Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
Fitoterapia ; 178: 106146, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089591

RESUMEN

Ganweikang tablet (GWK) is a traditional Chinese prescription and has been clinically used in treating liver diseases for decades. Although GWK has been shown to exert potential therapeutic effect for hepatotoxicity protection, the underlying biological mechanisms are still not well clarified. In the present study, the compositional analysis of GWK was performed by HPLC analysis, and the hepato-protective effects of GWK were assessed in H2O2-stimulated acute oxidative injured HL-7702 hepatocytes in vitro. As a result, 7 components in GWK were quantified to be 0.06 ± 0.01% (calycosin), 0.46 ± 0.02% (calycosin-7-glucoside), 0.13 ± 0.01% (liquiritin), 0.17 ± 0.02% (glycyrrhizic acid), 0.45 ± 0.02% (forsythoside A), 0.07 ± 0.01% (5-O-methylvisammioside) and 0.45 ± 0.02% (forsythin), respectively. Furthermore, GWK (100, 200 and 400 µg/mL, 24 h) dose-dependently alleviated HL-7702 hepatocytes from H2O2 (200 µM, 2 h)-induced cell apoptosis by decreasing the intracellular reactive oxygen species (ROS) generation and malondialdehyde (MDA) level, as well as the cellular aminotransferases (ALT and AST) activities. GWK increased the expressions of HO-1, NQO1 and Nrf2, while suppressing the expression of KEAP1 in H2O2-stimulated HL-7702 cells. A specific Nrf2 inhibitor, ML385, was further employed to investigate the regulation of Nrf2 in HL-7702 cells stimulated by H2O2. In addition, the activation of MAPKs (JUN, ERK and p38) was simultaneously detected in H2O2-stimulated HL-7702 cells. In conclusion, GWK exerted potential therapeutic effect to protect hepatocytes from acute oxidative injury through activating the Nrf2/HO-1 and MAPKs pathways.

2.
Toxicol Sci ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110510

RESUMEN

Hyperoxia-induced acute lung injury (HALI) is a complication of oxygen therapy. Ferroptosis is a vital factor in HALI. This paper was anticipated to investigate the underlying mechanism of Wedelolactone (WED) on ferroptosis in HALI. The current study used hyperoxia to injure two models, one HALI mouse model and one MLE-12 cell injury model. We found that WED treatment attenuated HALI by decreasing the lung injury score and lung wet/dry weight ratio and alleviating pathomorphological changes. Then, the inflammatory reaction and apoptosis in HALI mice and hyperoxia-mediated MLE-12 cells were inhibited by WED treatment. Moreover, WED alleviated ferroptosis with less iron accumulation and reversed expression alterations of ferroptosis markers, including MDA, GSH, GPX4, SLC7A11, FTH1, and TFR1 in hyperoxia-induced MLE-12 cells in vitro and in vivo. Nrf2-KO mice and Nrf2 inhibitor (ML385) decreased WED's ability to protect against apoptosis, inflammatory response, and ferroptosis in hyperoxia-induced MLE-12 cells. Collectively, our data highlighted the alleviatory role of WED in HALI by activating the Nrf2/HO-1 pathway.

