Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Mol Biol ; 436(22): 168811, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374890

RESUMEN

Optineurin (OPTN), a multifunctional adaptor protein in mammals, plays critical roles in many cellular processes, such as vesicular trafficking and autophagy. Notably, mutations in optineurin are directly associated with many human diseases, such as amyotrophic lateral sclerosis (ALS). OPTN can specifically recognize Rab8a and the GTPase-activating protein TBC1D17, and facilitate the inactivation of Rab8a mediated by TBC1D17, but with poorly understood mechanism. Here, using biochemical and structural approaches, we systematically characterize the interaction between OPTN and Rab8a, revealing that OPTN selectively recognizes the GTP-bound active Rab8a through its leucine-zipper domain (LZD). The determined crystal structure of OPTN LZD in complex with the active Rab8a not only elucidates the detailed binding mechanism of OPTN with Rab8a but also uncovers a unique binding mode of Rab8a with its effectors. Furthermore, we demonstrate that the central coiled-coil domain of OPTN and the active Rab8a can simultaneously interact with the TBC domain of TBC1D17 to form a ternary complex. Finally, based on the OPTN LZD/Rab8a complex structure and relevant biochemical analyses, we also evaluate several known ALS-associated mutations found in the LZD of OPTN. Collectively, our findings provide mechanistic insights into the interaction of OPTN with Rab8a, expanding our understanding of the binding modes of Rab8a with its effectors and the potential etiology of diseases caused by OPTN mutations.

2.
EMBO J ; 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39420095

RESUMEN

During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.

3.
Viruses ; 16(9)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39339916

RESUMEN

(1) Background: Intrinsic defense mechanisms are pivotal host strategies to restrict viruses already at early stages of their infection. Here, we addressed the question of how the autophagy receptor sequestome 1 (SQSTM1/p62, hereafter referred to as p62) interferes with human cytomegalovirus (HCMV) infection. (2) Methods: CRISPR/Cas9-mediated genome editing, mass spectrometry and the expression of p62 phosphovariants from recombinant HCMVs were used to address the role of p62 during infection. (3) Results: The knockout of p62 resulted in an increased release of HCMV progeny. Mass spectrometry revealed an interaction of p62 with cellular proteins required for nucleocytoplasmic transport. Phosphoproteomics further revealed that p62 is hyperphosphorylated at position S272 in HCMV-infected cells. Phosphorylated p62 showed enhanced nuclear retention, which is concordant with enhanced interaction with viral proteins relevant for genome replication and nuclear capsid egress. This modification led to reduced HCMV progeny release compared to a non-phosphorylated version of p62. (4) Conclusions: p62 is a restriction factor for HCMV replication. The activity of the receptor appears to be regulated by phosphorylation at position S272, leading to enhanced nuclear localization, viral protein degradation and impaired progeny production.


Asunto(s)
Autofagia , Infecciones por Citomegalovirus , Citomegalovirus , Proteína Sequestosoma-1 , Replicación Viral , Humanos , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Citomegalovirus/fisiología , Citomegalovirus/genética , Fosforilación , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/metabolismo , Interacciones Huésped-Patógeno , Proteínas Virales/metabolismo , Proteínas Virales/genética
4.
Vision Res ; 224: 108463, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39208752

RESUMEN

Optineurin (OPTN) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (Optn-/-) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN's role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2-3 months) or aged (12 months) mice. When retinal layers were quantitated, young Optn-/- mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in Optn-/- mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by Optn deletion, more dopaminergic amacrine cells were observed in aged Optn-/- mice. Taken together, our findings showed that complete loss of Optn resulted in mild retinal changes and less visual function impairment, supporting the possibility that OPTN-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these Optn mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.


Asunto(s)
Envejecimiento , Proteínas de Ciclo Celular , Presión Intraocular , Glaucoma de Baja Tensión , Proteínas de Transporte de Membrana , Ratones Noqueados , Células Ganglionares de la Retina , Animales , Proteínas de Transporte de Membrana/genética , Ratones , Proteínas de Ciclo Celular/genética , Presión Intraocular/fisiología , Células Ganglionares de la Retina/patología , Glaucoma de Baja Tensión/fisiopatología , Glaucoma de Baja Tensión/genética , Envejecimiento/fisiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Retina , Electrorretinografía
5.
Autophagy ; : 1-20, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099169

RESUMEN

Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.

