. The HC diet promotes heart hypertrophy and collagen deposition, which were reverted by glibenclamide without ameliorating HC diet-induced insulin resistance. Changes in cardiac performance were observed in vivo by invasive catheterization and in Langendorff-perfused hearts due to the HC diet, which were prevented by glibenclamide. Hearts from HC diet mice had increased levels of NLRP3 and cleaved IL-1ß. Glibenclamide reversed ROS production and caspase-1 activity induced by HC diet. These findings suggest glibenclamide's cardioprotective effects on heart damage caused by the HC diet are related to its inhibitory action on the NLRP3 inflammasome.
RESUMEN
BACKGROUND: Broussonetia papyrifera (L.) L'Hér. ex Vent (B. papyrifera) is a deciduous tree widely distributed in Asia. Previous studies have revealed that leaves of B. papyrifera ameliorated atopic dermatitis (AD)-like symptoms and inflammatory response. However, the impact and underlying mechanism of other parts of B. papyrifera on AD remain elusive. METHODS: The AD mice induced by 1-Chloro-2,4-dinitrochlorobenzene were used to observe the histopathological alterations in the skin tissues using hematoxylin-eosin staining and toluidine blue staining techniques. Serum levels of inflammatory factors were quantified utilizing ELISA. Pyroptosis was analyzed by lactate dehydrogenase release and flow cytometry in human keratinocytes. The activation of Nod-like receptor protein 3 (NLRP3) inflammasome was analyzed by western blots. Furthermore, the mechanism underlying the inhibition of NLRP3 inflammasome by N-butanol extracts of B. papyrifera root bark (NE-BPRB) was investigated using cellular thermal shift assay and surface plasmon resonance techniques. RESULTS: Treatment with NE-BPRB significantly ameliorated symptoms of AD mice and reduced serum levels of pro-inflammatory factors. NE-BPRB intervention exhibited inhibitory effects on NLRP3 inflammasome activation and pyroptosis in vitro and in vivo. NE-BPRB and its primary bioactive constituent chlorogenic acid (CA) promote the K48-linked ubiquitination of NLRP3, leading to its proteasomal degradation by binding WW domain containing E3 ubiquitin protein ligase 1 (WWP1). CONCLUSIONS: The NE-BPRB and its primary bioactive constituent, CA, effectively inhibit the formation of the NLRP3 inflammasome and impede cell pyroptosis by promoting K48-linked ubiquitin-dependent proteasomal degradation of NLRP3 through binding to the E3 ubiquitin ligase WWP1, thereby resulting in improved AD.
RESUMEN
Systemic inflammation is involved in developing acute kidney injury (AKI) after cardiac surgery with cardiopulmonary bypass (CPB). Ulinastatin, a urinary trypsin inhibitor (UTI), has various anti-inflammatory effects. Our previous data displayed that UTI administration during CPB played a protective role in reducing the risk of AKI after cardiac surgery; however, its role in AKI pathogenesis remains unknown. In this study, UTI effectively decreased the expression levels of inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and interleukin (IL)-18, in patients with CPB. Moreover, the proportion of patients with postoperative AKI decreased significantly. Experimental AKI was induced by 35 min of ischemia, followed by 48 h of reperfusion.The results showed that the preoperative administration of UTI reduced inflammatory cell infiltration and decreased the levels of pro-inflammatory cytokines, including IL-6, IL-18, and TNFα. Meanwhile, UTI inhibited apoptosis, reduced mitochondrial reactive oxygen species production. We further revealed that UTI could inhibit NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation by increasing the expression of nuclear factor-κB (IκB) kinase-alpha (IKKα) interacting with apoptosis-associated speck-like protein containing CARD (ASC) to alleviate kidney damage. These findings provide evidence of the renoprotective role of UTI in cardiac surgery-associated (CSA)-AKI, which is associated with the inhibition of NLRP3 inflammasome activation by upregulating IKKα.
