Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Anticancer Res ; 44(8): 3307-3315, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060068

RESUMEN

BACKGROUND/AIM: Exosome exchange between cancer cells or between cancer and stromal cells is involved in cancer metastasis. We have previously developed in vivo color-coded labeling of cancer cells and stromal cells with spectrally-distinct fluorescent genetic reporters to demonstrate the role of exosomes in metastasis. In the present study, we studied exosome transfer between different pancreatic-cancer cell lines in vivo and in vitro and its potential role in metastasis. MATERIALS AND METHODS: Human pancreatic-cancer cell lines AsPC-1 and MiaPaCa-2 were used in the present study. AsPC-1 cells contain a genetic exosome reporter gene labeled with green fluorescent protein (pCT-CD63-GFP) and MiaPaCa-2 cells express red fluorescent protein (RFP). Both cell lines were co-injected into the spleen of nude mice (n=5) to further study the role of exosome exchange in metastasis. Three weeks later mice were sacrificed and tumors at the primary and metastatic sites were cultured and observed by confocal fluorescence microscopy for exosome transfer. RESULTS: The primary tumor formed in the spleen and metastasized to the liver, as observed macroscopically. Cells were cultured from the spleen, liver, lung, bone marrow and ascites. Transfer of exosomes from AsPC-1 to MiaPaCa-2 was demonstrated in the cultured cells by confocal fluorescence microscopy. Moreover, cell fusion was also observed along with exosome transfer. Exosome transfer did not occur during in vitro co-culture between the two pancreatic-cancer cell lines, suggesting a role of the tumor microenvironment (TME) in exosome transfer. CONCLUSION: The transfer of exosomes between different pancreatic-cancer cell lines was observed during primary-tumor and metastatic growth in nude mice. This cell-cell communication might be a trigger of cell fusion and promotion of cancer metastasis. Exosome transfer between the two pancreatic-cancer cell lines appears to be facilitated by the TME, as it did not occur during in vitro co-culture.


Asunto(s)
Técnicas de Cocultivo , Exosomas , Ratones Desnudos , Neoplasias Pancreáticas , Exosomas/metabolismo , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Humanos , Línea Celular Tumoral , Ratones , Metástasis de la Neoplasia , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteína Fluorescente Roja , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética
2.
Gels ; 10(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39057500

RESUMEN

Determining the safety of a newly developed experimental product is a crucial condition for its medical use, especially for clinical trials. In this regard, four hydrogel-type formulations were manufactured, all of which were based on carbomer (Blank-CP940) and encapsulated with caffeine (CAF-CP940), phosphorus derivatives (phenyl phosphinic (CAF-S1-CP940) and 2-carboxyethyl phenyl phosphinic acids (CAF-S2-CP940)). The main aim of this research was to provide a comprehensive outline of the biosafety profile of the above-mentioned hydrogels. The complex in vitro screening (cell viability, cytotoxicity, morphological changes in response to exposure, and changes in nuclei morphology) on two types of healthy skin cell lines (HaCaT-human keratinocytes and JB6 Cl 41-5a-murine epidermal cells) exhibited a good biosafety profile when both cell lines were treated for 24 h with 150 µg/mL of each hydrogel. A comprehensive analysis of the hydrogel's impact on the genetic profile of HaCaT cells sustains the in vitro experiments. The biosafety profile was completed with the in vivo and in ovo assays. The outcome revealed that the developed hydrogels exerted good biocompatibility after topical application on BALB/c nude mice's skin. It also revealed a lack of toxicity after exposure to the hen's chicken embryo. Further investigations are needed, regarding the in vitro and in vivo therapeutic efficacy and safety for long-term use and potential clinical translatability.

3.
ACS Appl Mater Interfaces ; 16(25): 31997-32016, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869318

RESUMEN

Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5ß1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pulmonares , Ratones Endogámicos BALB C , Ratones Desnudos , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Animales , Ratones , Células A549 , Nanopartículas Magnéticas de Óxido de Hierro/química
4.
Sci Rep ; 14(1): 13744, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877067

