Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202417458, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379791

RESUMEN

Aiming at the fabrication of circularly polarized organic light-emitting diodes (CP-OLEDs) with high dissymmetry factors (gEL) and color purity through the employment of novel chiral source, topologically chiral [2]catenanes were first utilized as the key chiral skeleton to construct novel multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters. Impressively, the efficient chirality induction and unique switchable feature of topologically chiral [2]catenane not only lead to a high |gPL| value up to 1.6 × 10-2 but also facilitate in situ dynamic switching of the full-width at half-maximum (FWHM) and circularly polarized luminescence (CPL). Furthermore, the solution-processed CP-OLEDs based on the resultant topologically chiral emitters exhibit reveal narrow FWHM of 36 nm, maximum external quantum efficiency of 17.6%, and CPEL with |gEL| of 2.1 × 10-3. This study demonstrates the successful construction of the first CP-MR-TADF emitters based on topological chirality with the highest |gPL| among the reported CP-MR-TADF emitters and excellent device performance to the best of our knowledge. Moreover, it endowed the MR-TADF emitter with distinctive switchable CPL performances, thus providing a novel design strategy as well as a promising platform for developing intelligent CP-OLEDs.

2.
Angew Chem Int Ed Engl ; : e202416518, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39431982

RESUMEN

This study addresses a challenge in organic synthetic chemistry: the direct cleavage of amide bonds, which is typically hampered by the thermodynamic stability of the C(Ar)-C(acyl) bond. Previous methods often rely on "CO" extrusion-jointing transition metal-catalyzed process and require activated tertiary amides, limiting their applicability due to incompatibility with reactive functional groups such as halogens. Herein, we report a transition metal-free approach for the deamidative cyclization of biaryl diamides via a radical process, yielding dibenzolactam derivatives. Along this line, we have developed the desulfonamidative cyclization of biaryl disulfonamides to produce dibenzosultams through direct nucleophilic aromatic substitution, demonstrating high selectivity for unsymmetrical structures. Additionally, unsymmetrical sulfamoyl biaryl amides, containing both amide and sulfonamide functionalities, can selectively undergo desulfonamidative coupling with the amide to form dibenzolactams, which offers a complementary synthetic pathway to unsymmetric dibenzolactams. These protocols exhibit excellent compatibility with reactive functional groups, including halogens, providing an innovative synthetic toolbox for the development of thermally activated delayed fluorescence (TADF) materials used in organic light emitting diodes (OLEDs). DMAC-PDO, incorporating a dibenzolactam as the acceptor unit, serves as an efficient blue TADF emitter with a maximum external quantum efficiency (EQEmax) of 23.4%.

3.
Small ; : e2407220, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39410732

RESUMEN

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials are applied in organic light-emitting diodes (OLEDs) due to their high efficiency and color purity. However, the inherent planar structure of MR emitters presents significant challenges, including concentration-induced emission quenching, spectral redshift and broadening. To address these issues, two orthorhombic asymmetric conformational materials, SBNO and SBNOS, have been developed. Both MR-TADF emitters incorporate a sterically hindered spiro-carbon bridge to minimize intermolecular chromophore interactions. Consequently, the spectra of the SBNOS-based devices exhibit only a 4 nm redshift and a 7 nm broadening of the full-width at half maximum (FWHM) across a doping ratio range of 1-100 wt%. The steric effect produces pure green OLEDs with a CIE y of 0.69 and enhances performance, achieving a maximum external quantum efficiency (EQEmax) of up to 32.7%. The referent BNO without spiro skeleton suffers from serious spectral redshift and broadening as well as a lower device efficiency. This research demonstrates a promising approach to developing MR-TADF devices that resist redshift and broadening while maintaining high color purity and efficiency.

4.
Adv Sci (Weinh) ; : e2404576, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39445506

RESUMEN

Organic light-emitting diodes (OLEDs) have been developed for high-speed transmitters of visible-light communication (VLC) but so far the possibility of direct fabrication of multiple colors on a single substrate has not been exploited for multi-Gbps data transmission. Very fast red-, green-, and blue (RGB)-emitting OLEDs are developed on a single substrate to realize high data transmission speed by wavelength division multiplexing (WDM). -6 dB electrical bandwidth of over 100 MHz is achieved for all colors by selecting fluorescent materials with nanosecond emission lifetimes and little overlap between their emission spectra and incorporating them into OLEDs designed for high-speed operation. Optical microcavities in top-emitting OLED structures are used to minimize spectral overlap. A record data transmission rate for an OLED transmitter system of 3.2 Gbps is demonstrated, by transmitting data with the 3 colors simultaneously and separating each data by dichroic mirrors. The results show that WDM with integrated RGB pixels is a useful way to increase the data transmission rate of a VLC system based on OLED transmitters, which has the potential to enable multi-gigabit transmission by displays. The availability of high-speed multiple-color devices as developed here also expands applications of OLEDs for spectroscopy, sensing, and ranging.