6.
Cell Rep ; 43(8): 114545, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052481

RESUMEN

Small ubiquitin-binding domains (UBDs) recognize small surface patches on ubiquitin with weak affinity, and it remains a conundrum how specific cellular responses may be achieved. Npl4-type zinc-finger (NZF) domains are ∼30 amino acid, compact UBDs that can provide two ubiquitin-binding interfaces, imposing linkage specificity to explain signaling outcomes. We here comprehensively characterize the linkage preference of human NZF domains. TAB2 prefers Lys6 and Lys63 linkages phosphorylated on Ser65, explaining why TAB2 recognizes depolarized mitochondria. Surprisingly, most NZF domains do not display chain linkage preference, despite conserved, secondary interaction surfaces. This suggests that some NZF domains may specifically bind ubiquitinated substrates by simultaneously recognizing substrate and an attached ubiquitin. We show biochemically and structurally that the NZF1 domain of the E3 ligase HOIPbinds preferentially to site-specifically ubiquitinated forms of NEMO and optineurin. Thus, despite their small size, UBDs may impose signaling specificity via multivalent interactions with ubiquitinated substrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Unión Proteica , Ubiquitina , Humanos , Especificidad por Sustrato , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/química , Dedos de Zinc , Ubiquitinación , Quinasa I-kappa B/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Dominios Proteicos , Fosforilación , Células HEK293 , Proteínas de Transporte de Membrana
7.
Autophagy ; 20(10): 2352-2353, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38899611

RESUMEN

Dysregulation of melanin homeostasis is implicated in causing skin pigmentation disorders, such as melasma due to hyperpigmentation and vitiligo due to hypopigmentation. Although the synthesis of melanin has been well studied, the removal of the formed skin pigment requires more research. We determined that ß-mangostin, a plant-derived metabolite, induces the degradation of already-formed melanin in the mouse B16F10 cell line. The whitening effect of ß-mangostin is mediated by macroautophagy/autophagy, as it was abolished by the knockdown of ATG5 or RB1CC1/FIP200, and by treatment with 3-methyladenine, a phosphatidylinositol 3-kinase complex inhibitor. However, the exact autophagy mechanism of melanosome degradation remains unknown. Selective autophagy for a specific cellular organelle requires specific E3-ligases and autophagic receptors for the target organelle. In this study, an E3-ligase, RCHY1, and an autophagy receptor, OPTN (optineurin), were identified as being essential for melanophagy in the ß-mangostin-treated B16F10 cell line. As per our knowledge, this is the first report of a specific mechanism for the degradation of melanosomes, the target organelle of melanophagy. These findings are expected to broaden the scope of melanin homeostasis research and can be exploited for the development of therapeutics for skin pigmentation disorders.


Asunto(s)
Autofagia , Melaninas , Ubiquitina-Proteína Ligasas , Animales , Ratones , Autofagia/fisiología , Autofagia/efectos de los fármacos , Melaninas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Melanosomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Macroautofagia/fisiología , Macroautofagia/efectos de los fármacos , Línea Celular Tumoral , Humanos , Xantonas/farmacología
8.
Cell Rep ; 43(6): 114294, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814780

RESUMEN

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α and is required for TBK1 to interact with and activate a set of ubiquitin-binding autophagy adaptors including NDP52, p62/SQSTM1, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1 following mitochondrial damage. TRIM5α's ubiquitin ligase activity is required for the accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Our data support a model in which TRIM5α provides a mitochondria-localized, ubiquitin-based, self-amplifying assembly platform for TBK1 and mitophagy adaptors that is ultimately necessary for the recruitment of the core autophagy machinery.