RESUMEN

Antitumor drugs used today have shown significant efficacy and are derived from natural products such as plants. Iso-mukaadial acetate (IMA) has previously been shown to possess anticancer properties by inducing apoptosis. The purpose of this study was to investigate the therapeutic effect of IMA in the breast cancer xenograft mice model. Female athymic nude mice were used and inoculated with breast cancer cells subcutaneously. Untreated group one served as a negative control and positive control group two (cisplatin) was administered intravenously. IMA was administered orally to group three (100 mg/kg) and group four (300 mg/kg). Blood was collected (70 µL) from the tail vein on day zero, day one and day three. Tumor regression was measured every second day and body mass was recorded each day. Estimation of serum parameters for renal indices was examined using a creatinine assay. Histopathological analysis was conducted to evaluate morphological changes of liver, kidney, and spleen tissues before and after compound administration under a fluorescence light microscope. Histopathological analysis of tumors was conducted before and after compound administration. Apoptotic analysis using the TUNEL system was conducted on liver, kidney, and spleen tissues. Tumor shrinkage and reduction in body mass were observed after treatment with IMA. Serum creatinine was slightly elevated after treatment with IMA at a dosage of 100 and 300 mg/kg. Histopathological results of the liver exhibited no changes before and after IMA while the kidney and spleen tissues showed changes in the cellular structure. IMA showed no cytotoxic effect on the tumor cells, and cell proliferation was observed. Apoptotic assay stain with TUNEL showed apoptotic cells in spleen tissue and kidney but no apoptotic cells were observed in liver tissue section treated with IMA. IMA showed clinical toxic signs that resulted in the suffering and death of the mice immediately after IMA administration. Histopathology of tumor cells showed that IMA did not inhibit cell proliferation and no cellular damage was observed. Therefore, based on the results obtained, we cannot make any definitive conclusion on the complete effect of IMA in vivo. IMA is toxic, poorly soluble, and not safe to use in animal studies. The objective of the study was not achieved, and the hypothesis was rejected.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Femenino , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Células MCF-7 , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
5.
Anticancer Res ; 44(7): 2787-2792, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925854

RESUMEN

BACKGROUND/AIM: Methotrexate (MTX) resistance in osteosarcoma leads to a very poor prognosis. In the present study, in order to further understand the basis and ramifications of MTX resistance in osteosarcoma, we selected an osteosarcoma cell line that has a 5,500-fold-increased MTX IC50 Materials and Methods: The super MTX-resistant 143B osteosarcoma cells (143B-MTXSR) were selected from MTX-sensitive parental human 143B osteosarcoma cells (143B-P) by continuous culture with step-wise increased amounts of MTX. To compare the malignancy of 143B-MTXSR and 143B-P, colony-formation capacity was compared with clonogenic assays on plastic and in soft agar. In addition, tumor growth was compared with orthotopic xenograft mouse models of osteosarcoma. Expression of dihydrofolate reductase (DHFR), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), and myelocytomatosis oncogene (MYC) was examined with western immunoblotting and compared in 143B-MTXSR and 143B-P cells. RESULTS: 143B-MTXSR had a 5,500-fold increase in the MTX IC50 compared to the parental 143B-P cells. Expression of DHFR was increased 10-fold in 143B-MTXSR compared to 143B-P (p<0.01). 143B-MTXSR cells had reduced colony-formation capacity on plastic (p=0.032) and in soft agar (p<0.01) compared to 143B-P and reduced tumor growth in orthotopic xenograft mouse models (p<0.001). These results demonstrate that 143B-MTXSR had reduced malignancy. 143B-MTXSR also showed an increased expression of PI3K (p<0.01), phosphorylated (activated) AKT (p=0.031), phosphorylated mTOR (p=0.043), and c-MYC (p=0.024) compared to 143B-P. CONCLUSION: The present study demonstrates that the increased expression of DHFR, PI3K/AKT/mTOR and c-MYC appears to be linked to super MTX resistance and, paradoxically, to reduced malignancy. The present results suggest that DHFR may be a powerful tumor suppressor when highly amplified.


