Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
1.
Radiat Oncol ; 19(1): 119, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267113

RESUMEN

Glioblastoma (GBM), the most common primary brain malignancy in adults, is notoriously difficult to treat due to several factors: tendency to be radiation resistant, the presence of the blood brain barrier (BBB) which limits drug delivery and immune-privileged status which hampers effective immune responses. Traditionally, high-dose irradiation (8 Gy) is known to effectively enhance anti-tumor immune responses, but its application is limited by the risk of severe brain damage. Currently, conventional dose segmentation (2 Gy) is the standard radiotherapy method, which does not fully exploit the potential of high-dose irradiation for immune activation. The hypothesis of our study posits that instead of directly applying high doses of radiation, which is risky, a strategy could be developed to harness the immune-stimulating benefits of high-dose irradiation indirectly. This involves using nanoparticles to enhance antigen presentation and immune responses in a safer manner. Angiopep-2 (A2) was proved a satisfactory BBB and brain targeting and Dbait is a small molecule that hijack DNA double strand break damage (DSB) repair proteins to make cancer cells more sensitive to radiation. In view of that, the following two nanoparticles were designed to combine immunity of GBM, radiation resistance and BBB innovatively. One is cationic liposome nanoparticle interacting with Dbait (A2-CL/Dbait NPs) for radiosensitization effect; the other is PLGA-PEG-Mal nanoparticle conjugated with OX40 antibody (A2-PLGA-PEG-Mal/anti-OX40 NPs) for tumor-derived protein antigens capture and optimistic immunoregulatory effect of anti-OX40 (which is known to enhance the activation and proliferation T cells). Both types of nanoparticles showed favorable targeting and low toxicity in experimental models. Specifically, the combination of A2-CL/Dbait NPs and A2-PLGA-PEG-Mal/anti-OX40 NPs led to a significant extension in the survival time and a significant tumor shrinkage of mice with GBM. The study demonstrates that combining these innovative nanoparticles with conventional radiotherapy can effectively address key challenges in GBM treatment. It represents a significant step toward more effective and safer therapeutic options for GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Fármacos Sensibilizantes a Radiaciones , Glioblastoma/radioterapia , Glioblastoma/inmunología , Animales , Ratones , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/inmunología , Humanos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Nanopartículas/química , Barrera Hematoencefálica/efectos de la radiación , Sistema de Administración de Fármacos con Nanopartículas/química , Sistemas de Liberación de Medicamentos , Línea Celular Tumoral
2.
Int J Mol Sci ; 25(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39201666

RESUMEN

A promising strategy in cancer immunotherapy is to restore or enhance the cytotoxicity of NK cells, among others, by activating the mechanism of antibody-dependent cellular cytotoxicity (ADCC). Monoclonal antibodies targeting tumor antigens, such as rituximab (targeting CD20), induce NK cell-mediated ADCC and have been used to treat B cell malignancies, such as non-Hodgkin lymphoma, but not always successfully. The aim of this study was to analyze the gene expression profile of the NK cells involved in the cytolytic response stimulated by rituximab. NK cells were co-cultured with rituximab-opsonized Raji cells. Sorting into responder and non-responder groups was based on the presence of CD107a, which is a degranulation marker. RNA-seq results showed that the KIT and TNFSF4 genes were strongly down-regulated in the degranulating population of NK cells (responders); this was further confirmed by qRT-PCR. Both genes encode surface proteins with cellular signaling abilities, namely c-KIT and the OX40 ligand. Consistent with our findings, c-KIT was previously reported to correlate inversely with cytokine production by activated NK cells. The significance of these findings for cancer immunotherapy seems essential, as the pharmacological inhibition of c-KIT and OX40L, or gene ablation, could be further tested for the enhancement of the anti-tumor activity of NK cells in response to rituximab.