3.
Front Vet Sci ; 11: 1436282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170630

RESUMEN

Oxidative damage resulting from weaning stress significantly impacts the growth performance and health status of piglets. Taurine, a dietary antioxidant with diverse functions, was investigated in this study for its protective role against weaning stress-induced oxidative damage and its underlying mechanism. Forty 28-day-old male castrated weaned piglets were randomly assigned to four groups. The control group received the basal diet, while the experimental groups were fed the basal diet supplemented with 0.1, 0.2%, or 0.3% taurine over a 28-day period. In vitro, H2O2 was utilized to induce oxidative damage to the jejunal mucosa of piglets via IPEC-J2 cells. The results demonstrated that taurine supplementation reduced the incidence of diarrhea in piglets compared to that in the control group (p < 0.05); the addition of 0.2 and 0.3% taurine led to increased average daily gain and improved feed conversion efficiency in weaned piglets, showing a linear dose-response correlation (p < 0.05). Taurine supplementation at 0.2 and 0.3% enhanced the activities of serum CAT and GSH-Px while decreasing the levels of serum NO, XOD, GSSG, and MDA (p < 0.05). Moreover, it significantly elevated the levels of GSS, Trx, POD, complex I, mt-nd5, and mt-nd6, enhancing superoxide anion scavenging capacity and the hydroxyl-free scavenging rate in the livers of weaned piglets while reducing NO levels in the liver (p < 0.05). Additionally, 0.2 and 0.3% taurine supplementation decreased serum IL-6 levels and elevated the concentrations of IgA, IgG, and IL-10 in weaned piglets (p < 0.05). The levels of occludin, claudin, and ZO-1 in the jejunum mucosa of weaned piglets increased with 0.2 and 0.3% taurine supplementation (p < 0.05). In IPEC-J2 cells, pretreatment with 25 mM taurine for 24 h enhanced the activities of SOD and CAT; reduced the MDA content; upregulated the mRNA expression of various genes, including ZO-1, occludin, claudin-1, Nrf2, and HO-1; and reversed the oxidative damage induced by H2O2 exposure (p < 0.05). Overall, the findings suggest that the inclusion of 2 and 3% taurine in the diet can enhance growth performance, reduce diarrhea rates, ameliorate oxidative stress and inflammation, and promote intestinal barrier function in weaned piglets.

4.
Biochem Pharmacol ; 229: 116501, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173843

RESUMEN

Considerable evidence indicates that CYP2E1 is associated with a variety of inflammatory diseases. Here we evaluated CYP2E1 as a potential therapeutic target for rheumatoid arthritis (RA) and established the protective effect of a new CYP2E1 inhibitor. Gene-expression datasets were used to analyze the change in expression of CYP2E1 in RA patients; CYP2E1 activity in collagen-induced arthritis (CIA) rats was determined by HPLC. We further evaluated the protective effects of Cyp2e1 knockout and a CYP2E1-specific inhibitor, Q11, synthesized by our group, in CIA and adjuvant-induced arthritis (AIA) rats. The expression of CYP2E1 in synovial tissue was elevated in RA patients and in CIA rats and the activity of CYP2E1 in vivo and in vitro in CIA rats was greater than that of controls. Cyp2e1 knockout significantly reduced the incidence of CIA and alleviated the severity of symptoms. Treatment with different doses of Q11 decreased paw thickness, volume and arthritis scores and reduced the serum levels of IL-6, TNF-α, IL-1ß and MDA, and increased the level of GSH in CIA rats. A similar inhibitory effect was exhibited for Q11 in the AIA rats. Moreover, Q11 significantly impeded proliferation, migration, and invasion of human rheumatoid arthritis synovial fibroblasts cells. Q11 decreased the release of ROS and enhanced Nrf2 nuclear translocation and HO-1 expression in the cell nucleus. Overall, our results indicated that CYP2E1 may be a new target for RA and Q11 has potential protective effects against RA by reducing oxidative stress and opposing the inflammatory response via the ROS/Nrf2/HO-1 signaling pathway.

5.
Biotechniques ; 76(7): 333-341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185784

RESUMEN

MicroRNA (miRNA) has garnered considerable attention due to its diagnostic capabilities, such as in hypoxic cognitive impairment and cancers. However, the existing miRNA detection methods are commonly criticized for the drawbacks of low sensitivity and false-positive detection derived from interfering molecules. Here, we provide a novel, sensitive and portable method for miRNA detection by combining target identification based cyclization of padlocks, immobilized primer-based signal amplification and a personal glucose meter. The proposed method exhibits several advantages, including precise identification of specific sites, exceptional sensitivity and instrument-free feature. These attributes hold great promise for the diagnosis and clinical investigation of various diseases, such as cancer and hypoxic cognitive impairment, enabling a deeper understanding of their pathological and physiological aspects.


With miRNA-155 as detective target, the feasibility of the method has been demonstrated. The padlock sequences are cyclized by miRNA-155, which subsequently hybridize with primer sequence that is immobilized on the surface of a 96-well plate, and the interfering molecules are removed. This DNA polymerase triggers a chain extension process on the terminus of primer sequence, activating DNAzyme based cleavage. Consequently, a multitude of linker sequences are generated to facilitate the formation of the 'e/linker/f/sucrase' on magnetic bead, thereby enabling the catalysis of sucrose into glucose. This enzymatic reaction may be identified and measured using the personal glucose meter.


