Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 10: 110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145147

RESUMEN

AlGaN-based light-emitting diodes (LEDs) operating in the deep-ultraviolet (DUV) spectral range (210-280 nm) have demonstrated potential applications in physical sterilization. However, the poor external quantum efficiency (EQE) hinders further advances in the emission performance of AlGaN-based DUV LEDs. Here, we demonstrate the performance of 270-nm AlGaN-based DUV LEDs beyond the state-of-the-art by exploiting the innovative combination of bandgap engineering and device craft. By adopting tailored multiple quantum wells (MQWs), a reflective Al reflector, a low-optical-loss tunneling junction (TJ) and a dielectric SiO2 insertion structure (IS-SiO2), outstanding light output powers (LOPs) of 140.1 mW are achieved in our DUV LEDs at 850 mA. The EQEs of our DUV LEDs are 4.5 times greater than those of their conventional counterparts. This comprehensive approach overcomes the major difficulties commonly faced in the pursuit of high-performance AlGaN-based DUV LEDs, such as strong quantum-confined Stark effect (QCSE), severe optical absorption in the p-electrode/ohmic contact layer and poor transverse magnetic (TM)-polarized light extraction. Furthermore, the on-wafer electroluminescence characterization validated the scalability of our DUV LEDs to larger production scales. Our work is promising for the development of highly efficient AlGaN-based DUV LEDs.

2.
Microsyst Nanoeng ; 10: 101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035364

RESUMEN

The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free (SERF) atomic magnetometers that promise high-resolution magnetocardiography (MCG) and magnetoencephalography (MEG). However, conventional optical components are not compatible with nanofabrication processes that enable the integration of atomic magnetometers on chips, especially for elliptically polarized laser-pumped SERF magnetometers with bulky optical systems. In this study, an elliptical-polarization pumping beam (at 795 nm) is achieved through a single-piece metasurface, which results in an SERF magnetometer with a high sensitivity reaching 10.61 fT/Hz1/2 by utilizing a 87Rb vapor cell with a 3 mm inner diameter. To achieve the optimum theoretical polarization, our design combines a computer-assisted optimization algorithm with an emerging metasurface design process. The metasurface is fabricated with 550 nm thick silicon-rich silicon nitride on a 2 × 2 cm 2 SiO2 substrate and features a 22.17° ellipticity angle (a deviation from the target polarization of less than 2%) and more than 80% transmittance. This study provides a feasible approach for on-chip polarization control of future all-integrated atomic magnetometers, which will further pave the way for high-resolution biomagnetism imaging and portable atomic sensing applications.

3.
Small ; : e2404155, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855996

RESUMEN

Most 2D nonlinear optical (NLO) materials do not have an ultrawide bandgap, therefore, they are unsuitable for working in the deep-ultraviolet spectral range (< 200 nm). Herein, the theoretical prediction of an excellent monolayer BeP2O4H4 (ML-BPOH) is reported. DFT analyses suggest a low cleavage energy (≈45 meV per atom) from a naturally existed bulk-BPOH material, indicating feasible exfoliation. This novel 2D material exhibits excellent properties including an ultrawide bandgap (Eg) of 7.84 eV, and a strong second-order nonlinear susceptibility ( d b u l k e f f $d_{bulk}^{eff}$ = 0.43 pm V-1), which is comparable to that of benchmark bulk-KBBF crystal (d16 = 0.45 pm V-1). The wide bandgap and large SHG effect of ML-BPOH are mainly derived from the (PO2H2)- tetrahedron. Notably, ML-BPOH exhibits an outstanding 50% variation in dsheet under minor stress stimuli (±3%) due to rotation of structurally rigid (PO2H2)- tetrahedron. This indicates significant potential for application in material deformation monitoring.

4.
Microsyst Nanoeng ; 10: 60, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736716

RESUMEN

We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.

5.
Angew Chem Int Ed Engl ; : e202406941, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785100

RESUMEN

Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn-Teller distortion in a Mott-Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW-1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10-5 J cm-2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4- octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott-Hubbard band structure of the materials, coupled with the Jahn-Teller distortion-induced d-d transition. This study not only introduces a promising category of high-performance NLO materials but also provides novel insights into enhancing the performance of such materials.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38669605

RESUMEN

Thermochromic materials have found widespread commercial use in packaging as temperature indicators. Often, these products utilize leuco dyes that are mixed into conventional polymeric resins to prepare coatings or films that exhibit temperature-dependent color change. Here, we consider a distinctive approach to thermochromism via the selective reflection of liquid crystalline elastomers that retain the helicoidal structure of the cholesteric phase (CLCEs). Upon heating, the order of the CLCEs reduces and approaches zero, resulting in a change in birefringence as well as material thickness, both of which manifest as changes in the selective reflection to heating. This examination systematically prepares CLCEs capable of reversible thermochromic response as a function of cross-link density and liquid crystalline composition. A particular focus of this examination is the preparation of CLCEs composed of chiral and achiral liquid crystalline monomers that reduce the strength of the mesogen-mesogen interaction and accordingly reduce the nematic-isotropic transition temperature. The low birefringence of some of the CLCE compositions facilitates thermochromic reflection tuning, followed by switching.