Asunto(s)
Degranulación de la Célula , Células Asesinas Naturales , Rituximab , Rituximab/farmacología , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Degranulación de la Célula/efectos de los fármacos , Ligando OX40/metabolismo , Ligando OX40/genética , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Línea Celular Tumoral , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Antineoplásicos Inmunológicos/farmacología
3.
Int J Mol Sci ; 25(16)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39201462

RESUMEN

Cervical cancer (CC) poses a significant health burden, particularly in low- and middle-income countries. NK cells play a crucial role against CC; however, they can become exhausted and lose their cytotoxic capacity. This work explores the expression of costimulatory receptors (ICOS, 4-1BB, OX-40) in exhausted NK cells from CC patients. Peripheral blood and tumor biopsies were collected, and flow cytometry was used to evaluate the expression of costimulatory receptors in exhausted NK cells. There is an increase of peripheral exhausted NK cells (PD-1+TIGIT+) in CC patients; this subpopulation has a selectively increased expression of the costimulatory receptors ICOS and 4-1BB. An exhausted population is also highly increased in tumor-infiltrating NK cells, and it shows a dramatically increased expression of the costimulatory receptors ICOS (>15×) and 4-1BB (>10×) compared to peripheral NK cells. The exhausted cells, both in the periphery and in the tumor infiltrating lymphocytes (TILs), are also more likely than non-exhausted NK cell populations (PD-1-TIGIT-) to express these costimulatory receptors; increases ranging from 2.0× ICOS, 2.4× 4-1BB, and 2.6× OX-40 in CD56dim PBMCs to 1.5× ICOS, 5× 4-1BB, and 10× OX-40 in TILs were found. Our study demonstrates for the first time the increased expression of the costimulatory receptors ICOS, 4-1BB, and OX-40 in peripheral CD56dim, CD56bright, and tumor-infiltrating NK cells in CC. Targeting these receptors for stimulation could reverse exhaustion and be a promising immunotherapy strategy.


Asunto(s)
Proteína Coestimuladora de Linfocitos T Inducibles , Células Asesinas Naturales , Linfocitos Infiltrantes de Tumor , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteína Coestimuladora de Linfocitos T Inducibles/metabolismo , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Adulto , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Ligando OX40/metabolismo
4.
Allergy ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115359

RESUMEN

BACKGROUND: Alopecia areata (AA) is a chronic, nonscarring hair-loss disorder associated with significant quality-of-life impairment and limited treatment options. AA has been recently linked to atopy and shown to exhibit both Th1- and Th2-driven inflammation. However, a comprehensive molecular and cellular characterization across blood and scalp compartments in both atopic and nonatopic patients is lacking. METHODS: Lesional and nonlesional scalp biopsies obtained from AA patients with (n = 16) or without (n = 20) atopic history, and 17 demographically matched healthy controls were analyzed with RNA-seq, RT-PCR, and immunohistochemistry. Flow cytometry was also performed on peripheral blood mononuclear cells (PBMCs) from a subset of patients. Differential expression was defined using |fold-change| > 1.5 and false-discovery rate <0.05. RESULTS: AA scalp exhibited robust upregulation of Th1- (IFNG, CXCL9, CXCL10, CXCL11) and Th2-related products (CCL26, CCR4, IL10, IL13, TSLP, TNFRSF4/OX40) and shared downregulation of hair keratins, regardless of atopic background, with variable Th17/Th22 modulation. AA patients with atopy exhibited greater inflammatory tone and Th2-skewing (IL10, IL13, IL33, CCR4, CCL26). Disease severity correlated significantly with immune and hair keratin biomarkers and with perifollicular cellular infiltrates. Cutaneous OX40/OX40L upregulation was paralleled by increases in circulating OX40+ and OX40L+ leukocytes, regardless of atopic background. CONCLUSION: Our results suggest some atopy-associated immune differences in AA and highlight the OX40 axis as a potential novel therapeutic target that may broadly benefit AA patients.

5.
Hum Vaccin Immunother ; 20(1): 2375825, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39101772

RESUMEN

Multiple research studies have demonstrated the efficacy of lactic acid bacteria in boosting both innate and adaptive immune responses. We have created a Lactococcus lactis variant that produces a modified combination protein with Fms-like tyrosine kinase 3 ligand and co-stimulator O × 40 ligand, known as HuFOLactis. The genetically modified variant was purposely created to activate T cells, NK cells, and DC cells in a laboratory setting. Furthermore, we explored the possibility of using the tumor-penetrating peptide iRGD to deliver HuFOLactis-activated immune cells to hard-to-reach tumor areas. Following brief stimulation with HuFOLactis, immune cell phenotypes and functions were assessed using flow cytometry. Confocal microscopy was employed to demonstrate the infiltrative and cytotoxic capabilities of iRGD-modified HuFOLactis-activated immune cells within tumor spheroids. The efficacy of iRGD modified HuFOLactis-activated immune cells against tumors was assessed in xenograft mouse models. HuFOLactis treatment resulted in notable immune cell activation, demonstrated by elevated levels of CD25, CD69, and CD137. Additionally, these activated immune cells showed heightened cytokine production and enhanced cytotoxicity against MKN45 cell lines. Incorporation of the iRGD modification facilitated the infiltration of HuFOLactis-activated immune cells into multicellular spheroids (MCSs). Additionally, immune cells activated by HuFOLactis and modified with iRGD, in combination with anti-PD-1 treatment, effectively halted tumor growth and prolonged survival in a mouse model of gastric cancer.