Asunto(s)
Mitocondrias , Mitofagia , Proteínas Serina-Treonina Quinasas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Mitocondrias/metabolismo , Células HEK293 , Células HeLa , Autofagia
9.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542280

RESUMEN

Cardiomyocyte survival is a critical contributing process of host adaptive responses to cardiovascular diseases (CVD). Cells of the cardiovascular endothelium have recently been reported to promote cardiomyocyte survival through exosome-loading cargos. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, mediates protection against myocardial infarction (MI). Nevertheless, the mechanism of SPC delivery by vascular endothelial cell (VEC)-derived exosomes (VEC-Exos) remains uncharacterized at the time of this writing. The present study utilized a mice model of ischemia/reperfusion (I/R) to demonstrate that the administration of exosomes via tail vein injection significantly diminished the severity of I/R-induced cardiac damage and prevented apoptosis of cardiomyocytes. Moreover, SPC was here identified as the primary mediator of the observed protective effects of VEC-Exos. In addition, within this investigation, in vitro experiments using cardiomyocytes showed that SPC counteracted myocardial I/R injury by activating the Parkin and nuclear receptor subfamily group A member 2/optineurin (NR4A2/OPTN) pathways, in turn resulting in increased levels of mitophagy within I/R-affected myocardium. The present study highlights the potential therapeutic effects of SPC-rich exosomes secreted by VECs on alleviating I/R-induced apoptosis in cardiomyocytes, thereby providing strong experimental evidence to support the application of SPC as a potential therapeutic target in the prevention and treatment of myocardial infarction.


Asunto(s)
Exosomas , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Ratones , Animales , Daño por Reperfusión Miocárdica/metabolismo , Mitofagia , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Células Endoteliales/metabolismo , Exosomas/metabolismo , Apoptosis
10.
Biochem Biophys Rep ; 38: 101672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38434142

RESUMEN

Autophagy has emerged as a critical innate immune mechanism for host elimination of intracellular pathogens, however, the role of the autophagy receptor Optineurin during mycobacterial infection is not fully understood. To address this lacuna, we infected bone marrow-derived macrophages (BMDMs) derived from Optn+/+ and Optn-/- mice with Mycobacterium smegmatis, and observed the infection outcome at sequential time points. While low multiplicity of infection (MOI) did not show any significant difference between BMDMs from the two groups, at high MOI Optn-/- mice-derived BMDMs showed significantly lower colony forming unit counts, as well as lower cell counts at 12 h and 24 h post-infection. Quantification of cell numbers and nuclear morphologies at various time points post-infection indicated a markedly higher cell death in the Optineurin-deficient macrophages. Optineurin-deficient BMDMs showed significantly lower levels of the autophagosomal protein LC3-II upon infection, indicating a potential role for Optineurin in regulating autophagy during mycobacterial infection. Moreover, when stimulated by bacterial LPS, Optineurin deficient macrophages, showed altered levels of the inflammatory cytokine pro-IL-1ß. These observations taken together suggest a novel regulatory role for Optineurin during mycobacterial infection. Its deficiency leads to an impairment in macrophage responses, directly impacting the pathophysiology of infection.

11.
Phytother Res ; 38(3): 1681-1694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311336

RESUMEN

Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3ß phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Inositol/análogos & derivados , Humanos , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Chaperón BiP del Retículo Endoplásmico , Miocitos Cardíacos , Estrés del Retículo Endoplásmico , Transducción de Señal , Apoptosis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología
12.
Biomed Pharmacother ; 172: 116258, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38350370

RESUMEN

Optineurin (OPTN) is a widely expressed multifunctional articulatory protein that participates in cellular or mitochondrial autophagy, vesicular transport, and endoplasmic reticulum (ER) stress via interactions with various proteins. Skeletal development is a complex biological process that requires the participation of various osteoblasts, such as bone marrow mesenchymal stem cells (BMSCs), and osteogenic, osteoclastic, and chondrogenic cells. OPTN was recently found to be involved in the regulation of osteoblast activity, which affects bone metabolism. OPTN inhibits osteoclastogenesis via signaling pathways, including NF-κB, IFN-ß, and NRF2. OPTN can promote the differentiation of BMSCs toward osteogenesis and inhibit lipogenic differentiation by delaying BMSC senescence and autophagy. These effects are closely related to the development of bone metabolism disorders, such as Paget's disease of bone, rheumatoid arthritis, and osteoporosis. Therefore, this review aims to explore the role and mechanism of OPTN in the regulation of bone metabolism and related bone metabolic diseases. Our findings will provide new targets and strategies for the prevention and treatment of bone metabolic diseases.