7.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675518

RESUMEN

The structural features and optical properties of supramolecular cyanoiron salts containing bis-pyridinium-4-oxime Toxogonin® (TOXO) as an electron acceptor are presented. The properties of the new TOXO-based cyanoiron materials were probed by employing two cyanoiron platforms: hexacyanoferrate(II), [Fe(CN)6]4- (HCF); and nitroprusside, [Fe(CN)5(NO)]2- (NP). Two water-insoluble inter-ionic donor-acceptor phases were characterized: the as-prepared microcrystalline reddish-brown (TOXO)2[Fe(CN)6]·8H2O (1a) with a medium-responsive, hydrochromic character; and the dark violet crystalline (TOXO)2[Fe(CN)6]·3.5H2O (1cr). Complex 1a, upon external stimulation, transforms to the violet anhydrous phase (TOXO)2[Fe(CN)6] (1b), which upon water uptake transforms back to 1a. Using the NP platform resulted in the water-insoluble crystalline salt TOXO[Fe(CN)5(NO)]·2H2O (2). The structures of 1cr and 2, solved by single-crystal X-ray diffraction, along with a comparative spectroscopic (UV-vis-NIR diffuse reflectance, IR, solid-state MAS-NMR, Mössbauer), thermal, powder X-ray diffraction, and microscopic analysis (SEM, TEM) of the isolated materials, provided insight for the supramolecular binding, electron-accepting, and H-bonding capabilities of TOXO in the self-assembly of these functionalized materials.

8.
J Mol Model ; 30(5): 118, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561544

RESUMEN

CONTEXT: In this study, we have developed four new chromophores (TM1-TM4) and performed quantum chemical calculations to explore their nonlinear optical properties. Our focus was on understanding the impact of electron-donating substituents on 1,3,4-oxadiazole derivative chromophores. The natural bond orbital analysis confirmed the interactions between donors and acceptors as well as provided insights into intramolecular charge transfer. We also estimated dipole moment, linear polarizability molecular electrostatic potential, UV-visible spectra, and first hyperpolarizability. Our results revealed that TM1 with a strong and stable electron-donating group exhibited high first hyperpolarizability (ß) 293,679.0178 × 10-34 esu. Additionally, TM1 exhibited a dipolar moment (µ) of 5.66 Debye and polarizability (α) of 110.62 × 10-24 esu when measured in dimethyl sulfoxide (DMSO) solvent. Furthermore, in a benzene solvent, TM1 showed a low energy band gap of 5.33 eV by using the ωB97XD functional with a 6-311 + + G(d, p) basis set. Moreover, our study of intramolecular charge transfers highlighted N, N dimethyl triphenylamine and carbazole as major electron-donating groups among the four 1,3,4-oxadiazole derivative chromophores. This research illustrates the potential applications of these organic molecules in photonics due to their versatile nature. METHODS: The molecules were individually optimized using different functionals, including APFD, B3LYP, CAM B3LYP, and ωB97XD combined with the 6-311 + + G (d, p) basis set in Gaussian 16 software. These methods encompass long-range functionals such as APFD and B3LYP, along with long-range corrected functionals like CAM B3LYP and ωB97XD. The employed functionals of APFD, B3LYP, CAM B3LYP, and ωB97XD with the 6-311 + + G (d,p) basis set were used to extract various properties such as geometrical structures, dipole moment, molecular electrostatic potential, and first hyperpolarizability through precise density functional theory (DFT). Additionally, TD-DFT was utilized for obtaining UV-visible spectra. All studies have been conducted in both gas and solvent phases.

9.
Heliyon ; 10(2): e24497, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298666

RESUMEN

In this study, to address the stability issues, we synthesized a CsPbBr3-coated poly (maleic anhydride-alt-1-octadecene) (CsPbBr3/PMA) using a modified hot-injection method. The CsPbBr3/PMA perovskite nanocrystals (PNCs) exhibited effective green emission at 522 nm with an improved photoluminescence quantum yield (86.8 %) compared to traditional CsPbBr3 PNCs (54.2 %). The ligands in the polymer coating can bond with the uncoordinated Pb and Br ions on the surface of PNCs to minimize surface defects and avoid exposure to the external environment, enhancing the stability of the perovskites. Time-resolved photoluminescence spectra showed longer lifetimes for CsPbBr3/PMA PNCs, while transient absorption measurements provided valuable insights into the intraband hot-exciton relaxation and recombination. We demonstrate the potential application of CSPbBr3/PMA in a down-conversion white-light-emitting diode (LED) by coupling green CsPbBr3/PMA and red K2SiF6:Mn4+ phosphor-coated glass slides onto a 455-nm blue GaN LED. The white LED produced a white light with the International Commission on Illumination color coordinates of (0.323, 0.345), luminous efficiency of 58.4 lm/W, and color rendering index of 83.2. The fabricated, white-LED system obtained a wide color gamut of 125.3 % of the National Television Standards Committee and 98.9 % of Rec. 2020. The findings demonstrate that CsPbBr3/PMA can be an efficient down-conversion material for white LEDs and backlighting.

