RESUMEN
AlGaN-based light-emitting diodes (LEDs) operating in the deep-ultraviolet (DUV) spectral range (210-280 nm) have demonstrated potential applications in physical sterilization. However, the poor external quantum efficiency (EQE) hinders further advances in the emission performance of AlGaN-based DUV LEDs. Here, we demonstrate the performance of 270-nm AlGaN-based DUV LEDs beyond the state-of-the-art by exploiting the innovative combination of bandgap engineering and device craft. By adopting tailored multiple quantum wells (MQWs), a reflective Al reflector, a low-optical-loss tunneling junction (TJ) and a dielectric SiO2 insertion structure (IS-SiO2), outstanding light output powers (LOPs) of 140.1 mW are achieved in our DUV LEDs at 850 mA. The EQEs of our DUV LEDs are 4.5 times greater than those of their conventional counterparts. This comprehensive approach overcomes the major difficulties commonly faced in the pursuit of high-performance AlGaN-based DUV LEDs, such as strong quantum-confined Stark effect (QCSE), severe optical absorption in the p-electrode/ohmic contact layer and poor transverse magnetic (TM)-polarized light extraction. Furthermore, the on-wafer electroluminescence characterization validated the scalability of our DUV LEDs to larger production scales. Our work is promising for the development of highly efficient AlGaN-based DUV LEDs.
RESUMEN
The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free (SERF) atomic magnetometers that promise high-resolution magnetocardiography (MCG) and magnetoencephalography (MEG). However, conventional optical components are not compatible with nanofabrication processes that enable the integration of atomic magnetometers on chips, especially for elliptically polarized laser-pumped SERF magnetometers with bulky optical systems. In this study, an elliptical-polarization pumping beam (at 795 nm) is achieved through a single-piece metasurface, which results in an SERF magnetometer with a high sensitivity reaching 10.61 fT/Hz1/2 by utilizing a 87Rb vapor cell with a 3 mm inner diameter. To achieve the optimum theoretical polarization, our design combines a computer-assisted optimization algorithm with an emerging metasurface design process. The metasurface is fabricated with 550 nm thick silicon-rich silicon nitride on a 2 × 2 cm 2 SiO2 substrate and features a 22.17° ellipticity angle (a deviation from the target polarization of less than 2%) and more than 80% transmittance. This study provides a feasible approach for on-chip polarization control of future all-integrated atomic magnetometers, which will further pave the way for high-resolution biomagnetism imaging and portable atomic sensing applications.
RESUMEN
We present an azimuthal-rotation-controlled dynamic nanoinscribing (ARC-DNI) process for continuous and scalable fabrication of asymmetric nanograting structures with tunable periods and shape profiles. A sliced edge of a nanograting mold, which typically has a rectangular grating profile, slides over a polymeric substrate to induce its burr-free plastic deformation into a linear nanopattern. During this continuous nanoinscribing process, the "azimuthal angle," that is, the angle between the moving direction of the polymeric substrate and the mold's grating line orientation, can be controlled to tailor the period, geometrical shape, and profile of the inscribed nanopatterns. By modulating the azimuthal angle, along with other important ARC-DNI parameters such as temperature, force, and inscribing speed, we demonstrate that the mold-opening profile and temperature- and time-dependent viscoelastic polymer reflow can be controlled to fabricate asymmetric, blazed, and slanted nanogratings that have diverse geometrical profiles such as trapezoidal, triangular, and parallelogrammatic. Finally, period- and profile-tunable ARC-DNI can be utilized for the practical fabrication of diverse optical devices, as is exemplified by asymmetric diffractive optical elements in this study.