Asunto(s)
Resistencia a Antineoplásicos , Metotrexato , Osteosarcoma , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-myc , Serina-Treonina Quinasas TOR , Tetrahidrofolato Deshidrogenasa , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Osteosarcoma/genética , Metotrexato/farmacología , Humanos , Tetrahidrofolato Deshidrogenasa/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Amplificación de Genes , Transducción de Señal/efectos de los fármacos , Ratones Desnudos , Antimetabolitos Antineoplásicos/farmacología
6.
Front Mol Biosci ; 11: 1361377, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698774

RESUMEN

Cancer remains a worldwide cause of morbidity and mortality. Investigational research efforts have included the administration of tumor-derived extracts to healthy animals. Having previously demonstrated that the administration of non-transmissible, human cancer-derived homogenates induced malignant tumors in mice, here, we examined the consequences of administering 50 or 100 µg of protein of crude homogenates from mammary carcinoma, pancreatic adenocarcinoma, and melanoma samples in 6 inoculations per week during 2 months. The concurrent control mice received homogenates of healthy donor-skin cosmetic surgery fragments. Mammary carcinoma homogenate administration did not provoke the deterioration or mortality of the animals. Multiple foci of lung adenocarcinomas with a broad expression of malignity histomarkers coexisting with small cell-like carcinomas were found. Disseminated cells, positive to classic epithelial markers, were detected in lymphoid nodes. The administration of pancreatic tumor and melanoma homogenates progressively deteriorated animal health. Pancreatic tumor induced poorly differentiated lung adenocarcinomas and pancreatic islet hyperplasia. Melanoma affected lungs with solid pseudopapillary adenocarcinomas. Giant atypical hepatocytes were also observed. The kidney exhibited dispersed foci of neoplastic cells within a desmoplastic matrix. Nuclear overlapping with hyperchromatic nuclei, mitotic figures, and prominent nuclear atypia was identified in epidermal cells. None of these changes were ever detected in the control mice. Furthermore, the incubation of zebrafish embryos with breast tumor homogenates induced the expression of c-Myc and HER-2 as tumor markers, contrasting to embryos exposed to healthy tissue-derived material. This study confirms and extends our hypothesis that tumor homogenates contain and may act as vectors for "malignancy drivers," which ultimately implement a carcinogenesis process in otherwise healthy mice.

7.
In Vivo ; 38(3): 1058-1063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688611

RESUMEN

BACKGROUND/AIM: Colorectal cancer (CRC) is the third-leading cause of death in the world. Although the prognosis has improved due to improvement of chemotherapy, metastatic CRC is still a recalcitrant disease, with a 5-year survival of only 13%. Irinotecan (IRN) is used as first-line chemotherapy for patients with unresectable CRC. However, there are severe side effects, such as neutropenia and diarrhea, which are dose-limiting. We have previously shown that methionine restriction (MR), effected by recombinant methioninase (rMETase), lowered the effective dose of IRN of colon-cancer cells in vitro. The aim of the present study was to evaluate the efficacy of the combination of low-dose IRN and MR on colon-cancer in nude mice. MATERIALS AND METHODS: HCT-116 colon-cancer cells were cultured and subcutaneously injected into the flank of nude mice. After the tumor size reached approximately 100 mm3, 18 mice were randomized into three groups; Group 1: untreated control on a normal diet; Group 2: high-dose IRN on a normal diet (2 mg/kg, i.p.); Group 3: low-dose IRN (1 mg/kg i.p.) on MR effected by a methionine-depleted diet. RESULTS: There was no significant difference between the control mice and the mice treated with high-dose IRN, without MR. However, low-dose IRN combined with MR was significantly more effective than the control and arrested colon-cancer growth (p=0.03). Body weight loss was reversible in the mice treated by low-dose IRN combined with MR. CONCLUSION: The combination of low-dose IRN and MR acted synergistically in arresting HCT-116 colon-cancer grown in nude mice. The present study indicates the MR has the potential to reduce the effective dose of IRN in the clinic.


Asunto(s)
Liasas de Carbono-Azufre , Neoplasias del Colon , Irinotecán , Metionina , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Irinotecán/administración & dosificación , Irinotecán/farmacología , Metionina/administración & dosificación , Humanos , Ratones , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Camptotecina/análogos & derivados , Camptotecina/farmacología , Camptotecina/administración & dosificación , Camptotecina/uso terapéutico , Modelos Animales de Enfermedad , Células HCT116 , Línea Celular Tumoral , Carga Tumoral/efectos de los fármacos
8.
Tissue Eng Part A ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38534878