Asunto(s)
Lactococcus lactis , Animales , Ratones , Lactococcus lactis/genética , Oligopéptidos/farmacología , Humanos , Línea Celular Tumoral , Femenino , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos
6.
BMC Med Genomics ; 17(1): 184, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982447

RESUMEN

INTRODUCTION: Diabetes mellitus (DM) is one of the leading causes of morbidity and mortality worldwide. It is a multifactorial disease that genetic and environmental factors contribute to its development. The aim of the study was to investigate the association of OX40L promoter gene polymorphisms with type 2 diabetes mellitus (T2DM) in Iranians. MATERIALS AND METHODS: Three hundred and sixty-eight subjects including 184 healthy subjects and 184 T2DM patients were enrolled in our study. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was applied to detect genotype and allele frequencies of rs3850641, rs1234313 and rs10912580. In addition, SNPStats web tool was applied to estimate haplotype frequency and linkage disequilibrium (LD). RESULTS: The distribution of tested polymorphisms was statistically different between the T2DM patients and healthy subjects (P < 0.01). rs1234313 AG (OR = 0.375, 95% CI = 0.193-0.727, P = 0.004) and rs10912580 AG (OR = 0.351, 95% CI = 0.162-0.758, P = 0.008) genotypes were associated with the decreased risk of T2DM in Iranians. Moreover, our prediction revealed that AAG (OR = 0.46, 95% CI= (0.28-0.76), P = 0.0028) and GAG (OR = 0.24, 95% CI= (0.13-0.45), P < 0.0001) haplotypes were related to the reduced risk of the disease. However, the tested polymorphisms had no effect on biochemical parameters and body mass index (BMI) in the patient group (P > 0.05). CONCLUSION: Our findings revealed that OX40L promoter gene polymorphisms are associated with T2DM. Moreover, genotype and allelic variations were related to the decreased risk of T2DM in Iranians. Further studies are recommended to show whether these polymorphic variations could affect OX40/OX40L interaction or OX40L phenotype.


Asunto(s)
Diabetes Mellitus Tipo 2 , Predisposición Genética a la Enfermedad , Ligando OX40 , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/genética , Frecuencia de los Genes , Haplotipos , Irán , Desequilibrio de Ligamiento , Pueblos de Medio Oriente , Ligando OX40/genética , Regiones Promotoras Genéticas
7.
Front Immunol ; 15: 1410564, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007148

RESUMEN

Background: Immune checkpoint blockade (ICB) is rapidly becoming a standard of care in the treatment of many cancer types. However, the subset of patients who respond to this type of therapy is limited. Another way to promote antitumoral immunity is the use of immunostimulatory molecules, such as cytokines or T cell co-stimulators. The systemic administration of immunotherapeutics leads to significant immune-related adverse events (irAEs), therefore, the localized antitumoral action is needed. One way to achieve this is intratumoral non-viral gene-immune therapy, which allows for prolonged and localized gene expression, and multiple drug administration. In this study, we combined the previously described non-viral gene delivery system, PEG-PEI-TAT copolymer, PPT, with murine OX40L-encoding plasmid DNA. Methods: The resulting OX40L/PPT nanoparticles were characterized via gel mobility assay, dynamic light scattering analysis and in vitro transfection efficiency evaluation. The antitumoral efficacy of intratumorally (i.t.) administered nanoparticles was estimated using subcutaneously (s.c.) implanted CT26 (colon cancer), B16F0 (melanoma) and 4T1 (breast cancer) tumor models. The dynamics of stromal immune cell populations was analyzed using flow cytometry. Weight loss and cachexia were used as irAE indicators. The effect of combination of i.t. OX40L/PPT with intraperitoneal PD-1 ICB was estimated in s.c. CT26 tumor model. Results: The obtained OX40L/PPT nanoparticles had properties applicable for cell transfection and provided OX40L protein expression in vitro in all three investigated cancer models. We observed that OX40L/PPT treatment successfully inhibited tumor growth in B16F0 and CT26 tumor models and showed a tendency to inhibit 4T1 tumor growth. In B16F0 tumor model, OX40L/PPT treatment led to the increase in antitumoral effector NK and T killer cells and to the decrease in pro-tumoral myeloid cells populations within tumor stroma. No irAE signs were observed in all 3 tumor models, which indicates good treatment tolerability in mice. Combining OX40L/PPT with PD-1 ICB significantly improved treatment efficacy in the CT26 subcutaneous colon cancer model, providing protective immunity against CT26 colon cancer cells. Conclusion: Overall, the anti-tumor efficacy observed with OX40L non-viral gene therapy, whether administered alone or in combination with ICB, highlights its potential to revolutionize cancer gene therapy, thus paving the way for unprecedented advancements in the cancer therapy field.