RESUMEN
In this study, a high-throughput fabrication method called laser-assisted direct roller imprinting (LADRI) was developed to lower the cost of nanoimprinting large-area polymer films and to address problems associated with nanoimprinting, namely, microstructural damage and precision in flatness of entire film. With LADRI, the laser directly heats the microstructured surface of the roller mold, which heats and melts the surface of a polymethyl methacrylate (PMMA) film to replicate the microstructures on the mold rapidly. In this study, the effects of laser power density, scanning speed, size of the microstructures, and contact pressure on the replication speed were investigated experimentally. The replication speed increased as the power and scanning speed increased. However, because the film required heating until it filled the entire depth of the microstructure, an appropriate replication speed was necessary. This result was supported by simulation of the temperature distribution inside the mold and the PMMA using transient heat conduction analyses. To demonstrate the applications of LADRI, two different optical surfaces were replicated: an antireflection (AR) structure with conical structures sized several hundred nanometers and a light-extraction structure with a microlens array (MLA) comprising 10 µm lenses, for display and illumination, respectively. The replication degree of the MLA was governed by the contact pressure. Polymer flow simulation indicated that the heat conduction and flow speeds of the melted PMMA surface were comparable within several tens of micrometers. In addition, the reflectivity of the AR structure decreased from 4 to 0.5%, and the light intensity of the light-extraction structure increased by a factor of 1.47.
RESUMEN
Recent advances brought the performance of MEMS-based varifocal mirrors to levels comparable to conventional ultra-high-speed focusing devices. Varifocal mirrors are becoming capable of high axial resolution exceeding 300 resolvable planes, can achieve microsecond response times, continuous operation above several hundred kHz, and can be designed to combine focusing with lateral steering in a single-chip device. This survey summarizes the past 50 years of scientific progress in varifocal MEMS mirrors, providing the most comprehensive study in this field to date. We introduce a novel figure of merit for varifocal mirrors on the basis of which we evaluate and compare nearly all reported devices from the literature. At the forefront of this review is the analysis of the advantages and shortcomings of various actuation technologies, as well as a systematic study of methods reported to enhance the focusing performance in terms of speed, resolution, and shape fidelity. We believe this analysis will fuel the future technological development of next-generation varifocal mirrors reaching the axial resolution of 1000 resolvable planes.
RESUMEN
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
RESUMEN
Projection micro stereolithography (PµSL) is a digital light processing (DLP) based printing technique for producing structured microparts. In this approach there is often a tradeoff between the largest object that can be printed and the minimum feature size, with higher resolution generally reducing the overall extent of the structure. The ability to produce structures with high spatial resolution and large overall volume, however, is immensely important for the creation of hierarchical materials, microfluidic devices and bioinspired constructs. In this work, we report a low-cost system with 1 µm optical resolution, representing the highest resolution system yet developed for the creation of micro-structured parts whose overall dimensions are nevertheless on the order of centimeters. To do so, we examine the limits at which PµSL can be applied at scale as a function of energy dosage, resin composition, cure depth and in-plane feature resolution. In doing so we develop a unique exposure composition approach that allows us to greatly improve the resolution of printed features. This ability to construct high-resolution scalable microstructures has the potential to accelerate advances in emerging areas, including 3D metamaterials, tissue engineering and bioinspired constructs.
RESUMEN
Achieving multiband camouflage covering both visible and infrared regions is challenging due to the broad bandwidth and differentiated regulation demand in diverse regions. In this work, we propose a programmable microfluidic strategy that uses dye molecules in layered fluids to manipulate visible light- and infrared-semitransparent solvent to manipulate infrared light. With three primary fluid inputs, we achieve 64 chromaticity values and 8 emissivities from 0.42 to 0.90. In view of the wide tuning range, we demonstrate that the microfluidic film can dynamically change its surface reflectance to blend into varying backgrounds in both visible and infrared images. Moreover, we fabricate the microfluidic device in a textile form and demonstrate its ability to match exactly with the colors of natural leaves of different seasons in the full hyperspectrum range. Considering the broadband modulation and ease of operation, the programmable microfluidic strategy provides a feasible approach for smart optical surfaces in long-span optical spectra.