RESUMEN

Negative pressure therapy (NPT) has been shown to facilitate wound healing and promote hair growth in a porcine model. However, there is a paucity of research on the impact of negative pressure on hair growth in murine models. Despite the ability of nude mice to develop hair follicles, the hair they produce is often flawed towing to genetically induced keratin disorders, rendering them a pertinent animal model for assessing hair regeneration. Therefore, this study aims to investigate the effects of negative pressure on hair follicle growth in a nude mouse model. To achieve this, a customized external tissue expansion device was developed to apply negative pressure to the dorsum of nude mice. The mice were subjected to several treatment courses consisting of 15 and 30 min of continuous negative pressure at 10 mmHg, which were repeated 5 and 10 times every other day until sacrifice. Dorsal skin samples were subsequently extracted from the suction and nonsuction areas. The sections were stained with various antibodies to assess the expression of SOX-9, LHX-2, Keratin-15, ß-catenin, CD31, and vascular endothelial growth factor-A, and a TUNEL assay was used to analyze cell apoptosis. The results showed that the number of hair follicles and angiogenesis were significantly higher in the suction area than in the nonsuction area in all groups. Moreover, mice that received NPT for 15 min for 10 times had a higher hair follicle density than the other three groups. Immunofluorescence staining for LHX-2 and Keratin 15 further validated the results of these findings. In conclusion, this study demonstrated that negative pressure effectively promotes hair follicle growth and angiogenesis in nude mice through SOX-9- and LHX-2-mediated follicular regeneration and ß-catenin-mediated hair follicle morphogenesis.

9.
In Vivo ; 38(2): 710-718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38418148

RESUMEN

BACKGROUND/AIM: Fat grafting has been widely used for soft-tissue augmentation. External volume expansion (EVE) is a favorable tool for improvement in the rate of fat graft retention. However, few studies have focused on the most appropriate time for its implementation. In this study, BALB/c nude mice were used to investigate the effective time for the implementation of external volume expansion to improve the rate of fat retention. MATERIALS AND METHODS: Sixteen mice were divided into four groups, and EVE was performed at different time points before or both before and after fat grafting. Fat tissue from a human donor was injected into the mice following EVE. Visual assessment, micro-computed tomography analysis, and histopathological evaluation were used to assess fat retention. RESULTS: After 10 weeks, the group that underwent EVE 5 days before fat grafting demonstrated a significantly higher preserved fat volume, as determined by micro-computed tomography (p<0.05). Moreover, the group that received additional EVE after fat grafting exhibited a higher retention rate compared to the groups receiving EVE only before grafting (p<0.05). Histopathological analysis indicated that swelling, edema, and inflammation were more pronounced in the group with EVE immediately before grafting, while angiogenesis and lipogenesis were more active in the group with additional EVE after grafting. CONCLUSION: EVE is a safe and effective approach for improving the rate of fat graft retentions. Furthermore, the timing of external tissue expansion plays a crucial role in fat retention. Based on our animal study, performing EVE immediately before and after fat grafting may be an effective strategy for enhancing the rate of fat graft retentions.


Asunto(s)
Tejido Adiposo , Inflamación , Animales , Ratones , Humanos , Ratones Desnudos , Microtomografía por Rayos X , Tejido Adiposo/trasplante , Supervivencia de Injerto
10.
Bio Protoc ; 14(2): e4925, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38268979

RESUMEN

Cell-based liver therapies utilizing functionally stabilized engineered hepatic tissue hold promise in improving host liver functions and are emerging as a potential alternative to whole-organ transplantation. Owing to the ability to accommodate a large ex vivo engineered hepatocyte mass and dense vascularization, the mesenteric parametrial fat pad in female nude mice forms an ideal anatomic microenvironment for ectopic hepatocyte transplantation. However, the lack of any reported protocol detailing the presurgical preparation and construction of the engineered hepatic hydrogel, fat pad surgery, and postsurgical care and bioluminescence imaging to confirm in vivo hepatocyte implantation makes it challenging to reliably perform and test engraftment and integration with the host. In this report, we provide a step-by-step protocol for in vivo hepatocyte implantation, including preparation of hepatic tissue for implantation, the surgery process, and bioluminescence imaging to assess survival of functional hepatocytes. This will be a valuable protocol for researchers in the fields of tissue engineering, transplantation, and regenerative medicine. Key features • Primary human hepatocytes transduced ex vivo with a lentiviral vector carrying firefly luciferase are surgically implanted onto the fat pad. • Bioluminescence helps monitor survival of transplanted hepatic tissue over time. • Applicable for assessment of graft survival, graft-host integration, and liver regeneration.