Asunto(s)
MicroARNs , MicroARNs/análisis , MicroARNs/genética , Humanos , Técnicas Biosensibles/métodos , Automonitorización de la Glucosa Sanguínea/instrumentación , Automonitorización de la Glucosa Sanguínea/métodos , Glucosa/análisis , Cartilla de ADN/genética
6.
Bioorg Chem ; 152: 107732, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39178702

RESUMEN

Phytochemical analysis of the peeled stems of Syringa pinnatifolia Hemsl. led to the discovery of 13 undescribed lignans, namely helanols A and B (1 and 2) and alashanenols W-G1 (3-13), as well as four known analogues, of which helanols A and B were lignans with novel skeleton of α-ß' linkage. The structures were unambiguously established by extensive spectroscopic analyses, NMR calculations, ECD calculations, and single crystal X-ray crystallography. Five lignans (1, 2, 5, 11 and 13) exhibited a moderate protective effect against H2O2-induced oxidative injuries in H9c2 cells with the protective rates of 11.3-20.6 % at the concentration of 0.3-20 µM, while the positive control quercetin showed protective rates of 58.7 % at 10 µM. Further mechanism investigation suggested that 1 and 2 exerted the protective effect by regulating the expression of Nrf2/HO-1.

7.
Food Sci Biotechnol ; 33(11): 2631-2641, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144189

RESUMEN

Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPß, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01522-2.

8.
J Biochem Mol Toxicol ; 38(9): e23809, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39148263

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.


Asunto(s)
Ácido Gálico , Hemo Oxigenasa (Desciclizante) , Factor 2 Relacionado con NF-E2 , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Ratas , Masculino , Transducción de Señal/efectos de los fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratas Sprague-Dawley , Antioxidantes/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología
9.
Front Pharmacol ; 15: 1424219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135804

RESUMEN

Ulcerative colitis (UC) is a recurring inflammatory bowel disease, in which oxidative stress plays a role in its progression, and regulation of the oxidative/antioxidative balance has been suggested as a potential target for the treatment of UC. The aim of this study was to evaluate the protective effect of andrographolide against UC and its potential antioxidant properties by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Dextran sulfate sodium (DSS) -induced UC mice and the LPS-induced HT29 inflammatory cell model were established to uncover the potential mechanisms of andrographolide. ML385, a Nrf2 inhibitor, was used in both models to assess whether andrographolide exerts a protective effect against UC through the Nrf2/HO-1 pathway. The in vivo experiment showed that andrographolide ameliorated the symptoms and histopathology of DSS-induced mice and restored the expressions of ZO-1, Occludin-1 and Claudin-1. Meanwhile, DSS-induced oxidative stress and inflammation were suppressed by andrographolide treatment, along with the upregulation of key proteins in the Nrf2/HO-1 pathway. In vitro experiments showed that andrographolide attenuated LPS-induced excessive generation of ROS in HT29 cells, reduced inflammatory factors, and upregulated the expression of proteins related to tight junctions and Nrf2/HO-1 pathway. In addition, ML385 abolished the beneficial effect of andrographolide. In conclusion, the protective effect of andrographolide against UC may involve the suppression of oxidative stress and inflammation via the Nrf2/HO-1 pathway.

10.
Poult Sci ; 103(10): 104154, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39137500

RESUMEN

Lambda-cyhalothrin (LCT) is a common pyrethroid insecticide widely used for ectoparasite control and hygiene pest prevention in poultry and this study aimed to investigate the mechanisms of LCT-induced cardiac injury in chickens. Low, medium, and high-dose LCT exposure models in chickens were established and hematoxylin and eosin (H&E) staining, dihydroethidium (DHE) staining, TUNEL staining, immunofluorescence, biochemical analysis, and gene expression analysis were used to study the effects of LCT exposure on the chicken heart. The results showed that LCT exposure increased the serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH), led to muscle fiber breakage and inflammatory cell infiltration and caused cardiac tissue damage. The DHE staining and biochemical analysis revealed that LCT exposure resulted in the excessive accumulation of ROS, decreased activities/levels of catalase (CAT), total superoxide dismutase (T-SOD), and glutathione (GSH), and increased levels of the oxidative damage marker malondialdehyde (MDA). The TUNEL staining indicated that LCT exposure increased apoptosis possibly through the elevated expression of pro-apoptotic genes in the mitochondrial pathway, the reduced expression of anti-apoptotic genes, the upregulation of pro-inflammatory factors and the downregulation of anti-inflammatory factors. Here, LCT exposure significantly inhibited the expression of genes in the Nrf2/HO-1 pathway and activated the expression of genes in the CYP450 enzyme system. Compared to the low-dose group, the high-dose LCT exposure group showed lower levels of apoptosis and inflammation, possibly related to the low oxidative stress levels mediated by the decreased expression of the CYP450 enzyme system. In conclusion, LCT exposure induces oxidative stress, apoptosis, and inflammation in chicken hearts, which may be associated with the inhibition of the Nrf2/HO-1 pathway and activation of the CYP450 enzyme system. This study provides a theoretical basis for the safer use of insecticides in poultry production.