RESUMEN
Fast (sub-second) spectroscopy with high spectral resolution is of vital importance for revealing quantum chemistry kinetics of complex chemical and biological reactions. Fourier transform (FT) spectrometers can achieve high spectral resolution and operate at hundreds of ms time scales in rapid-scan mode. However, the linear translation of a scanning mirror imposes stringent time-resolution limitations to these systems, which makes simultaneous high spectral and temporal resolution very difficult. Here, we demonstrate an FT spectrometer whose operational principle is based on continuous rotational motion of the scanning mirror, effectively decoupling the spectral resolution from the temporal one. Furthermore, we show that such rotational FT spectrometer can perform Mid-IR dual-comb spectroscopy with a single comb source, since the Doppler-shifted version of the comb serves as the second comb. In our realization, we combine the advantages of dual-comb and FT spectroscopy using a single quantum cascade laser frequency comb emitting at 8.2 µm as a light source. Our technique does not require any diffractive or dispersive optical elements and hence preserve the Jacquinot's-, Fellgett's-, and Connes'-advantages of FT spectrometers. By integrating mulitple broadband sources, such system could pave the way for applications where high speed, large optical bandwidth, and high spectral resolution are desired.
RESUMEN
Maximizing the scattering of visible light within disordered nano-structured materials is essential for commercial applications such as brighteners, while also testing our fundamental understanding of light-matter interactions. The progress in the research field has been hindered by the lack of understanding how different structural features contribute to the scattering properties. Here we undertake a systematic investigation of light scattering in correlated disordered structures. We demonstrate that the scattering efficiency of disordered systems is mainly determined by topologically invariant features, such as the filling fraction and correlation length, and residual variations are largely accounted by the surface-averaged mean curvature of the systems. Optimal scattering efficiency can thus be obtained from a broad range of disordered structures, especially when structural anisotropy is included as a parameter. These results suggest that any disordered system can be optimised for whiteness and give comparable performance, which has far-reaching consequences for the industrial use of low-index materials for optical scattering.
RESUMEN
Zero-refractive-index (ZRI) phononic crystals (PhCs), in which acoustic waves can be transmitted without phase variations, have considerable potential for engineering wavefronts and thus are applicable to invisibility cloaking. However, the creation of the transmissive cloaking achieved by ZRI-PhCs is challenging under an oblique incidence, which substantially hinders their practical applications. Here, we experimentally demonstrate acoustic transmissive cloaking with the adjustable capacity to the incident direction. Acoustic transmissive cloaking of arbitrarily shaped obstacles can be obtained through a hybrid acoustic structure consisting of one outer layer of a programmable phase-engineered metasurface (PPEM) and one inner layer of a double zero-refractive-index (DZRI)-PhC. The DZRI-PhC is functionally the same as an equiphase area and can guide acoustic waves around the obstacle, a process known as acoustic tunneling. The PPEM perpendicularly transfers the incident acoustic waves to the DZRI-PhC and allows the emergent waves from the DZRI-PhC to transmit along the original incident direction. The DZRI-PhC is made of an array of iron squares in the air. The reciprocal of the effective bulk modulus and the effective mass density is approximately zero at a frequency of 3015 Hz (0.5187 v 0 /a) originating from the zeroth-order Fabry-Pérot (FP) resonance that possesses infinite phase velocities. Each meta-atom of the outer metasurface consists of a line channel and four shunted Helmholtz resonators, which have effective masses that are engineered by a mechanics system. The amplitude and phase of the sound waves propagating through each meta-atom can be controlled continuously and dynamically, enabling the metasurface to obtain versatile wavefront manipulation functions. Acoustic cloaking is visually demonstrated by experimentally scanning the acoustic field over the hybrid structure at a frequency of 3000 Hz (0.5160 v 0 /a). Our work may provide applications with great potential, including underwater ultrasound, airborne sound, acoustic communication, imaging, etc.