11.
ACS Sens ; 9(2): 589-601, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288735

RESUMEN

Breast cancer is a dreaded disease affecting women the most in cancer-related deaths over other cancers. However, early diagnosis of the disease can help increase survival rates. The existing breast cancer diagnosis tools do not support the early diagnosis of the disease. Therefore, there is a great need to develop early diagnostic tools for this cancer. Photoacoustic spectroscopy (PAS), being very sensitive to biochemical changes, can be relied upon for its application in detecting breast tumors in vivo. With this motivation, in the current study, an aseptic chamber integrated photoacoustic (PA) probe was designed and developed to monitor breast tumor progression in vivo, established in nude mice. The device served the dual purpose of transporting tumor-bearing animals to the laboratory from the animal house and performing PA experiments in the same chamber, maintaining sterility. In the current study, breast tumor was induced in the nude mice by MCF-7 cells injection and the corresponding PA spectra at different time points (day 0, 5, 10, 15, and 20) of tumor progression in vivo in the same animals. The recorded photoacoustic spectra were subsequently preprocessed, wavelet-transformed, and subjected to filter-based feature selection algorithm. The selected top 20 features, by minimum redundancy maximum relevance (mRMR) algorithm, were then used to build an input feature matrix for machine learning (ML)-based classification of the data. The performance of classification models demonstrated 100% specificity, whereas the sensitivity of 95, 100, 92.5, and 85% for the time points, day 5, 10, 15, and 20, respectively. These results suggest the potential of PA signal-based classification of breast tumor progression in a preclinical model. The PA signal contains information on the biochemical changes associated with disease progression, emphasizing its translational strength toward early disease diagnosis.


Asunto(s)
Neoplasias de la Mama , Animales , Ratones , Humanos , Femenino , Ratones Desnudos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Algoritmos , Aprendizaje Automático , Análisis Espectral
12.
Cancer Diagn Progn ; 4(1): 30-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38173656

RESUMEN

Background/Aim: Pancreatic cancer is a recalcitrant disease with 5-year survival of only 12%. Improved mouse models of pancreatic cancer are critical for discovery of effective therapeutics. Materials and Methods: Orthotopic mouse nude-mouse models of pancreatic cancer were established with the human pancreatic-cancer cell line Panc-1 expressing green fluorescent protein (GFP) by transplanting tumor fragments into the pancreas, using the procedure of surgical orthotopic implantation (SOI). Four weeks after establishment of the orthotopic models, the mice were imaged with the Analytik Jena UVP Biospectrum Advanced with a very-narrow-band-width excitation at 487 nm and peak emission at 513 nm. Results: Non-invasive fluorescence imaging of the mice implanted with Panc-1-GFP showed a very bright tumor in the area of the pancreas and peritoneal cavity. The skin background autofluorescence was absent. When a laparotomy was performed on the mouse for open imaging, the tumor on the pancreas was clearly imaged. There was very clear concordance of the non-invasive image and the image obtained during laparotomy. Conclusion: A precise orthotopic mouse model of pancreatic cancer was developed in which there was high concordance between non-invasive and invasive fluorescence imaging due to the ultra-bright signal and ultra-low background using very-narrow-band-width laser fluorescence excitation. This model can be used for high-throughput in vivo screening for improved therapeutics for pancreatic cancer.

13.
Biochem Biophys Res Commun ; 695: 149418, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176171

RESUMEN

Glioma is a highly recalcitrant disease with a 5-year survival of 6.8 %. Temozolomide (TMZ), first-line therapy for glioma, is more effective in O6-methylguanine-DNA methyltransferase (MGMT)-negative gliomas than in MGMT-positive gliomas as MGMT confers resistance to TMZ. Methionine restriction is effective for many cancers in mouse models including glioma. The concern is that methionine restriction could induce MGMT by decreasing DNA methylation and confer resistance to TMZ. In the present study, we investigated the efficacy of combining methionine restriction with TMZ for the treatment of MGMT-negative glioma, and whether methionine restriction induced MGMT. Human MGMT-negative U87 glioma cells were used to determine the efficacy of TMZ combined with methionine restriction. Recombinant methioninase (rMETase) inhibited U87 glioma growth without induction of MGMT in vitro. The combination of rMETase and TMZ inhibited U87 cell proliferation more than either agent alone in vitro. In the orthotopic nude-mouse model, the combination of TMZ and a methionine-deficient diet was much more effective than TMZ alone: two mice out of five were cured of glioma by the combination. No mice died during the treatment period. Methionine restriction enhanced the efficacy of TMZ in MGMT-negative glioma without inducing MGMT, demonstrating potential clinical promise for improved outcome of a currently incurable disease.