RESUMEN
The NLR family pyrin domain containing 3 (NLRP3) inflammasome in microglia is intimately linked to the pathogenesis of Alzheimer's disease (AD). Although NLRP3 inflammasome activity is regulated by cellular metabolism, the underlying mechanism remains elusive. Here, we found that under the pathological conditions of AD, the activation of NLRP3 inflammasome in microglia is accompanied by increased glutamine metabolism. Suppression of glutaminase, the rate limiting enzyme in glutamine metabolism, attenuated the NLRP3 inflammasome activation both in the microglia of AD mice and cultured inflammatory microglia. Mechanistically, inhibiting glutaminase blocked the anaplerotic flux of glutamine to the tricarboxylic acid cycle and amino acid synthesis, down-regulated mTORC1 signaling by phosphorylating AMPK, which stimulated mitophagy and limited the accumulation of intracellular reactive oxygen species, ultimately prevented the activation of NLRP3 inflammasomes in activated microglia during AD. Taken together, our findings suggest that glutamine metabolism regulates the activation of NLRP3 inflammasome through mitophagy in microglia, thus providing a potential therapeutic target for AD treatment.
Asunto(s)
Enfermedad de Alzheimer , Glutamina , Inflamasomas , Microglía , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Cultivadas , Glutamina/metabolismo , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Mitofagia/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FemeninoRESUMEN
SCOPE: Excessive activation of the nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome contributes to chronic inflammation. Thus, targeting NLRP3 inflammasome activation by anthocyanins may prevent inflammatory diseases. Therefore, the present study determines the influence of a black carrot extract (BCE) with high amounts of acylated anthocyanins and their related phenolic acids on the NLRP3 inflammasome. METHODS AND RESULTS: THP-1 monocytes are pretreated with a BCE, cyanidin-3-glucoside (C3G), or hydroxycinnamic acids. NLRP3 inflammasome assembly is initiated by priming THP-1 monocytes with lipopolysaccharide and/or activating the NLRP3 inflammasome with nigericin. Flow cytometry is used to assess apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, as well as ASC and NLRP3 protein expression. Caspase-1 activity is measured using a bioluminescent assay, and cytokine concentrations are determined by enzyme-linked immunosorbent assays (ELISA). C3G and phenolic acids diminish ASC and NLRP3 protein expression. In addition, C3G and phenolic acids attenuate ASC speck formation. Furthermore, the BCE and C3G decline caspase-1 activity. Consistently, IL-1ß and IL-18 secretion are reduced upon NLRP3 inflammasome activation. CONCLUSION: The present study shows that a BCE with high amounts of acylated anthocyanins and their related phenolic acids diminish priming and activation of the NLRP3 inflammasome in THP-1 monocytes.
RESUMEN
BACKGROUND AND OBJECTIVE: Endoplasmic reticulum stress (ERS), as a primary defense mechanism against stress, is closely related to mental disorders, but its pathogenesis is still unclear. This research seeks to explore the influence of ERS-nucleotide-bound oligomerized domain-like receptor protein 3 (NLRP3) signaling on mice's depressive-like behaviors and cognitive impairment. DESIGN AND METHOD: We carried out a study on 32 male C57BL/6J mice to investigate how chronic unpredictable mild stress (CUMS) can give rise to depressive-like behaviors and cognitive dysfunction, randomly dividing them into control, model, inhibitor, and agonist groups. We utilized ELISA to quantify dopamine (DA) and 5-hydroxytryptamine (5-HT) levels. Using Nissl and hematoxylin and eosin (H&E) staining, we assessed the number and morphology of hippocampal neurons and cells. Western blot and immunofluorescence staining detected the changes in ERS and inflammation-related pathways in the hippocampus. RESULTS: CUMS could induce ERS and activate NLRP3 inflammasome, causing neuronal damage and histopathological changes, eventually leading to depressive-like behaviors and cognitive impairment in mice. The abnormal activation of NLRP3 inflammasome could be restored by ERS blocker 4-phenyl butyric acid (PBA), thus reducing neuronal damage, and ameliorating depressive-like behaviors and cognitive disorder in mice. CONCLUSION: Our study demonstrates a previously unknown link between ERS and NLRP3 inflammasome in CUMS mice. The ERS-NLRP3 signaling pathway may be activated by CUMS, potentially resulting in mice exhibiting depressive-like behaviors and cognitive dysfunction. Theoretical foundations for elucidating the pathogenesis of depression, as well as its prevention and treatment, will be established through the results.