Asunto(s)
Inmunoterapia , Ligando OX40 , Animales , Ligando OX40/genética , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Femenino , Terapia Genética/métodos , Nanopartículas , Técnicas de Transferencia de Gen , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microambiente Tumoral/inmunología , Polietileneimina/química , Humanos , Melanoma Experimental/terapia , Melanoma Experimental/inmunología , Polietilenglicoles/química
8.
J Dent Sci ; 19(3): 1380-1388, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035328

RESUMEN

Background/purpose: T cells require second immune checkpoint molecules for activation and immune memory after antigen presentation. We found that inducible co-stimulator (ICOS) has been a favorable prognostic factor amongst B7 immune checkpoint co-stimulators (ICSs) families in head and neck squamous cell carcinoma (HNSCC) and oral SCC (OSCC). Materials and methods: This study analyzed the expression of non-B7 tumor necrosis factor (TNF) superfamily ICSs in the Cancer Genome Atlas (TCGA) HNSCC cohort, our OSCC cohort, and TCGA pan-cancer datasets. The correlation in expression, prognosis, and immune status was assessed. Results: The higher expression of CD27, CD30, CD40L, death domain 3 (DR3), and OX40, presumably on the T cell surface, defined better overall survival of HNSCC patients. Besides, CD27, CD30, CD40L, and OX40 were highly correlated with ICOS expression in tumors. CD27, CD40L, and DR3 expression are higher in HPV+ HNSCC tumors than in HPV- tumors. The combined expression level of CD27/OX40 or CD27/CD40L/OX40 enables the potent survival prediction of small, less nodal involvement, early stage, and HPV + tumor subsets. Tumors expressing high CD27, CD30, CD40L, ICOS, and OX40 exhibited enhanced immune cell infiltration. The high correlation in the expression of these ICSs was also noted in the vast majority of tumor types in TCGA datasets. Conclusion: The findings of this study not only confirm the potential of the concordant stimulation of CD27, CD30, CD40L, ICOS, and OX40 as a crucial strategy in cancer immunotherapy but also inspire further exploration into the field, highlighting the promising future of cancer treatment.

9.
J Clin Med ; 13(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930150

RESUMEN

Introduction: The current study aims to evaluate the OX40, TIM-3, LAG-3, and PD-L1 targeted pathways in the regulation of T-cell activity in sarcoma patients to determine their relationship with overall survival (OS). Method: This study included one hundred and eleven patients with bone and soft tissue sarcoma diagnosed in two centers between 2010 and 2020. OX40, LAG-3, TIM-3 and PD-L1 expression levels were evaluated immunohistochemically from pathology preparations. Results: PD-L1 staining was detected in tumor cells, OX40, LAG-3, TIM-3 staining was detected in inflammatory cells in tumor tissue. In univariate analysis, no significant relationship was found between OX40, TIM-3, LAG-3, and PD-L1 staining and overall survival (respectively: p = 0.12, p = 0.49, p = 0.31, p = 0.95). When grade and stage at diagnosis, which were found to be significant in univariate analysis, along with OX-40, TIM-3, LAG-3, and PD-L1, were evaluated in multivariate analysis, a positive effect of OX-40 staining on overall survival was determined (p = 0.009). Considering the correlation between PDL-1 and OX40, TIM-3, and LAG-3 staining, a significant positive correlation was found between PDL-1 and TIM-3 and LAG-3 staining (respectively; p = 0.002, p = 0.001). Conclusions: There was no significant relationship between the PDL-1 staining percentage of tumor cells and OX40, TIM-3, and LAG-3 staining in inflammatory cells with the OS of sarcoma patients. However, detecting a significant positive correlation between PDL-1 staining and TIM-3 and LAG-3 staining also holds promise for finding effective targetable combination therapies that can prolong survival in sarcoma patients in the future.