Asunto(s)
Neoplasias Encefálicas , Glioma , Temozolomida , Animales , Humanos , Ratones , Antineoplásicos Alquilantes/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Metilasas de Modificación del ADN/farmacología , Metilasas de Modificación del ADN/uso terapéutico , Enzimas Reparadoras del ADN/genética , Resistencia a Antineoplásicos , Glioma/tratamiento farmacológico , Glioma/genética , Metionina/farmacología , Ratones Desnudos , O(6)-Metilguanina-ADN Metiltransferasa , Racemetionina/farmacología , Temozolomida/uso terapéutico , Temozolomida/farmacología , Proteínas Supresoras de Tumor/genética
14.
Heliyon ; 10(1): e23832, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38234882

RESUMEN

Background: Esophageal squamous cell carcinoma (ESCC) is a common pathological esophageal cancer with poor prognosis. Vitamin D deficiency reportedly occurs in ESCC patients, and this is related to single nucleotide polymorphism of vitamin D receptor (VDR). Objective: We investigated the effect of VDR on ESCC proliferation, invasion, and metastasis and its potential mechanism. Methods: ESCC and normal tissues were collected from 20 ESCC patients. The ESCC tissue microarray contained 116 pairs of ESCC and normal tissues and 73 single ESCC tissues. VDR expression and its clinicopathological role were determined by real-time quantitative polymerase chain reaction, Western blot, and immunohistochemistry staining. sh-VDR and VDR overexpression were used to validate the effect of VDR on ESCC cell phenotype, and tandem mass tag-based quantitative proteomics and bioinformatics methods identified differential VDR-related proteins. The downstream pathway and regulatory effect were analyzed using ingenuity pathway analysis (IPA). Differentially expressed proteins were verified through parallel reaction monitoring and Western blot. In vivo imaging visualized subcutaneous tumor growth following tail vein injection of VDR-deficient ESCC cells. Results: High VDR expression was observed in ESCC tissues and cells. Gender, T stage, and TNM stage were related to VDR expression, which was the independent prognostic factor related to ESCC. VDR downregulation repressed ESCC cell proliferation, invasion, and migration in vitro and subcutaneous tumor growth and lung metastases in vivo. The cell phenotype changes were reversed upon VDR upregulation, and differential proteins were mainly enriched in the p53 signaling pathway. TP53 cooperated with ABCG2, APOE, FTH1, GCLM, GPX1, HMOX1, JUN, PRDX5, and SOD2 and may activate apoptosis and inhibit oxidative stress, cell metastasis, and proliferation. TP53 was upregulated after VDR knockdown, and TP53 downregulation reversed VDR knockdown-induced cell phenotype changes. Conclusions: VDR may inhibit p53 signaling pathway activation and induce ESCC proliferation, invasion, and metastasis by activating oxidative stress.

15.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38069077

RESUMEN

Propolis is a gelatinous substance processed by western worker bees from the resin of plant buds and mixed with the secretions of the maxillary glands and beeswax. Propolis has extensive biological activities and antitumor effects. There have been few reports about the antitumor effect of propolis against human cutaneous squamous cell carcinoma (CSCC) A431 cells and its potential mechanism. CCK-8 assays, label-free proteomics, RT-PCR, and a xenograft tumor model were employed to explore this possibility. The results showed that the inhibition rate of A431 cell proliferation by the ethanol extract of propolis (EEP) was dose-dependent, with an IC50 of 39.17 µg/mL. There were 193 differentially expressed proteins in the EEP group compared with the control group (p < 0.05), of which 103 proteins (53.37%) were upregulated, and 90 proteins (46.63%) were downregulated. The main three activated and suppressed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were extracellular matrix (ECM)-receptor interaction, amoebiasis, cell adhesion molecules (CAMs), nonalcoholic fatty liver disease (NAFLD), retrograde endocannabinoid signaling, and Alzheimer's disease. The tumor volume of the 100 mg/kg EEP group was significantly different from that of the control group (p < 0.05). These results provide a theoretical basis for the potential treatment of human CSCC A431 cell tumors using propolis.