11.
Chem Biol Interact ; 401: 111188, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39121897

RESUMEN

The random flap is one of the commonly used techniques for tissue defect repair in surgery and orthopaedics, however the risk of ischaemic necrosis at the distal end of the flap limits its size and clinical application. Metformin (Met) is a first-line medication in the treatment of type 2 diabetes, with additional effects such as anti-tumor, anti-aging, and neuroprotective properties. In this study, we aimed to investigate the biological effects and potential mechanisms of Met in improving the survival of random skin flaps. Twenty-four male Sprague-Dawley rats and 12 male C57BL/6J mice underwent McFarlane flap surgery and divided into control (Ctrl) and Met groups (100 mg/kg). The survival rate of the flap were evaluated on day 7. Angiography, Laser doppler blood flow imaging, and H&E staining were used to assess blood flow supply and the levels of microvascular density. Then, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured by test kits. Immunohistochemistry analysis was conducted to evaluate the expression of Vascular Endothelial Growth Factor A (VEGFA), Vascular endothelial cadherin (VE-cadherin) and CD31. Rats and mice in the Met group exhibited higher flap survival rate, microcirculatory flow, and higher expression levels of VEGFA and VE-cadherin compared with the Ctrl group. In addition, the level of oxidative stress was significantly lower in the met group. And then we demonstrated that the human umbilical vein endothelial cells (HUVECs) treated with Met can alleviate tert-butyl hydroperoxide (TBHP)-stimulated cellular dysfunction and oxidative stress injury. Mechanistically, Met markedly stimulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), and promoted Nrf2 nuclear translocation. Silencing of Nrf2 partially abolished the antioxidant and therapeutic effects of Met. In summary, our data have confirmed that Met has a positive effect on flap survival and reduces necrosis. The mechanism of action involves the regulation of the Nrf2/HO-1 signaling pathway to combat oxidative stress and reduce damage.


Asunto(s)
Metformina , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Ratas Sprague-Dawley , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Metformina/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Ratas , Ratones , Humanos , Colgajos Quirúrgicos/patología , Piel/efectos de los fármacos , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Malondialdehído/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Superóxido Dismutasa/metabolismo
12.
Toxicol Res (Camb) ; 13(4): tfae129, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148957

RESUMEN

In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the Nrf2/HO-1 signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of Bcl-2, HO-1, Nrf2, and NQO-1, while up-regulating Bax, Cas-3, TNF-α, Cox-2, iNOS, IL-6, IL-1ß, and NFκB in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of Nrf2/HO-1 signaling.

13.
Acta Histochem ; 126(5-7): 152189, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197328

RESUMEN

Our previous study has shown that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exo) alleviated burn-induced acute lung injury (ALI). In this study, we explored a novel mechanism by which hUCMSCs-exo contributed to the inhibition of burn-induced ALI. The ALI rat model with severe burn was established for the in vivo experiments, and rats PMVECs were stimulated with the serum from burn-induced ALI rats for the in vitro experiments. The pathological changes of lung tissues were evaluated by HE staining; the cell viability was measured using CCK-8; the iron level and Fe2+ concentration were assessed using Iron Assay Kit and Fe2+ fluorescence detection probe; the mRNA expression of SLC7A11 and GPX4 were measured by qRT-PCR; the protein levels of SLC7A11, GPX4, Nrf2 and HO-1 were detected by western blot. Both the in vivo and in vitro experiments revealed that ferroptosis was significantly induced in burn-induced ALI, which as verified by increased iron level and Fe2+ concentration, and decreased SLC7A11 and GPX4 mRNA and protein levels. Furthermore, both hUCMSCs-exo and Fer-1 (the inhibitor of ferroptosis) alleviated lung inflammation and up-regulated protein levels of Nrf2 and HO-1 in the lung tissues of burn-induced ALI rats. These results suggested that hUCMSCs-exo exhibited a protective role against burn-induced ALI by inhibiting ferroptosis, partly owing to the activation of Nrf2/HO-1 pathway, thus providing a novel therapeutic strategy for burn-induced ALI.