5.
Nanomicro Lett ; 17(1): 12, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325072

RESUMEN

Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices. Furthermore, they are crucial for applications in the fields of energy, display, healthcare, and soft robotics. Conducting meshes represent a promising alternative to traditional, brittle, metal oxide conductors due to their high electrical conductivity, optical transparency, and enhanced mechanical flexibility. In this paper, we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using self-cracking-assisted templates. Using this method, we produced an electrode with ultra-transparency (97.39%), high conductance (Rs = 21.24 Ω sq-1), elevated work function (5.16 eV), and good mechanical stability. We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics, organic light-emitting diodes, and flexible transparent memristor devices for neuromorphic computing, resulting in exceptional device performance. In addition, the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility, rendering them a promising option for application in flexible optoelectronics.

6.
Angew Chem Int Ed Engl ; : e202415113, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297652

RESUMEN

Creating fluorophores that meet the Broadcast Service Television 2020 (BT.2020) standard is a significant achievement. In this paper, we present an innovative strategy that could revolutionize the development of high-performance narrowband fluorophores for ultra-high-definition displays. Our approach combines classic multi-resonance BN-doped fragments with naphthalene, creating two novel narrowband bright green quasi-fluorescent emitters, NT-2B and NT-3B. When tested in dilute toluene, these molecules exhibit emission peaks at 510 and 511 nm with extremely narrow FWHM values of 15 and 14 nm, respectively. Both molecules also demonstrate conventional fluorescence properties with high photoluminescence quantum yields (PLQYs) of up to 85%. Notably, OLEDs containing NT-2B achieve a peak EQE of approximately 30% and at a doping concentration of 5 wt.%, OLEDs based on NT-2B achieve a CIEy value of roughly 0.75, closely matching the BT.2020 standard.

7.
ACS Appl Mater Interfaces ; 16(40): 54189-54198, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39325447

RESUMEN

The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.6% at 620 nm) and low sheet resistance (16.07 Ω sq-1), rendering it suitable for integration into T-QLEDs. The inclusion of MXene nanosheets in the composite electrode serves a dual role: adjusting the work function to enhance electron injection efficiency and enhancing the interface between Ag NWs and the emissive layer, thereby mitigating the common issue of interfacial resistance in conventional transparent electrodes. This strategic amalgamation results in notable improvements in device performance, yielding a maximum current efficiency of 23.12 cd A-1, an external quantum efficiency of 13.98%, and a brightness of 21,015 cd m-2. These performance metrics surpass those achieved by T-LEDs employing pristine Ag NW electrodes. This study offers valuable insights into T-QLED device advancement and provides a promising approach for transparent electrode fabrication in optoelectronic applications.

8.
Angew Chem Int Ed Engl ; : e202415400, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258563

RESUMEN

Despite the proliferation of multiple resonance (MR) materials in the blue to green spectral ranges, red MR emitters remain scarce in the literature, an area that certainly warrants attention for future applications. Here, through a clever application of classic Clar's aromatic π-sextet rule, we triumphantly constructed the first red MR emitter by substituting the conventional benzene ring core with anthracene (fewer π-sextets). Theoretical studies indicate that the quantity of π-sextets ultimately determines the optical band gap of a molecule, rather than the number of fused benzene rings. Benefiting from the high photoluminescence quantum yield of ~94 % and horizontal dipole ratio of ~90 %, the corresponding narrowband red (luminescence wavelength: 608 nm) organic light-emitting diode shows a high external quantum efficiency of 27.3 %, with only a slight decrease of 3.7 % at an elevated luminance level of 100,000 cd/m2.