Asunto(s)
Carcinoma de Células Escamosas , Própolis , Neoplasias Cutáneas , Humanos , Línea Celular Tumoral , Própolis/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Extractos Vegetales/farmacología , Etanol/farmacología , Proliferación Celular
16.
Nat Prod Res ; : 1-6, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006329

RESUMEN

Ent-kaurane diterpenoids were studied as a biologically active ingredient group of Sigesbeckia pubescens (Makino) Makino. Here, five known ent-kaurane diterpenoids were isolated and identified, named ent-16ß,17-dihydroxy-kauran-19-oic acid (1), ent-16ß,17-dihydroxy-kauran-19-oate (2), ent-18-acetoxy-17-hydroxykauran-19-oic acid (3), ent-16ß,17,18-trihydroxy-kauran-19 -oic acid (4), and ent-17-hydroxy-kauran-16ßH-19-oic acid (5). Their inhibitory effects of these compounds on MDA-MB-231 breast cancer migration were firstly tested in a chemotaxis invasion assay. Among them, compound 1 (DKA) showed superior inhibitory activities with IC50 value of 1.96 µM. Then, a wound healing assay and BALB/c nude mice were used for further studying the inhibitory activity of DKA on MDA-MB-231 breast cancer migration in vitro and in vivo, respectively. The wound healing assay showed that DKA (1, 5, and 25 µM) can significantly inhibit cell migration and the mouse model of lung metastasis showed that DKA (2.5, 5, and 10 mg/kg) could strongly suppress the lung metastasis of MDA-MB-231 breast cancer cells.

17.
Curr Top Med Chem ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37867279

RESUMEN

Angiogenesis, the formation of new blood vessels from a pre-existing vascular network, is an important hallmark of several pathological conditions, such as tumor growth and metastasis, proliferative retinopathies, including proliferative diabetic retinopathy and retinopathy of prematurity, age-related macular degeneration, rheumatoid arthritis, psoriasis, and endometriosis. Putting a halt to pathology-driven angiogenesis is considered an important therapeutic strategy to slow down or reduce the severity of pathological disorders. Considering the attrition rate of synthetic antiangiogenic compounds from the lab to reaching the market due to severe side effects, several compounds of natural origin are being explored for their antiangiogenic properties. Employing pre-clinical models for the evaluation of novel antiangiogenic compounds is a promising strategy for rapid screening of antiangiogenic compounds. These studies use a spectrum of angiogenic model systems that include HUVEC two-dimensional culture, nude mice, chick chorioallantoic membrane, transgenic zebrafish, and dorsal aorta from rats and chicks, depending upon available resources. The present article emphasizes the antiangiogenic activity of the phytochemicals shown to exhibit antiangiogenic behavior in these well-defined existing angiogenic models and highlights key molecular targets. Different models help to get a quick understanding of the efficacy and therapeutics mechanism of emerging lead molecules. The inherent variability in assays and corresponding different phytochemicals tested in each study prevent their immediate utilization in clinical studies. This review will discuss phytochemicals discovered using suitable preclinical antiangiogenic models, along with a special mention of leads that have entered clinical evaluation.

18.
Pathol Res Pract ; 250: 154821, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37757621

RESUMEN

In Mycobacterium leprae (M. leprae)-infection, inflammatory cells' subsets and dynamics as well as the interactions with Schwann cells have remained elusive. We investigated individual cells in M. leprae-inoculated nude mice by single-cell RNA-sequencing (scRNA-seq). For macrophages, we dissected two M1-like subsets and five M2-like subsets, where lipid-associated signatures were pervasive in both M1-like and M2-like subsets. There were four macrophage trajectories showing: (i) pro-inflammatory (M1), (ii) lipid metabolism-related (M2), (iii) anti-inflammatory (M2), and (iv) interferon-stimulated gene-related (M2) fates. They displayed early divergence without ever rejoining along the paths, suggesting simultaneous or continuous stimuli for macrophage activation in leprosy. The scRNA-seq predicted Schwann cell-macrophage interactions (Notch1-Jag1, Plxnb1-Sema4d interactions). An immature Schwann cell subset showing Tfap2a expression was identified, indicating Schwann cell dedifferentiation in leprosy tissues. Expressions of Notch1, Jag1, Plxnb1, Sema4d, and Tfap2a were validated in mouse or human leprosy tissues by immunohistochemistry. We identified both pro-inflammatory and inflammation-resolution signatures, where lipid-associated signatures were pervasive to the macrophages, representing leprosy-specific macrophage states for prolonged and repeated episodes of inflammation and resolution. Our study identified refined molecular states and interactions of macrophages and Schwann cells, suggesting novel insights into the pathogenesis of unhealed inflammation with neuropathy and potential therapeutic targets for leprosy.