14.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39199146

RESUMEN

Lespedeza bicolor Turcz. (L. bicolor) honey, a monofloral honey, has garnered increased attention due to its origin in the L. bicolor plant. A previous study has shown that L. bicolor honey can ameliorate inflammation. In this study, we aimed to investigate the effects of L. bicolor honey extract and its biomarker (Trifolin) on DSS-induced ulcerative colitis (UC). Our results demonstrated that L. bicolor honey extract and Trifolin significantly increased the expression levels of the tight junction cytokines Claudin-1 and ZO-1. Additionally, they decreased the pro-inflammatory factors TNF-α and IL-6 and enhanced the antioxidant factors NQO1 and GSTA1. Based on metabolomic analyses, L. bicolor honey extract and Trifolin regulated the progression of UC by inhibiting ferroptosis. Mechanistically, they improved the levels of SOD and iron load, increased the GSH/GSSG ratio, reduced MDA content and ROS release, and upregulated the Nrf2/HO-1 pathway, thereby inhibiting DSS-induced UC. Moreover, the expression levels of ferroptosis-related genes indicated that they decreased FTL, ACSL4, and PTGS2 while increasing SLC7A11 expression to resist ferroptosis. In conclusion, our study found that L. bicolor honey improves DSS-induced UC by inhibiting ferroptosis by activating the Nrf2/HO-1 pathway. These findings further elucidate the understanding of anti-inflammatory and antioxidant activities of L. bicolor honey.

15.
Antioxidants (Basel) ; 13(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39199256

RESUMEN

Oxidative stress (OS) is a key factor in the generation of various pathophysiological conditions. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a major transcriptional regulator of antioxidant reactions. Heme oxygenase-1 (HO-1), a gene regulated by Nrf2, is one of the most critical cytoprotective molecules. In recent years, Nrf2/HO-1 has received widespread attention as a major regulatory pathway for intracellular defense against oxidative stress. It is considered as a potential target for the treatment of inflammatory bowel disease (IBD). This review highlights the mechanism of action and therapeutic significance of Nrf2/HO-1 in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)), as well as the potential of phytochemicals targeting Nrf2/HO-1 in the treatment of IBD. The results suggest that the therapeutic effects of Nrf2/HO-1 on IBD mainly involve the following aspects: (1) Controlling of oxidative stress to reduce intestinal inflammation and injury; (2) Regulation of intestinal flora to repair the intestinal mucosal barrier; and (3) Prevention of ferroptosis in intestinal epithelial cells. However, due to the complex role of Nrf2/HO-1, a more nuanced understanding of the exact mechanisms involved in Nrf2/HO-1 is the way forward for the treatment of IBD in the future.