RESUMEN
BACKGROUND: Inflammatory and immune responses in the brain that contribute to various neuropsychiatric disorders may begin as microglial "priming". Interferon (IFN)-γ is known to cause microglial priming, but the mechanism is unclear. METHODS: We examined the effects of IFN-γ on gene expression, microglial activation, inflammatory and immune responses and activity of the NLRP3 inflammasome in primary microglia and in the brains of mice. RESULTS: Our results showed that treating microglial cultures with IFN-γ induced a hedgehog-like morphology and upregulated markers of microglial activation (CD86, CD11b) and pro-inflammatory molecules (IL-1ß, IL-6, TNF-α, iNOS), while downregulating markers of microglial homeostasis (CX3CR1, CD200R1), anti-inflammatory molecules (MCR1, Arg-1) and neurotrophic factors (IGF-1, BDNF). IFN-γ also upregulated markers of NLRP3 inflammasome activation (NLRP3, caspase-1, gasdermin D, IL-18). This particular transcriptional profiling makes IFN-γ-primed microglia with exaggerated responses upon lipopolysaccharide (LPS) stimulation. The level of NLRP3, caspase-1, gasdermin D, IL-1ß, IL-18, TNF-α and iNOS in microglia cultures treated with both IFN-γ and LPS were highest than with either one alone. Injecting IFN-γ into the lateral ventricle of mice induced similar morphological and functional changes in hippocampal microglia as in primary microglial cultures. The effects of IFN-γ on NLRP3 inflammasome and microglia from cultures or hippocampus were abolished when STAT1 was inhibited using fludarabin. Injecting mice with IFN-γ alone or together with LPS induced anxiety- and depression-like behaviors and impaired hippocampus-dependent spatial memory; these effects were mitigated by fludarabin. CONCLUSIONS: IFN-γ primes microglia by activating STAT1, which upregulates genes that activate the NLRP3 inflammasome. Inhibiting the IFN-γ/STAT1 axis may be a way to treat neurodegenerative diseases and psychiatric disorders that involve microglial priming.
Asunto(s)
Inflamasomas , Interferón gamma , Ratones Endogámicos C57BL , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Transcripción STAT1 , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interferón gamma/farmacología , Factor de Transcripción STAT1/metabolismo , Ratones , Inflamasomas/metabolismo , Células Cultivadas , Masculino , Lipopolisacáridos/farmacologíaRESUMEN
AIM: Depression, a prevalent mental disorder, significantly impairs the quality of life and social functioning. Targeting neuroinflammation is a promising therapeutic approach, highlighting the need for natural neuroprotective agents. Gypenosides (Gyp) from Gynostemma pentaphyllum exhibit anxiolytic and antidepressant effects, yet the underlying mechanisms remain unclear. We investigated whether Gyp, isolated and purified by our laboratory, can exert neuroprotective effects by modulating neuroinflammation in the hippocampus and prefrontal cortex (PFC) of mice with LPS-induced anxiety and depression, thereby ameliorating behavioral phenotypes. METHODS: LPS (1 mg/kg, i.p.) was used to induce anxiety and depression-like behaviors. Gyp was administered at 50, 100, or 200 mg/kg in pretreatment, with fluoxetine hydrochloride (Flu) as a positive control, for 10 consecutive days. RESULTS: Gyp, especially at 100 mg/kg, significantly ameliorated LPS-induced anxiety and depression in mice, normalizing cytokine expression in the hippocampus and PFC, with IL-1ß showing the most pronounced regulation (Hippocampus: RatioGyp-100/LPS = 30.73 %, PFC: RatioGyp-100/LPS = 55.89 %). Gyp also reversed LPS-induced neuronal loss and necrosis, reduced glial cell activation, and prevented the transition of microglia to the M1 phenotype. Mechanistically, Gyp suppressed the activation of the NLRP3 inflammasome in the PFC, and modulated hippocampal synaptic protein loss, thereby mediating neuroinflammation. CONCLUSIONS: Gyp improved anxiety and depression in LPS-induced mice, which may be achieved by balancing systemic inflammatory levels, regulating glial cell activation and phenotypic polarization, regulating hippocampal synaptic plasticity, and suppressing the NLRP3/Caspase-1/ASC signaling pathway in the PFC.