10.
Cell ; 187(15): 4078-4094.e21, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38897196

RESUMEN

Reversing CD8+ T cell dysfunction is crucial in treating chronic hepatitis B virus (HBV) infection, yet specific molecular targets remain unclear. Our study analyzed co-signaling receptors during hepatocellular priming and traced the trajectory and fate of dysfunctional HBV-specific CD8+ T cells. Early on, these cells upregulate PD-1, CTLA-4, LAG-3, OX40, 4-1BB, and ICOS. While blocking co-inhibitory receptors had minimal effect, activating 4-1BB and OX40 converted them into antiviral effectors. Prolonged stimulation led to a self-renewing, long-lived, heterogeneous population with a unique transcriptional profile. This includes dysfunctional progenitor/stem-like (TSL) cells and two distinct dysfunctional tissue-resident memory (TRM) populations. While 4-1BB expression is ubiquitously maintained, OX40 expression is limited to TSL. In chronic settings, only 4-1BB stimulation conferred antiviral activity. In HBeAg+ chronic patients, 4-1BB activation showed the highest potential to rejuvenate dysfunctional CD8+ T cells. Targeting all dysfunctional T cells, rather than only stem-like precursors, holds promise for treating chronic HBV infection.


Asunto(s)
Linfocitos T CD8-positivos , Virus de la Hepatitis B , Hepatitis B Crónica , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis B Crónica/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Animales , Receptores OX40/metabolismo , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Antígenos CD/metabolismo
11.
J Surg Oncol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853545

RESUMEN

BACKGROUND AND OBJECTIVES: Previous studies have demonstrated that soluble forms of T-cell costimulatory molecules 4-1BB (s4-1BB) and OX40 (sOX40) interact with immune cells and may constitute a mechanism of immune evasion by tumors in various cancers. The role of the soluble forms of 4-1BB and OX40 in GC remains unclear. We aimed to examine the association between serum levels of s4-1BB and sOX40 and tumor progression in patients with GC. METHODS: Between 2017 and 2018, a cross-sectional study was performed with serum samples of 83 GC patients and 20 healthy controls. RESULTS: Patients with stage IV metastatic gastric cancer had significantly higher levels of soluble OX40 in comparison with stage III patients with lymph nodes metastasis (p = 0.0003) and stages I and II patients (p = 0.005), whereas the opposite was found for soluble 4-1BB levels, with lower levels being found in advanced stage III (p = 0.003) compared with initial stages I/II. CONCLUSIONS: The sOX40 and s4-1BB-mediated T cell interactions may be involved in antitumor immune responses in GC, possibly favoring tumor escape and progression. Serum levels of sOX40 and s4-1BB are associated with staging in GC and may constitute biomarkers for prognosis, as well as potential targets for immunotherapy.

12.
Eur J Immunol ; 54(8): e2350915, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38798163

RESUMEN

Genetic variants of the OX40 ligand (OX40L) locus are associated with the risk of systemic lupus erythematosus (SLE), it is unclear how the OX40L blockade delays the lupus phenotype. Therefore, we examined the effects of an anti-OX40L antibody in MRL/Lpr mice. Next, we investigated the effect of anti-OX40L on immunosuppression in keyhole limpet hemocyanin-immunized C57BL/6J mice. In vitro treatment of anti-OX40L in CD4+ T and B220+ B cells was used to explore the role of OX40L in the pathogenesis of SLE. Anti-OX40L alleviated murine lupus nephritis, accompanied by decreased production of anti-dsDNA and proteinuria, as well as lower frequencies of splenic T helper (Th) 1 and T-follicular helper cells (Tfh). In keyhole limpet hemocyanin-immunized mice, decreased levels of immunoglobulins and plasmablasts were observed in the anti-OX40L group. Anti-OX40L reduced the number and area of germinal centers. Compared with the control IgG group, anti-OX40L downregulated CD4+ T-cell differentiation into Th1 and Tfh cells and upregulated CD4+ T-cell differentiation into regulatory T cells in vitro. Furthermore, anti-OX40L inhibited toll-like receptor 7-mediated differentiation of antibody-secreting cells and antibody production through the regulation of the SPIB-BLIMP1-XBP1 axis in B cells. These results suggest that OX40L is a promising therapeutic target for SLE.