9.
Angew Chem Int Ed Engl ; : e202414905, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266869

RESUMEN

Hybrid local and charge transfer (HLCT) excited state materials, which possess weak donor-acceptor (D-A) pure organic structures, deserve one of the most promising efficient and stable blue emitters. Through high-lying reverse intersystem crossing (hRISC) process, 75 % triplet excitons generated by electrical excitation could be harvested and utilized in organic light-emitting diodes (OLEDs). However, there are still significant challenges to achieve high-efficiency ultra-deep-blue HLCT emitters with low Commission Internationale de l'Eclairage (CIE) 1931 chromaticity coordinate y values. Here, a series of novel blue HLCT emitters based on spiro[1,8-diazafluorene-9,2'-imidazole] structure were designed and synthesized by fine-tuning the spiro[fluorene-9,2'-imidazole] core structure in our previous work through heteroatom substitution and hyperconjugation effect. The target emitters were endowed with excellent photophysical and electrochemical merits, thermal stability and solution processibility. The solution-processed OLED based on 4',5'-bis(4-(9H-carbazol-9-yl)phenyl)spiro[1,8-diazafluorene-9,2'-imidazole] (NFIP-CZ) achieved efficient ultra-deep-blue emission (CIEx,y=0.1581, 0.0422) with the maximum external quantum efficiency (EQEmax), maximum current efficiency (CEmax) and maximum power efficiency (PEmax) of 11.94 %, 4.07 cd ⋅ A-1 and 2.56 lm ⋅ W-1. The record EQE is a breakthrough in both solution-processed and vacuum vapor deposition ultra-deep-blue HLCT OLEDs currently.

10.
Adv Mater ; : e2409394, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263757

RESUMEN

Blue phosphorescent organic light-emitting diodes (PHOLEDs) are on the brink of commercialization for decades. However, the external quantum efficiency (EQE) and operational lifetime of PHOLEDs are not yet reached industrial standards. Here, a novel tetradentate Pt(II) emitter with a spirofluorene onto the carbazole unit that minimizes the vibration modes, corresponding to the structural relaxation during the de-excitation, called the vibration suppression effect is reported. This modification reduces the intensity of the second peak in the spectrum and Shockley-Read-Hall recombination by blocking direct hole injection into the emitter while enhancing Förster resonance energy transfer, resulting in 451 h of LT50 (the time until a 50% decrease in initial luminance at 1000 cd m-2) and 25.1% of the maximum EQE (EQEmax). Thanks to the vibration suppression effect, an extremely narrow full width at half a maximum of 22 nm is obtained. In phosphor-sensitized thermally activated delayed fluorescent OLED, ultra-pure blue emission with Commission internationale de l'Eclairage (CIE) coordinates of (0.136, 0.096) is obtained with 28.1% of EQEmax. Furthermore, 50.3% of the EQEmax and 589 h of LT70 are simultaneously recorded with the two-stack tandem PHOLED, which is the highest EQEmax among 2-tandem and bottom-emission PHOLEDs with CIEy < 0.15.

11.
Adv Mater ; : e2408118, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252676

RESUMEN

Fast and efficient exciton utilization is a crucial solution and highly desirable for achieving high-performance blue organic light-emitting diodes (OLEDs). However, the rate and efficiency of exciton utilization in traditional OLEDs, which employ fully closed-shell materials as emitters, are inevitably limited by spin statistical limitations and transition prohibition. Herein, a new sensitization strategy, namely doublet-sensitized fluorescence (DSF), is proposed to realize high-performance deep-blue electroluminescence. In the DSF-OLED, a doublet-emitting cerium(III) complex, Ce-2, is utilized as sensitizer for multi-resonance thermally activated delayed fluorescence emitter ν-DABNA. Experimental results reveal that holes and electrons predominantly recombine on Ce-2 to form doublet excitons, which subsequently transfer energy to the singlet state of ν-DABNA via exceptionally fast (over 108 s-1) and efficient (≈100%) Förster resonance energy transfer for deep-blue emission. Due to the circumvention of spin-flip in the DSF mechanism, near-unit exciton utilization efficiency and remarkably short exciton residence time of 1.36 µs are achieved in the proof-of-concept deep-blue DSF-OLED, which achieves a Commission Internationale de l'Eclairage coordinate of (0.13, 0.14), a high external quantum efficiency of 30.0%, and small efficiency roll-off of 14.7% at a luminance of 1000 cd m-2. The DSF device exhibits significantly improved operational stability compared with unsensitized reference device.