RESUMEN
BACKGROUND: Volatile oil from fresh Clausena lansium (Lour.) Skeels (Rutaceae) (common name Wampee) has been previously extracted by our group from fresh C. lansium leaf and its components were qualitative and quantitatively analyzed by GC-MS. It altered the cell membrane permeability of Staphylococcus aureus and reduced the levels of inflammation factors. However, previous in vivo reports on the anti-inflammatory and the antibacterial properties against S. aureus are scarce. HYPOTHESIS/PURPOSE: To evaluate the protective in vivo effects of Wampee leaves volatile oil emulsion (WVOE) against S. aureus-induced pneumonia and elucidate the underlying mechanisms of action. METHODS: Wild-type and nucleotide oligomerization domain-like receptor protein 3 (NLRP3)-deficient mice were used. Mice were treated with WVOE for 7 days, and subjected to S. aureus infection by nasal administration on day 5 for 48 h. Lung and blood samples were collected for assessing lung damage and protein abundance. Lung bacterial load, wet/dry ratio, C-reactive protein (CRP) levels, inflammatory cytokines secretion, and lung histopathological injury were examined. RESULTS: WVOE effectively reduced lung bacterial load, wet/dry ratio, and CRP levels increased following S. aureus infection in mice. WVOE decreased the secretion of inflammatory cytokines (IL-6 and TNF-α) and lung histopathological injury, and suppressed the NF-κB pathway and NLRP3 inflammasome activation. NLRP3-/- mice exhibited lower bacterial load, inflammatory cytokines levels and lung histopathological injury compared with mice in the model group. Autophagy was enhanced in S. aureus-infected mice, with higher levels of p-mTOR, Beclin-1, Atg 16L1, Atg7, p62, p-p62, and LC3II. WVOE administration restored the autophagy related protein levels. Autophagy was inhibited in NLRP3-/- mice of the control and model groups, and WVOE lost its ability to regulate the autophagy-related proteins enhanced upon S. aureus infection. WVOE enhanced autophagy to alleviate lung injury by inhibiting NLRP3-targeted P62. Furthermore, compared with the 3MA + model group, WVOE reduced the bacterial load and CRP levels, pulmonary septa narrowing, and congestion. NLRP3 protein expression increased due to autophagy inhibition. WVOE exerted a pharmacological effect through the PI3K/AKT/mTOR pathway. CONCLUSION: WVOE regulated the PI3K/AKT/mTOR pathway and enhanced autophagy, with NLRP3 playing a crucial role. WVOE exhibited protective effects against S. aureus-induced pneumonia by inhibiting NLRP3 inflammasome activation and enhancing autophagy. These findings expand the understanding of antibacterial properties of WVOE, and provide novel insights into the therapeutic potential of WVOE in managing S. aureus infections.
RESUMEN
The NLRP3 inflammasome has been extensively studied in recent years and its aberrant activation can exacerbate inflammatory responses, contributing to various diseases. MCC950, a sulfonylurea drug, is a potent selective inhibitor of the NLRP3 inflammasome. However, its clinical development was halted due to hepatotoxicity, and studies have indicated significant reduction in activity among its metabolites. Building upon MCC950, we referenced substitution sites of NP3-146 for structural modifications aimed at addressing potential metabolism-related issues. Consequently, we synthesized a series of sulfonylurea derivatives. Ultimately, the optimized compound C4 exhibited a remarkable 80.39 % inhibition of IL-1ß at 2 µM, with an IC50 value of 0.805 µM. In conclusion, compound C4 shows potential as a lead compound and warrants further development as an anti-inflammatory NLRP3 inhibitor.