Asunto(s)
Nefritis Lúpica , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ligando OX40 , Receptores OX40 , Transducción de Señal , Animales , Ratones , Nefritis Lúpica/inmunología , Ligando OX40/metabolismo , Transducción de Señal/inmunología , Receptores OX40/inmunología , Receptores OX40/metabolismo , Receptores OX40/genética , Linfocitos B/inmunología , Femenino , Hemocianinas/inmunología , Modelos Animales de Enfermedad , Células TH1/inmunología , Anticuerpos Antinucleares/inmunología , Linfocitos T Colaboradores-Inductores/inmunología
13.
Expert Opin Emerg Drugs ; 29(3): 233-249, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38662529

RESUMEN

INTRODUCTION: Atopic dermatitis (AD) is an inflammatory skin condition that affects millions of pediatric and adult patients with well-studied impact on morbidity and quality of life. Management occurs in a stepwise fashion beginning with preventative measures before immunomodulators are introduced. However, challenges remain in treatment of moderate-to-severe atopic dermatitis that is refractory to first- and second-line treatments and there are only few topical anti-inflammatory options, especially for pediatric patients. AREAS COVERED: New medications are required to address these gaps as lesions may persist despite treatment or patients may discontinue treatment due to actual or anticipated adverse effects of mainstay medications. Emerging research into the pathophysiology of AD and the immune system at large has provided opportunities for novel interventions aimed at stopping AD mechanisms at new checkpoints. Clinical trials for 36 agents currently in phase 2 or phase 3 are evaluated with particular focus on the studies for, B244, CBP-201, tapinarof, lebrikizumab, nemolizumab, amlitelimab, and rocatinlimab as they explore novel pathways and have some of the most promising results. EXPERT OPINION: These clinical trials contribute to the evolution of AD treatment toward greater precision based on salient pathways with a particular focus on moderate-to-severe AD to enhance efficacy and minimize adverse effects.


Asunto(s)
Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Dermatitis Atópica , Desarrollo de Medicamentos , Dermatitis Atópica/tratamiento farmacológico , Humanos , Niño , Adulto , Índice de Severidad de la Enfermedad , Calidad de Vida , Fármacos Dermatológicos/farmacología , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/efectos adversos , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Antiinflamatorios/efectos adversos , Antiinflamatorios/uso terapéutico , Animales
14.
Cell Chem Biol ; 31(5): 944-954.e5, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38653243

RESUMEN

Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.


Asunto(s)
Epítopos , Humanos , Epítopos/inmunología , Epítopos/química , Animales , Receptores del Factor de Necrosis Tumoral/agonistas , Receptores del Factor de Necrosis Tumoral/inmunología , Receptores del Factor de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptores OX40/agonistas , Receptores OX40/inmunología , Receptores OX40/metabolismo , Receptores OX40/antagonistas & inhibidores , Anticuerpos/inmunología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacología , Ratones
15.
Artículo en Inglés | MEDLINE | ID: mdl-38625053

RESUMEN

OBJECTIVE/MAIN OUTCOME: To study the expression of OX40 on T follicular helper (Tfh) cells and the ligand OX40L on antigen-presenting cells (APCs) in peripheral blood of patients with Type 1 diabetes mellitus (T1DM) and the role of OX40 signaling in promoting Tfh cells to assist B-cell differentiation. DESIGN: Cross-sectional study. SETTING: Endocrinology department of a university hospital. PARTICIPANTS: Twenty-five patients with T1DM and 35 with newly diagnosed T2DM from January 2021-December 2021 (39 males, 21 females; mean age: 31.0 ± 4.5, range: 19-46 years). INTERVENTIONS: None. METHODS: The peripheral blood proportion of CD4+CD25-CD127+CXCR5+PD1+ Tfh cells in patients with T1DM or T2DM and the OX40L expression in CD14+ monocytes and CD19+ B cells were analyzed by flow cytometry. The OX40 signal effect on Tfh-cell function was analyzed by co-incubating B cells with Tfh cells under different conditions. Flow cytometry detected the ratio of CD19-CD138+ plasmacytes. RESULTS: The Tfh cells ratio and intracellular IL-21 expression in peripheral blood was significantly higher in patients with T1DM than with T2DM, and the OX40 expression in peripheral Tfh cells and OX40L expression in APC were significantly higher in T1DM. After adding OX40L protein, the CD19-CD138+-plasmacytes percentage was significantly increased and higher in T1DM. Blocking of anti-OX40L monoclonal antibodies significantly reduced the plasmacytes ratio. CONCLUSIONS: The peripheral Tfh cells proportion increased and the OX40 expression in peripheral Tfh cells was upregulated in patients with T1DM versus patients with T2DM. OX40/OX40L signaling enhanced the Tfh-cell function to assist B-cell differentiation, which may contribute to the pathogenesis of T1DM.