RESUMEN
Laser direct-writing enables micro and nanoscale patterning, and is thus widely used for cutting-edge research and industrial applications. Various nanolithography methods, such as near-field, plasmonic, and scanning-probe lithography, are gaining increasing attention because they enable fabrication of high-resolution nanopatterns that are much smaller than the wavelength of light. However, conventional methods are limited by low throughput and scalability, and tend to use electron beams or focused-ion beams to create nanostructures. In this study, we developed a procedure for massively parallel direct writing of nanoapertures using a multi-optical probe system and super-resolution near-fields. A glass micro-Fresnel zone plate array, which is an ultra-precision far-field optical system, was designed and fabricated as the multi-optical probe system. As a chalcogenide phase-change material (PCM), multiple layers of Sb65Se35 were used to generate the super-resolution near-field effect. A nanoaperture was fabricated through direct laser writing on a large-area (200 × 200 mm2) multi-layered PCM. A photoresist nanopattern was fabricated on an 8-inch wafer via near-field nanolithography using the developed nanoaperture and an i-line commercial exposure system. Unlike other methods, this technique allows high-throughput large-area nanolithography and overcomes the gap-control issue between the probe array and the patterning surface.
RESUMEN
As a new concept in materials design, a variety of strategies have been developed to fabricate optical microlens arrays (MLAs) that enable the miniaturization of optical systems on the micro/nanoscale to improve their characteristic performance with unique optical functionality. In this paper, we introduce a cost-effective and facile fabrication process on a large scale up to ~15 inches via sequential lithographic methods to produce thin and deformable hexagonally arranged MLAs consisting of polydimethylsiloxane (PDMS). Simple employment of oxygen plasma treatment on the prestrained MLAs effectively harnessed the spontaneous formation of highly uniform nanowrinkled structures all over the surface of the elastomeric microlenses. With strain-controlled tunability, unexpected optical diffraction patterns were characterized by the interference combination effect of the microlens and deformable nanowrinkles. Consequently, the hierarchically structured MLAs presented here have the potential to produce desirable spatial arrangements, which may provide easily accessible opportunities to realize microlens-based technology by tunable focal lengths for more advanced micro-optical devices and imaging projection elements on unconventional security substrates.
RESUMEN
Immersion optics enable creation of systems with improved optical concentration and coupling by taking advantage of the fact that the luminance of light is proportional to the square of the refractive index in a lossless optical system. Immersion graded index optical concentrators, that do not need to track the source, are described in terms of theory, simulations, and experiments. We introduce a generalized design guide equation which follows the Pareto function and can be used to create various immersion graded index optics depending on the application requirements of concentration, refractive index, height, and efficiency. We present glass and polymer fabrication techniques for creating broadband transparent graded index materials with large refractive index ranges, (refractive index ratio)2 of ~2, going many fold beyond what is seen in nature or the optics industry. The prototypes demonstrate 3x optical concentration with over 90% efficiency. We report via functional prototypes that graded-index-lens concentrators perform close to the theoretical maximum limit and we introduce simple, inexpensive, design-flexible, and scalable fabrication techniques for their implementation.
RESUMEN
Throughout history, there have been many outstanding women whose achievements continue to impress and amaze us today. For example, in the field of science, Madame Marie Curie was the first woman Nobel Prize winner and the only person to be awarded a Nobel Prize in two scientific fields. From China, Tu Youyou is a Nobel laureate who discovered artemisinin and dihydroartemisinin, used to treat malaria, a breakthrough in twentieth-century tropical medicine, saving millions of lives around the globe. Businesswomen such as Angela Ahrendts, a former fashion executive who helped revitalize Apple, Inc., and Sheryl Sandberg, Chief Operating Officer of Meta Platforms (formerly Facebook), are recognized as two of the world's most influential business leaders. Now, more than ever, women are at the forefront of developments in optics and photonics research and business. One of those leaders is Elizabeth Rogan, CEO of Optica (formerly the Optical Society and the Optical Society of America.) As the executive in charge of an organization devoted to promoting the generation, application, archiving, and dissemination of knowledge in optics and photonics worldwide, Ms. Rogan has successfully expanded the depth and breadth of Optica's technical and global reach. Her education and expertise are in industry, finance, and strategy. She utilizes these skills in partnership with a large and technically diverse group of Ph.D. volunteers and staff specialists. Combining the efforts of these many talented people with a unity of purpose has proven to be a highly effective approach for Rogan and the association she has led for nearly two decades. Ms. Rogan is a strong advocate for women. For instance, the association's "Faces of Optica" campaign features a wide range of accomplished women in research and applications. And she was an enthusiastic participant in the "Rose in Science," which celebrates the extraordinary accomplishments of women scientists. Light Special Correspondents interviewed Elizabeth Rogan about Optica's legacy, culture, and personal experiences as its CEO in this issue. She also discussed the reasons behind the recent rebranding of the organization and the bonds of friendship the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, and Optica have built over the years. Please join us for an in-depth look at why this century-plus-year-old organization has a fresh new vision for the future.