16.
Phytomedicine ; 133: 155893, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111191

RESUMEN

BACKGROUND: Depression is a serious and complex mental disease that has attracted worldwide attention because of its high incidence rate, high disability rate and high mortality. Excitotoxicity is one of the most important mechanisms involved in the pathophysiological process of depression. In our previous studies, n-butanol extract from maize roots was found to have good neuroprotective effects due to its antioxidative activity. However, the antidepressive effective constituents, efficacy in vivo and mechanism of action of maize root extracts have not been determined. PURPOSE: This study aimed to determine the main active neuroprotective compound in maize root extract and investigate its antidepressant effects and possible underlying mechanism in vitro and in vivo. METHODS: Sixteen extracts were isolated and purified from maize roots. The active components of the most active extracts of maize roots (hereafter referred to as EM 2) were identified using UF-HPLC-QTOF/MS. In vitro cell models of NMDA-induced excitotoxicity in SH-SY5Y cells were used to analyze the anti-excitatory activity of the extracts. The MTT assay and Annexin V-FITC/PI Apoptosis Detection were used to evaluate cell viability. Several network pharmacological strategies have been employed to investigate the potential mechanism of action of EM 2. The effects of EM 2 on depressive-like behaviors were evaluated in CUMS mice. Changes in the levels of related proteins were detected via western blotting. RESULTS: Among the 16 extracts extracted by n-butanol, EM 2 was determined to be the most active extract against NMDA-induced excitotoxicity by n-butanol extraction. Meanwhile, seventeen compounds were further identified as the main active components of EM 2. Mechanistically, EM 2 inhibited NMDA-induced excitatory injury in SH-SY5Y cells and alleviated the depressive-like behaviors of CUMS mice by suppressing NR2B and subsequently mediating the downstream CREB/TRKB/BDNF, PI3K/Akt and MAPK pathways, as well as the Nrf2/HO-1 antioxidant signaling pathway. CONCLUSION: The study indicated that EM 2 could potentially be developed as a potential therapeutic candidate to cure depression in NMDA-induced excitatory damage.


Asunto(s)
Antidepresivos , Apoptosis , Depresión , Fármacos Neuroprotectores , Extractos Vegetales , Raíces de Plantas , Zea mays , Animales , Antidepresivos/farmacología , Zea mays/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Raíces de Plantas/química , Humanos , Ratones , Depresión/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Masculino , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Int Immunopharmacol ; 140: 112885, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116496

RESUMEN

Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the renal function and has high morbidity and mortality worldwide, yet there is no satisfactory means of prevention and treatment at present. Dioscin, a natural steroidal saponin, has been found to have antioxidant, anti-inflammatory and anti-apoptotic effects. In this experiment, we pretreated cisplatin-induced AKI rats with dioscin and found that dioscin significantly enhanced renal function and reduced renal pathological injury in AKI rats. We also found that dioscin improved renal antioxidant capacity by suppressing the accumulation of oxides such as ROS, MDA and H2O2, and increasing the levels of antioxidant enzymes SOD and CAT. In addition, dioscin down-regulated the expression of inflammation-related proteins (IL-1ß, TNF-α, NF-κB) and necroptosis-critical proteins RIP1/RIP3, whereas up-regulated Caspase-8 protein levels in the kidney of AKI rats. Mechanistically, dioscin promoted the nuclear transcription of Nrf2 and activated Nrf2/HO-1 signaling axis to play a positive role in the kidney of AKI rats, while the reno-protective effect of dioscin was significantly attenuated after inhibiting Nrf2. In conclusion, our data indicate that dioscin decreases cisplatin-induced renal oxidative stress and thwarts necroptosis induced inflammation via regulating the Nrf2/HO-1pathway. Our study provides more data and theoretical support for the study of natural drugs to improve AKI.


Asunto(s)
Lesión Renal Aguda , Antiinflamatorios , Cisplatino , Diosgenina , Riñón , Necroptosis , Estrés Oxidativo , Ratas Sprague-Dawley , Animales , Diosgenina/análogos & derivados , Diosgenina/farmacología , Diosgenina/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Masculino , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Cisplatino/efectos adversos , Necroptosis/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ratas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico , Humanos , Modelos Animales de Enfermedad
18.
Phytomedicine ; 133: 155941, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128305