10.
Angew Chem Int Ed Engl ; 63(11): e202318976, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38258950

RESUMEN

Natural minerals, with their adaptable framework structures exemplified by perovskite and lyonsite, have sparked substantial interest as potential templates for the design of advanced functional solid-state materials. Nonetheless, the quest for new materials with desired properties remains a substantial challenge, primarily due to the scarcity of effective and practical synthetic approaches. In this study, we have harnessed a synergistic approach that seamlessly integrates first-principles high-throughput screening and crystal engineering to reinvigorate the often-overlooked fresnoite mineral, Ba2 TiOSi2 O7 . This innovative strategy has culminated in the successful synthesis of two superior inorganic UV nonlinear optical materials, namely Rb2 TeOP2 O7 and Rb2 SbFP2 O7 . Notably, Rb2 SbFP2 O7 demonstrates a comprehensive enhancement in nonlinear optical performance, featuring a shortened UV absorption edge (260 nm) and a more robust second-harmonic generation response (5.1×KDP). Particularly striking is its significantly increased birefringence (0.15@546 nm), which is approximately 30 times higher than the prototype Ba2 TiOSi2 O7 (0.005@546 nm). Our research has not only revitalized the potential of the fresnoite mineral for the development of new high-performance UV nonlinear optical materials but has also provided a clearly defined roadmap for the efficient exploration of novel structure-driven functional materials with targeted properties.

11.
Microsyst Nanoeng ; 10: 9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38261881

RESUMEN

In this study, a high-throughput fabrication method called laser-assisted direct roller imprinting (LADRI) was developed to lower the cost of nanoimprinting large-area polymer films and to address problems associated with nanoimprinting, namely, microstructural damage and precision in flatness of entire film. With LADRI, the laser directly heats the microstructured surface of the roller mold, which heats and melts the surface of a polymethyl methacrylate (PMMA) film to replicate the microstructures on the mold rapidly. In this study, the effects of laser power density, scanning speed, size of the microstructures, and contact pressure on the replication speed were investigated experimentally. The replication speed increased as the power and scanning speed increased. However, because the film required heating until it filled the entire depth of the microstructure, an appropriate replication speed was necessary. This result was supported by simulation of the temperature distribution inside the mold and the PMMA using transient heat conduction analyses. To demonstrate the applications of LADRI, two different optical surfaces were replicated: an antireflection (AR) structure with conical structures sized several hundred nanometers and a light-extraction structure with a microlens array (MLA) comprising 10 µm lenses, for display and illumination, respectively. The replication degree of the MLA was governed by the contact pressure. Polymer flow simulation indicated that the heat conduction and flow speeds of the melted PMMA surface were comparable within several tens of micrometers. In addition, the reflectivity of the AR structure decreased from 4 to 0.5%, and the light intensity of the light-extraction structure increased by a factor of 1.47.

12.
iScience ; 27(2): 108790, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292421

RESUMEN

Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.

13.
Commun Phys ; 6(1): 53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665410

RESUMEN

Fast (sub-second) spectroscopy with high spectral resolution is of vital importance for revealing quantum chemistry kinetics of complex chemical and biological reactions. Fourier transform (FT) spectrometers can achieve high spectral resolution and operate at hundreds of ms time scales in rapid-scan mode. However, the linear translation of a scanning mirror imposes stringent time-resolution limitations to these systems, which makes simultaneous high spectral and temporal resolution very difficult. Here, we demonstrate an FT spectrometer whose operational principle is based on continuous rotational motion of the scanning mirror, effectively decoupling the spectral resolution from the temporal one. Furthermore, we show that such rotational FT spectrometer can perform Mid-IR dual-comb spectroscopy with a single comb source, since the Doppler-shifted version of the comb serves as the second comb. In our realization, we combine the advantages of dual-comb and FT spectroscopy using a single quantum cascade laser frequency comb emitting at 8.2 µm as a light source. Our technique does not require any diffractive or dispersive optical elements and hence preserve the Jacquinot's-, Fellgett's-, and Connes'-advantages of FT spectrometers. By integrating mulitple broadband sources, such system could pave the way for applications where high speed, large optical bandwidth, and high spectral resolution are desired.

14.
Commun Phys ; 6(1): 137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665411

RESUMEN

Maximizing the scattering of visible light within disordered nano-structured materials is essential for commercial applications such as brighteners, while also testing our fundamental understanding of light-matter interactions. The progress in the research field has been hindered by the lack of understanding how different structural features contribute to the scattering properties. Here we undertake a systematic investigation of light scattering in correlated disordered structures. We demonstrate that the scattering efficiency of disordered systems is mainly determined by topologically invariant features, such as the filling fraction and correlation length, and residual variations are largely accounted by the surface-averaged mean curvature of the systems. Optimal scattering efficiency can thus be obtained from a broad range of disordered structures, especially when structural anisotropy is included as a parameter. These results suggest that any disordered system can be optimised for whiteness and give comparable performance, which has far-reaching consequences for the industrial use of low-index materials for optical scattering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...