19.
FASEB J ; 37(9): e23144, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584661

RESUMEN

We have studied whether the Warburg effect (uncontrolled glycolysis) in pancreatobiliary adenocarcinoma triggers cachexia in the patient. After 74 pancreatobiliary adenocarcinomas were removed by surgery, their glucose transporter-1 and four glycolytic enzymes were quantified using Western blotting. Based on the resulting data, the adenocarcinomas were equally divided into a group of low glycolysis (LG) and a group of high glycolysis (HG). Energy homeostasis was assessed in these cancer patients and in 74 non-cancer controls, using serum albumin and C-reactive protein and morphometrical analysis of abdominal skeletal muscle and fat on computed tomography scans. Some removed adenocarcinomas were transplanted in nude mice to see their impacts on host energy homeostasis. Separately, nude mice carrying tumor grafts of MiaPaCa-2 pancreatic adenocarcinoma cells were treated with the glycolytic inhibitor 3-bromopyruvate and with emodin that inhibited glycolysis by decreasing hypoxia-inducible factor-1α. Adenocarcinomas in both group LG and group HG impaired energy homeostasis in the cancer patients, compared to the non-cancer reference. The impaired energy homeostasis induced by the adenocarcinomas in group HG was more pronounced than that by the adenocarcinomas in group LG. When original adenocarcinomas were grown in nude mice, their glycolytic abilities determined the levels of hepatic gluconeogenesis, skeletal muscle proteolysis, adipose-tissue lipolysis, and weight loss in the mice. When MiaPaCa-2 cells were grown as tumors in nude mice, 3-bromopyruvate and emodin decreased tumor-induced glycolysis and cachexia, with the best effects being seen when the drugs were administered in combination. In conclusion, the Warburg effect in pancreatobiliary adenocarcinoma triggers cancer cachexia.


Asunto(s)
Adenocarcinoma , Emodina , Neoplasias Pancreáticas , Ratones , Animales , Adenocarcinoma/patología , Caquexia/etiología , Caquexia/metabolismo , Neoplasias Pancreáticas/patología , Ratones Desnudos
20.
J Surg Res ; 291: 596-602, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37540977

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) patients often develop liver metastasis. However, curative resection of liver metastasis is not always possible due to poor visualization of tumor margins. The present study reports the characterization of a humanized anti-carcinoembryonic antigen monoclonal antibody conjugated to a PEGylated near-infrared dye, that targets and brightly labels human CRC tumors in metastatic orthotopic mouse models. METHODS: The hT84.66-M5A (M5A) monoclonal antibody was conjugated with a polyethylene glycol (PEG) chain that incorporated a near infrared (NIR) IR800 dye to establish M5A-IR800 Sidewinder (M5A-IR800-SW). Nude mice with CRC orthotopic primary tumors and liver metastasis both developed from a human CRC cell line, were injected with M5A-IR800-SW and imaged with the Pearl Trilogy Imaging System. RESULTS: M5A-IR800-SW targeted and brightly labeled CRC tumors, both in primary-tumor and liver-metastasis models. M5A-IR800-SW at 75 µg exhibited highly-specific tumor labeling in a primary-tumor orthotopic model with a median tumor-to-background ratio of 9.77 and in a liver-metastasis orthotopic model with a median tumor-to-background ratio of 7.23 at 96 h. The precise labeling of the liver metastasis was due to lack of hepatic accumulation of M5A-IR800-SW in the liver. CONCLUSIONS: M5A-IR800-SW provided bright and targeted NIR images of human CRC in orthotopic primary-tumor and liver-metastasis mouse models. The results of the present study suggest the clinical potential of M5A-IR800-SW for fluorescence-guided surgery including metastasectomies for CRC. The lack of hepatic NIR signal is of critical importance to allow for precise labeling of liver tumors.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Ratones , Humanos , Ratones Desnudos , Colorantes Fluorescentes , Neoplasias Colorrectales/patología , Anticuerpos Monoclonales , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/secundario , Polietilenglicoles , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...