RESUMEN

BACKGROUND: Ulcerative colitis (UC), a chronic idiopathic inflammatory bowel disease (IBD), presents with limited current drug treatment options. Consequently, the search for safe and effective drug for UC prevention and treatment is imperative. Our prior studies have demonstrated that the phenolic compound p-Hydroxybenzaldehyde (HD) from Nostoc commune, effectively mitigates intestinal inflammation. However, the mechanisms underlying HD's anti-inflammatory effects remain unclear. PURPOSE: This study delved into the pharmacodynamics of HD and its underlying anti-inflammation mechanisms. METHODS: For in vivo experiments, dextran sodium sulfate (DSS)-induced colitis mouse model was established. In vitro inflammation model was established using lipopolysaccharide (LPS)-induced RAW264.7 and bone marrow-derived macrophages (BMDMs). The protective effect of HD against colitis was determined by monitoring clinical symptoms and histological morphology in mice. The levels of inflammatory factors and oxidative stress markers were subsequently analyzed with enzyme-linked immunosorbent assay (ELISA) and biochemical kits. Furthermore, western blotting (WB), immunofluorescence (IF), luciferase reporter gene, drug affinity reaction target stability (DARTS) assay, molecular docking, and molecular dynamics (MD) simulation were used to determine the potential target and molecular mechanism of HD. RESULTS: Our findings indicate that HD significantly alleviated the clinical symptoms and histological morphology of colitis in mice, and curtailed the production of pro-inflammatory cytokines, including TNF-α, IL-6, IFN-γ, COX-2, and iNOS. Furthermore, HD stimulated the production of SOD, CAT, and GSH-px, enhanced total antioxidant capacity (T-AOC), and reduced MDA levels. Mechanically, HD augmented the expression of Nrf2, HO-1, and NQO-1, while concurrently downregulating the phosphorylation of p65, IκBα, c-Jun, and c-Fos. ML385 and siNrf2 largely attenuated the protective effect of HD in enteritis mice and RAW 264.7 cells, as well as the promotion of HO-1 expression levels. ZnPP-mediated HO-1 knockdown reversed HD-induced inhibition of colonic inflammation. Luciferase reporter assay and IF assay confirmed the transcriptional activation of Nrf2 by HD. DARTS analysis, molecular docking, and MD results showed high binding strength, interaction efficiency and remarkable stability between Nrf2 and HD. CONCLUSION: These outcomes extend our previous research results that HD can combat oxidative stress through the Nrf2/HO-1/NQO-1/NF-κB/AP-1 pathways, effectively alleviating colitis, and propose new targets for HD to protect against intestinal barrier damage.


Asunto(s)
Benzaldehídos , Sulfato de Dextran , Factor 2 Relacionado con NF-E2 , FN-kappa B , Estrés Oxidativo , Factor de Transcripción AP-1 , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Benzaldehídos/farmacología , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Células RAW 264.7 , Factor de Transcripción AP-1/metabolismo , Masculino , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Transducción de Señal/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Lipopolisacáridos , Hemo Oxigenasa (Desciclizante)/metabolismo , Proteínas de la Membrana/metabolismo
19.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098466

RESUMEN

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Asunto(s)
Condrocitos , Ferroptosis , Glucógeno Sintasa Quinasa 3 beta , Factor 2 Relacionado con NF-E2 , Osteoartritis , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Receptor de Anafilatoxina C5a , Animales , Ferroptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Condrocitos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratas , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Masculino , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Transducción de Señal , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Hemo Oxigenasa (Desciclizante)
20.
Cell Biochem Biophys ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187743

RESUMEN

Sepsis patients are highly prone to sepsis-associated encephalopathy (SAE) complications, resulting in a high mortality rate. Recently, there has been no specific treatment for long-term improvement of cerebral function. Ginsenoside Rh2 is a form of steroidal saponins isolated from plant ginseng and has been shown to possess anti-inflammatory as well as neuroprotective characteristics; yet, the effect of ginsenoside Rh2 on SAE treatment is obscure. Accordingly, we proposed to investigate the effect of ginsenoside Rh2 in alleviating SAE damage. We established and utilized the SAE mouse model to determine the effect of Rh2 treatment on alleviating SAE. We determined the expression levels of Heme oxygenase-1(HO-1) and Nuclear factor erythroid 2-related factor 2 (Nrf2) as well as measured neural apoptosis by flow cytometry. Also, we quantified the levels of caspase-3, malondialdehyde (MDA), GSH-Px superoxide dismutase (SOD) and evaluated the animals' neural reflex function. First, used Rh2 to treat microglia BV2 and mouse neuron MN-c whether LPS exist or not, and then measured expression level of Iba-1, apoptotic rate, and ROS content applying flow cytometry. Also, we quantified the levels of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In comparison with the Sham group, the SAE model exhibited an elevated MDA content, caspase-3 activity, and cell apoptosis. On the other hand, the GSH-Px activity and SOD level were decreased along with a decreased neural reflex score. Our investigation concluded that Rh2 treatment significantly alleviated SAE damage and inhibited LPS-induced response via up-regulation of the Nrf2/HO-1 pathway to promote anti-oxidative stress capacity and inhibit neural cell apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...