Asunto(s)
Huesos , Proteínas de Ciclo Celular , Proteínas de Transporte de Membrana , Humanos , Adenocarcinoma , Artritis Reumatoide , Autofagia , Transporte Biológico , Enfermedades Óseas Metabólicas , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo , Huesos/metabolismo , Animales
13.
Autophagy ; 20(3): 614-628, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37930946

RESUMEN

Seneca Valley virus (SVV) causes vesicular disease in pigs, posing a threat to global pork production. OPTN (optineurin) is a macroautophagy/autophagy receptor that restricts microbial propagation by targeting specific viral or bacterial proteins for degradation. OPTN is degraded and cleaved at glutamine 513 following SVV infection via the activity of viral 3C protease (3C[pro]), resulting in N-terminal and a C-terminal OPTN fragments. Moreover, OPTN interacts with VP1 and targets VP1 for degradation to inhibit viral replication. The N-terminal cleaved OPTN sustained its interaction with VP1, whereas the degradation capacity targeting VP1 decreased. The inhibitory effect of N-terminal OPTN against SVV infection was significantly reduced, C-terminal OPTN failed to inhibit viral replication, and degradation of VP1 was blocked. The knockdown of OPTN resulted in reduced TBK1 activation and phosphorylation of IRF3, whereas overexpression of OPTN led to increased TBK1-IRF3 signaling. Additionally, the N-terminal OPTN diminished the activation of the type I IFN (interferon) pathway. These results show that SVV 3C[pro] targets OPTN because its cleavage impairs its function in selective autophagy and type I IFN production, revealing a novel model in which the virus develops diverse strategies for evading host autophagic machinery and type I IFN response for survival.Abbreviations: Co-IP: co-immunoprecipitation; GFP-green fluorescent protein; hpi: hours post-infection; HRP: horseradish peroxidase; IFN: interferon; IFNB/IFN-ß: interferon beta; IRF3: interferon regulatory factor 3; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; OPTN: optineurin; PBS: phosphate-buffered saline; SVV: Seneca Valley virus; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious doses; UBAN: ubiquitin binding in TNIP/ABIN (TNFAIP3/A20 and inhibitor of NFKB/NF-kB) and IKBKG/NEMO; UBD: ubiquitin-binding domain; ZnF: zinc finger.


Asunto(s)
Interferón Tipo I , Macroautofagia , Picornaviridae , Animales , Porcinos , Péptido Hidrolasas , Autofagia , Interferón beta , Endopeptidasas , FN-kappa B , Proteasas Virales 3C , Ubiquitinas
14.
Artículo en Inglés | MEDLINE | ID: mdl-37904275

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a heterogeneous disorder and the phenotypic variability goes far beyond the used clinical stratification parameter. Evidence has emerged that ALS may coexist with distinct neurodegenerative diseases in single cases. We aim to study the clinical features of two familial cases of ALS carriers of two distinct variants harbored in the Optineurin (OPTN) gene. We included definite familial ALS followed up in the Department of Neurology of Razi University Hospital, Tunisia, and selected according to Byrne criteria. Preliminary screening for the four main ALS genes (SOD1, C9ORF72, TARDBP, FUS) was conducted. Given the negative results, we proceeded to NGS target-re-sequencing with a custom panel including genes associated with ALS-FTD, Alzheimer's, and Parkinson's diseases. Both families are carriers of two different OPTN variants and they present very different ALS clinical features. The first family comprises two siblings diagnosed with ALS and Corticobasal syndrome (ALS-CBS) at an early age of onset and carriers of OPTN p.E135X in the homozygous state. The proband for the second family was diagnosed with ALS at an early age of onset presenting as progressive muscular atrophy with rapid progression. Genetic analysis revealed the presence of the homozygous variant p.R520H. Our findings highlight the peculiarity of genetic Tunisian drift. Indeed, genes with a recessive mode of inheritance may explain part of ALS diversity in clinical features. Therefore, the screening of the OPTN gene is highly recommended among inbreeding populations such as the Tunisian one.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Parkinson , Humanos , Esclerosis Amiotrófica Lateral/genética , Familia , Demencia Frontotemporal/genética , Mutación/genética
15.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37905089