16.
Biomed Environ Sci ; 37(2): 187-195, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582981

RESUMEN

Objective: Combination immunotherapy strategies targeting OX40, a co-stimulatory molecule that can enhance antitumor immunity by modulating the proliferation, differentiation, and effector function of tumor-infiltrating T cells, have attracted much attention for their excellent therapeutic effects. In this study, we aimed to evaluate the antitumor efficacy of combined anti-OX40 and hepatitis B core virus-like particles (HBc VLPs) therapy using a mouse colon cancer model. Methods: Humanized B-hOX40 mice were injected subcutaneously with MC38 colon tumor cells and treated with HBc VLPs+anti-hOX40 antibody. Tumor growth was monitored. Flow cytometric analysis was performed to evaluate the populations of T cell subsets in the tumors. Results: The combination of anti-OX40 with HBc VLPs resulted in a significant delay in tumor growth, suggesting that a potent antitumor immunity was induced by the combination therapy. Further studies revealed that HBc VLPs+anti-OX40 treatment induced a significant increase in effector T cells (Teffs) and a significant decrease in regulatory T cells (Tregs) in the tumor microenvironment (TME), which accounted for the synergistic antitumor effect of anti-OX40 in combination with HBc VLPs. Conclusion: Combination therapy of anti-hOX40 and HBc VLPs provides synergistic antitumor activity in colon cancer-bearing mice, which may represent a potential design strategy for cancer immunotherapy.


Asunto(s)
Neoplasias del Colon , Inmunoterapia , Animales , Inmunoterapia/métodos , Modelos Animales de Enfermedad , Linfocitos T Reguladores , Neoplasias del Colon/terapia , Diferenciación Celular , Microambiente Tumoral
17.
Cells ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38607026

RESUMEN

The transmembrane glycoprotein OX40 receptor (OX40) and its ligand, OX40L, are instrumental modulators of the adaptive immune response in humans. OX40 functions as a costimulatory molecule that promotes T cell activation, differentiation, and survival through ligation with OX40L. T cells play an integral role in the pathogenesis of several inflammatory skin conditions, including atopic dermatitis (AD). In particular, T helper 2 (TH2) cells strongly contribute to AD pathogenesis via the production of cytokines associated with type 2 inflammation (e.g., IL-4, IL-5, IL-13, and IL-31) that lead to skin barrier dysfunction and pruritus. The OX40-OX40L interaction also promotes the activation and proliferation of other T helper cell populations (e.g., TH1, TH22, and TH17), and AD patients have demonstrated higher levels of OX40 expression on peripheral blood mononuclear cells than healthy controls. As such, the OX40-OX40L pathway is a potential target for AD treatment. Novel therapies targeting the OX40 pathway are currently in development, several of which have demonstrated promising safety and efficacy results in patients with moderate-to-severe AD. Herein, we review the function of OX40 and the OX40-OX40L signaling pathway, their role in AD pathogenesis, and emerging therapies targeting OX40-OX40L that may offer insights into the future of AD management.