RESUMEN
BACKGROUND: NOD like receptor pyrin domain containing 3 (NLRP3) inflammasome is involved in innate immunity, and related to liver injury. However, no inflammasome inhibitors are clinically available until now. Our previous research suggests that isolicoflavonol (ILF), isolated from Macaranga indica, is a potent NLRP3 inflammasome inhibitor, but its mechanism is unclear. METHODS: Fluorescent imaging and Western blot assay were used to ascertain the effects of ILF on pyroptosis and NLRP3 inflammasome activation in macrophages. Next, Nrf2 signal pathway, its downstream gene transcription and expression were further investigated. ML385, a Nrf2 inhibitor, was used to verify whether ILF targets Nrf2 signaling. A carbon tetrachloride induced liver injury model was introduced to evaluate the liver protection activity of ILF in mice. RESULTS: This work revealed that ILF inhibited macrophage LDH release and IL-1ß secretion in a dose-dependent manner. ILF had no significant cytotoxic effect on macrophage, it reduced pyroptosis and Gasdermin D N-terminal fragment formation. Moreover, ILF inhibited IL-1ß maturation and Caspase-1 cleavage, but did not affect NLRP3, pro-Caspase-1, pro-IL-1ß and ASC expression. ILF decreased ASC speck rate and reduced ASC oligomer formation. ILF decreased aggregated JC-1 formation restoring mitochondria membrane potential. In addition, ILF increased Nrf2 expression, extended Nrf2 lifespan and upregulated Nrf2 signaling pathway in macrophages whether the NLRP3 inflammasome was activated or not. Besides, ILF increased Nrf2 nuclear translocation, maintained a high proportion of Nrf2 in the nucleus, and upregulated ARE-related gene transcription and expression. Furthermore, Nrf2 signal inhibition attenuated compound ILF-mediated inhibition of pyroptosis, inflammasome activation and upregulation of Nrf2 signaling. ILF in a liver injury mouse model inhibited NLRP3 inflammasome activation and enhanced Nrf2 signaling. CONCLUSION: Our study verified that ILF ameliorates liver injury via inhibiting NLRP3 inflammasome activation through boosting Nrf2 signaling, and highlighted that ILF is a potent anti-inflammatory drug for inflammasome-related liver diseases.
RESUMEN
High-altitude pulmonary edema (HAPE) is a potentially fatal condition that occurs when exposed to high-altitude hypoxia environments. Currently, there is no effective treatment for HAPE, and available interventions focus on providing relief. Notoginsenoside R1 (NGR1), a major active constituent of Panax notoginseng (Burkill) F.H.Chen (sanqi), has demonstrated heart and lung-protective effects under hypobaric hypoxia. However, there is a lack of clarity regarding the precise mechanisms that underlie the protective effects of NGR1 against inflammation. In this study, a rat model of HAPE was developed to assess the effect of NGR1 on this pathology. High-altitude hypoxia corresponding to 6000â¯m altitude was simulated with a hypobaric chamber. We found that NGR1 dose-dependently alleviated pulmonary oxidative stress damage and inflammatory response, and prevented acid-base balance disruption. In addition, NGR1 restored the expression levels of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, and aquaporin protein-5, correlated with the development of pulmonary edema induced by hypobaric hypoxia. Furthermore, NGR1 pre-treatment remarkably mitigated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-induced pyroptosis, and this effect was partially counteracted by the use of an NLRP3 agonist. Thus, NGR1 may exert a lung-protective effect against HAPE by ameliorating hypoxia-induced lung edema, oxidative damage, and inflammation through inhibition of the NLRP3/Caspase-1/ GSDMD signaling pathway.
RESUMEN
Objective: Diabetic kidney disease (DKD) is a common complication of diabetes mellitus. The pathophysiological changes in platelet function and the hypercoagulable state associated with DKD are closely linked to inflammatory processes. Poecilobdella manillensis (PM), a type of leech known for its anticoagulant and antithrombotic properties, has the potential to modulate the inflammatory response in DKD. This study aims to investigate the effect of freeze-dried powder of PM on improving inflammatory injury in rat glomerular mesangial cells and to explore its underlying mechanism. Methods: Lipopolysaccharide (LPS) stimulated HBZY-1 rat mesangial cells to establish an in vitro DKD inflammation model. After the intervention with the water extract of freeze-dried powder of PM (FDPM), cell viability, NO content, and the levels of inflammatory factors such as IL-1ß, IL-18, and TNF-α were assessed. Finally, utilizing transcriptomics technology, RT-qPCR, and Western blot methods, the mechanism by which FDPM improves inflammatory injury in rat glomerular mesangial cells was explored and preliminarily validated. Results: FDPM effectively enhances cell viability and inhibits the production of NO and related inflammatory factors. Transcriptomic analysis suggests that FDPM may exert these effects by regulating the TXNIP/NLRP3 signaling pathway. The mRNA and protein expressions of TXNIP, NLRP3, and MCP-1 in the model cells were reversed by FDPM. Conclusion: FDPM may improve the micro-inflammatory state of DKD and slow the progression of the disease by regulating the TXNIP/NLRP3 signaling pathway. This study provides a scientific basis for the clinical application of PM DKD treatment.