RESUMEN

Ubiquitination of mitochondrial proteins provides a basis for the downstream recruitment of mitophagy machinery, yet whether ubiquitination of the machinery itself contributes to mitophagy is unknown. Here, we show that K63-linked polyubiquitination of the key mitophagy regulator TBK1 is essential for its mitophagy functions. This modification is catalyzed by the ubiquitin ligase TRIM5α. Mitochondrial damage triggers TRIM5α's auto-ubiquitination and its interaction with ubiquitin-binding autophagy adaptors including NDP52, optineurin, and NBR1. Autophagy adaptors, along with TRIM27, enable TRIM5α to engage with TBK1. TRIM5α with intact ubiquitination function is required for the proper accumulation of active TBK1 on damaged mitochondria in Parkin-dependent and Parkin-independent mitophagy pathways. Additionally, we show that TRIM5α can directly recruit autophagy initiation machinery to damaged mitochondria. Our data support a model in which TRIM5α provides a self-amplifying, mitochondria-localized, ubiquitin-based, assembly platform for TBK1 and mitophagy adaptors that is ultimately required to recruit the core autophagy machinery.

16.
J Biol Chem ; 299(12): 105396, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890781

RESUMEN

Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.


Asunto(s)
Quinasa I-kappa B , Quinasa I-kappa B/química , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Separación de Fases , Transducción de Señal , Ubiquitina/metabolismo , Humanos
17.
Mol Cell ; 83(17): 3188-3204.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683611

RESUMEN

Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKß, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.


Asunto(s)
FN-kappa B , Transducción de Señal , FN-kappa B/genética , Quinasa I-kappa B/genética , Proteínas Serina-Treonina Quinasas/genética , Mitocondrias/genética
18.
Indian J Ophthalmol ; 71(8): 3016-3023, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37530275

RESUMEN

Purpose: This study focused on the genetic screening of Myocilin (MYOC), Cytochrome P450 family 1 subfamily B member 1 (CYP1B1), Optineurin (OPTN), and SIX homeobox 6 (SIX6) genes in a family with coexistence of primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Methods: Sanger sequencing was used to examine the coding region of all four genes. Six different online available algorithms were used for the pathogenicity prediction of missense variant. Structural analysis was done using Garnier-Osguthorpe-Robson (GOR), PyMol, ChimeraX, and Molecular Dynamic (MD) Simulations (using Graphics Processing Unit (GPU)-enabled Desmond module of Schrödinger). Results: There were a total of three sequence variants within the family. All seven algorithms determined that a single mutation, G538E, in the OPTN gene is pathogenic. The loops connecting the strands became more flexible, as predicted structurally and functionally by pathogenic mutations. Mutations create perturbations and conformational rearrangements in proteins, hence impairing their functioning. Conclusion: In this study, we describe a North Indian family in which members were having JOAG and PCG due to a rare homozygous/heterozygous mutation in OPTN. The coexistence of two types of glaucoma within a single pedigree suggests that certain OPTN mutations may be responsible for the onset of different glaucoma phenotypes.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Mutación , Pruebas Genéticas , Linaje , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Análisis Mutacional de ADN
19.
bioRxiv ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292615

RESUMEN

Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO, due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.

20.
Phenomics ; 3(2): 167-181, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37197644

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with phenotypic and genetic heterogeneity. Recent studies have suggested an oligogenic basis of ALS, in which the co-occurrence of two or more genetic variants has additive or synergistic deleterious effects. To assess the contribution of possible oligogenic inheritance, we profiled a panel of 43 relevant genes in 57 sporadic ALS (sALS) patients and eight familial ALS (fALS) patients from five pedigrees in east China. We filtered rare variants using the combination of the Exome Aggregation Consortium, the 1000 Genomes and the HuaBiao Project. We analyzed patients with multiple rare variants in 43 known ALS causative genes and the genotype-phenotype correlation. Overall, we detected 30 rare variants in 16 different genes and found that 16 of the sALS patients and all the fALS patients examined harbored at least one variant in the investigated genes, among which two sALS and four fALS patients harbored two or more variants. Of note, the sALS patients with one or more variants in ALS genes had worse survival than the patients with no variants. Typically, in one fALS pedigree with three variants, the family member with three variants (Superoxide dismutase 1 (SOD1) p.V48A,  Optineurin (OPTN) p.A433V and TANK binding kinase 1 (TBK1) p.R573H) exhibited much more severe disease phenotype than the member carrying one variant (TBK1 p.R573H). Our findings suggest that rare variants could exert a negative prognostic effect, thereby supporting the oligogenic inheritance of ALS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...