Asunto(s)
Dermatitis Atópica , Humanos , Diferenciación Celular , Citocinas/metabolismo , Dermatitis Atópica/metabolismo , Dermatitis Atópica/patología , Inflamación , Leucocitos Mononucleares/metabolismo
18.
Cancer Metastasis Rev ; 43(3): 1001-1013, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38526805

RESUMEN

Immune checkpoint inhibitors have changed the treatment landscape for various malignancies; however, their benefit is limited to a subset of patients. The immune machinery includes both mediators of suppression/immune evasion, such as PD-1, PD-L1, CTLA-4, and LAG-3, all of which can be inhibited by specific antibodies, and immune-stimulatory molecules, such as T-cell co-stimulatory receptors that belong to the tumor necrosis factor receptor superfamily (TNFRSF), including OX40 receptor (CD134; TNFRSF4), 4-1BB (CD137; TNFRSF9), and glucocorticoid-induced TNFR-related (GITR) protein (CD357; TNFRSF18). In particular, OX40 and its binding ligand OX40L (CD134L; TNFSF4; CD252) are critical for immunoregulation. When OX40 on activated T cells binds OX40L on antigen-presenting cells, T-cell activation and immune stimulation are initiated via enhanced T-cell survival, proliferation and cytotoxicity, memory T-cell formation, and abrogation of regulatory T cell (Treg) immunosuppressive functions. OX40 agonists are in clinical trials both as monotherapy and in combination with other immunotherapy agents, in particular specific checkpoint inhibitors, for cancer treatment. To date, however, only a minority of patients respond. Transcriptomic profiling reveals that OX40 and OX40L expression vary between and within tumor types, and that only ~ 17% of cancer patients have high OX40 and low OX40L, one of the expression patterns that might be theoretically amenable to OX40 agonist enhancement. Taken together, the data suggest that the OX40/OX40L machinery is a critical part of the immune stimulatory system and that understanding endogenous expression patterns of these molecules and co-existing checkpoints merits further investigation in the context of a precision immunotherapy strategy for cancer therapy.


Asunto(s)
Inmunoterapia , Neoplasias , Ligando OX40 , Receptores OX40 , Humanos , Ligando OX40/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Receptores OX40/inmunología , Receptores OX40/metabolismo , Inmunoterapia/métodos , Medicina de Precisión , Animales
19.
Future Oncol ; 20(17): 1139-1149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445361

RESUMEN

Background: The authors' preclinical study has confirmed that RO adjuvant (composed of TLR 7 agonists [imiquimod/R837] and OX40 agonists) injected into local lesions induces the regression of both primary tumor and distant metastasis. The authors propose to realize local control and exert abscopal effect through an 'R-ISV-RO' in situ strategy plus anti-PD-1 monoclonal antibody in advanced tumors. Methods: This study is a single-center, exploratory, phase II trial to evaluate the efficacy and safety of R-ISV-RO plus anti-PD-1 monoclonal antibody in advanced tumors. 30 patients with one or more measurable extracerebral lesions that are accessible for radiation or injection will be enrolled. The primary endpoint is the objective response rate of target lesions. Discussion/Conclusion: The efficacy and safety of the novel strategy will be further validated through this clinical trial.Clinical trial registration: ChiCTR2100053870 (www.chictr.org.cn/).


[Box: see text].


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Femenino , Masculino , Persona de Mediana Edad , Imidazoles/uso terapéutico , Imidazoles/administración & dosificación , Adulto , Viroterapia Oncolítica/métodos , Viroterapia Oncolítica/efectos adversos , Resultado del Tratamiento , Anciano
20.
Biomolecules ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38540714

RESUMEN

Eosinophilic asthma is the most prevalent and well-defined phenotype of asthma. Despite a majority of patients responding to corticosteroid therapy and T2 biologics, there remains a subset that have recurrent asthma exacerbations, highlighting a need for additional therapies to fully ameliorate airway eosinophilia. Group 2 innate lymphoid cells (ILC2) are considered key players in the pathogenesis of eosinophilic asthma through the production of copious amounts of type 2 cytokines, namely IL-5 and IL-13. ILC2 numbers are increased in the airways of asthmatics and with the greatest numbers of activated ILC2 detected in sputa from severe prednisone-dependent asthma with uncontrolled eosinophilia. Although epithelial-derived cytokines are important mediators of ILC2 activation, emerging evidence suggests that additional pathways stimulate ILC2 function. The tumor necrosis factor super family (TNFSF) and its receptors (TNFRSF) promote ILC2 activity. In this review, we discuss evidence supporting a relationship between ILC2 and TNFSF/TNFRSF axis in eosinophilic asthma and the role of this relationship in severe asthma with airway autoimmune responses.


Asunto(s)
Asma , Eosinofilia Pulmonar , Humanos , Inmunidad Innata , Linfocitos/metabolismo , Citocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...