RESUMEN
Curved displays have recently become very popular, with wide applications for both industry and consumers. However, built upon initially flat films, most flexible displays are often incompatible with general nondevelopable surfaces. In this paper, we report a method for producing curved displays of nondevelopable shapes by using a structure-mechanics-inspired functional optimization method to design tessellation patterns that fold into the desired shapes. Representative displays in spherical and saddle shapes are demonstrated. The microfabrication process is employed for manufacturing 2D flexible foldable circuit boards, pick-and-place technology is used for placing illuminant elements onto the boards, and mold guidance is used for folding 2-D sheets into curved 3D display prototypes. The proposed technology is feasible for mass production and advances the application of next-generation curved displays.
RESUMEN
There is a global unmet need for rapid and cost-effective prognostic and diagnostic tools that can be used at the bedside or in the doctor's office to reduce the impact of serious disease. Many cancers are diagnosed late, leading to costly treatment and reduced life expectancy. With prostate cancer, the absence of a reliable test has inhibited the adoption of screening programs. We report a microelectronic point-of-care metabolite biomarker measurement platform and use it for prostate cancer detection. The platform, using an array of photodetectors configured to operate with targeted, multiplexed, colorimetric assays confined in monolithically integrated passive microfluidic channels, completes a combined assay of 4 metabolites in a drop of human plasma in under 2 min. A preliminary clinical study using l-amino acids, glutamate, choline, and sarcosine was used to train a cross-validated random forest algorithm. The system demonstrated sensitivity to prostate cancer of 94% with a specificity of 70% and an area under the curve of 0.78. The technology can implement many similar assay panels and hence has the potential to revolutionize low-cost, rapid, point-of-care testing.
RESUMEN
The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.
RESUMEN
Detection of sentinel lymph nodes (SLNs) is critical to guide the treatment of breast cancer. However, distinguishing metastatic SLNs from normal and inflamed lymph nodes (LNs) during surgical resection remains a challenge. Here, we report a CD44 and scavenger receptor class B1 dual-targeting hyaluronic acid nanoparticle (5K-HA-HPPS) loaded with the near-infra-red fluorescent dye DiR-BOA for SLN imaging in breast cancer. The small sized (~40 nm) self-assembled 5K-HA-HPPSs accumulated rapidly in the SLNs after intradermal injection. Compared with normal popliteal LNs (N-LN), there were ~3.2-fold and ~2.4-fold increases in fluorescence intensity in tumour metastatic SLNs (T-MLN) and inflamed LNs (Inf-LN), respectively, 6 h after nanoparticle inoculation. More importantly, photoacoustic microscopy (PAM) of 5K-HA-HPPS showed a significantly distinct distribution in T-MLN compared with N-LN and Inf-LN. Signals were mainly distributed at the centre of T-MLN but at the periphery of N-LN and Inf-LN. The ratio of PA intensity (R) at the centre of the LNs compared with that at the periphery was 5.93 ± 0.75 for T-MLNs of the 5K-HA-HPPS group, which was much higher than that for the Inf-LNs (R = 0.2 ± 0.07) and N-LNs (R = 0.45 ± 0.09). These results suggest that 5K-HA-HPPS injection combined with PAM provides a powerful tool for distinguishing metastatic SLNs from pLNs and inflamed LNs, thus guiding the removal of SLNs during breast cancer surgery.
RESUMEN
A brighter near-infrared (NIR) phosphor is achieved by inhibiting the oxidation of Cr3+ and reducing the surface defects of phosphor particles, enabling the realization of smarter and more sensitive light sources for night vision.