RESUMEN
Cognitive impairment is often found at the acute stages and sequelae of coronavirus disease 2019 (COVID-19), and the underlying mechanisms remain unclear. The S1 protein from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might be a cause of cognitive impairment associated with COVID-19. The nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome and neuroinflammation play important roles in Alzheimer's disease (AD) with cognitive impairment. However, their roles remain unknown in COVID-19 with cognitive impairment. We stimulated BV2 cells with S1 protein in vitro and injected the hippocampi of wild-type (WT) mice, NLRP3 knockout (KO), and microglia NLRP3 KO mice in vivo with S1 protein to induce cognitive impairment. We assessed exploratory behavior as associative memory using novel object recognition and Morris water maze tests. Neuroinflammation was analyzed using immunofluorescence and western blotting to detect inflammatory markers. Co-localized NLRP3 and S1 proteins were investigated using confocal microscopy. We found that S1 protein injection led to cognitive impairment, neuronal loss, and neuroinflammation by activating NLRP3 inflammation, and this was reduced by global NLRP3 KO and microglia NLRP3 KO. Furthermore, TAK 242, a specific inhibitor of Toll-like receptor-4, resulted in a significant reduction in NLRP3 and pro-IL-1ß in BV2 cells with S1 protein stimulation. These results reveal a distinct mechanism through which the SARS-CoV-2 spike S1 protein promotes NLRP3 inflammasome activation and induces excessive inflammatory responses.
RESUMEN
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1ß and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, procaspase1, caspase1 p20, proIL1ß and IL1ß in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1ß and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 µg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
RESUMEN
Systemic inflammation contributes to left ventricular (LV) dysfunction, however the role of the NLRP3 inflammasome in LV dysfunction in acute inflammatory conditions is unclear. This study investigated the role of the NLRP3 inflammasome in acute (24 h) cardiac structural and functional changes in vivo and in vitro in lipopolysaccharide (LPS)-induced inflammation. LPS-treated Sprague-Dawley (SD) rats showed increased LPS metabolite abundance in their LVs as measured by atmospheric pressure matrix-assisted laser desorption ionisation (AP-MALDI) mass spectrometry imaging (MSI). Echocardiography and histology showed that in LPS-exposed rats, LV internal diameter was decreased, with evidence of macrophage infiltration and oedema. However, there were no changes in LV wall thickness or collagen volume. Additionally, LPS-exposed rats exhibited impaired LV relaxation, potentially contributing to decreased stroke volume. While global systolic function was preserved, LPS exposure in SD rats resulted in impaired myocardial deformation assessed by speckle-tracking echocardiography. Exposure to LPS resulted in upregulation of the expression of components of the NLRP3 inflammasome in rodents. In vitro LPS exposure resulted in increased gene expression of NLRP3 and downstream cytokines IL-1ß and IL-18, antioxidant SOD2, and elevated markers of pyroptosis (GSDMD) which were inhibited by treatment with a NLRP3 antagonist. However, LPS-induced increases in the gene expression of apoptosic markers (BAX/Bcl2) were not impacted by NLRP3 antagonism. These findings suggest that inflammation induced adverse cardiac structural and functional changes is, at least in part, mediated by the NLRP3 inflammasome in acute, high-grade inflammatory states. In addition, in vitro findings suggest that while the NLRP3 inflammasome mediates pyroptotic pathways, regulation of apoptosis that is independent of the inflammasome.