12.
J Comput Chem ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212065

RESUMEN

Fourteen substituted diketopyrrolopyrrole (DPP) molecules in a donor (D)-acceptor (DPP)-donor (D) arrangement were designed. We employed density functional theory, time-dependent DFT, DFT-MRCI and the ab initio wave function second-order algebraic diagrammatic construction (ADC(2)) methods to investigate theoretically these systems. The examined aromatic substituents have one, two, or three hetero- and non-hetero rings. We comprehensively investigated their optical, electronic, and charge transport properties to evaluate potential applications in organic electronic devices. We found that the donor substituents based on one, two, or three aromatic rings bonded to the DPP core can improve the efficiency of an organic solar cell by fine-tuning the highest occupied molecular orbital/lowest unoccupied molecular orbital levels to match acceptors in typical bulk heterojunctions acceptors. Several properties of interest for organic photovoltaic devices were computed. We show that the investigated molecules are promising for applications as donor materials when combined with typical acceptors in bulk heterojunctions because they have appreciable energy conversion efficiencies resulting from their low ionization potentials and high electron affinities. This scenario allows a more effective charge separation and reduces the recombination rates. A comprehensive charge transfer analysis shows that D-A (DDP)-D systems have significant intramolecular charge transfer, further confirming their promise as candidates for donor materials in solar cells. The significant photophysical properties of DPP derivatives, including the high fluorescence emission, also allow these materials to be used in organic light-emitting diodes.

13.
Chem Asian J ; : e202400925, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177004

RESUMEN

Polycyclic heteroaromatics (PHAs) are a highly versatile class of functional materials, especially applicable as efficient luminophores in organic light-emitting diodes (OLEDs). Those constructed by tethered phenyl surrounding the main group center attract extensive attention due to their excellent OLED device performance. However, the development of such a class of emitters is often limited to boron, nitrogen-doped π-conjugated heterocycles. Herein, we proposed a novel kind of blue emitter by constructing a donor-acceptor molecular configuration, utilizing a dual sulfone-bridged triphenylamine (BTPO) core and mono/di-diphenylamine (DPA) substituents. The twisted D-A molecular structures and appropriate donor strength facilitate the effective separation of natural transition orbitals, endowing the emitters with charge-transfer dominant hybridized local and charge-transfer characteristics for the excited states. Both BTPO-DPA and BTPO-2DPA own small S1-T1 splitting energy, thus demonstrating blue thermally activated delayed fluorescence. The more symmetrical structure and enhanced CT features brought by additional DPA moiety confer BTPO-2DPA with a shorter delayed fluorescence lifetime, a higher fluorescence quantum yield and narrower emission. Therefore, BTPO-2DPA based OLED devices exhibit superior blue electroluminescence performance, with external quantum efficiencies reaching 12.31 %.

14.
Adv Sci (Weinh) ; 11(39): e2407254, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39162045

RESUMEN

High-efficiency non-doped deep-blue organic light-emitting diodes (OLEDs) meeting the standard of BT.2020 color gamut is desired but rarely reported. Herein, an asymmetric structural engineering based on crossed long-short axis (CLSA) strategy is developed to obtain three new deep-blue emitters (BICZ, PHDPYCZ, and PHPYCZ) with a hot-exciton characteristic. Compared to 2BuCz-CNCz featuring a symmetric single hole-transport framework, these asymmetric emitters with the introduction of different electron-transport units show the enhancement of photoluminescence efficiency and improvement of bipolar charge transport capacity. Further combined with high radiative exciton utilization efficiency and light outcoupling efficiency, the non-doped OLED based on PHPYCZ exhibits the best performance with an excellent current efficiency of 3.49%, a record-high maximum external quantum efficiency of 9.5%, and a CIE y coordinate of 0.049 approaching the BT.2020 blue point. The breakthrough obtained in this work can inspire the molecular design of deep-blue emitters for high-performance non-doped BT.2020 blue OLEDs.

15.
Angew Chem Int Ed Engl ; 63(44): e202409619, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39137131

RESUMEN

Hole-transporting materials (HTMs) are essential for optoelectronic devices, such as organic light-emitting diodes (OLEDs), dye-sensitized solar cells, and perovskite solar cells. Triarylamines have been employed as HTMs since they were introduced in 1987. However, heteroatoms or side chains embedded in the core skeleton of triarylamines can cause thermal and chemical stability problems. Herein, we report that hexabenzo[a,c,fg,j,l,op]tetracene (HBT), a small nonplanar nanographene, functions as a hydrocarbon HTM with hole transport properties that match those of triarylamine-based HTMs. X-ray structural analysis and theoretical calculations revealed effective multidirectional orbital interactions and transfer integrals for HBT. In-depth experimental and theoretical analyses revealed that the nonplanarity-inducing annulative π-extension can achieve not only a stable amorphous state in bulk films, but also a higher increase in the highest occupied molecular orbital level than conventional linear or cyclic π-extension. Furthermore, an in-house manufactured HBT-based OLED exhibited excellent performance, featuring superior curves for current density-voltage, external quantum efficiency-luminance, and lifetime compared to those of representative triarylamine-based OLEDs. A notable improvement in device lifetime was observed for the HBT-based OLED, highlighting the advantages of the hydrocarbon HTM. This study demonstrates the immense potential of small nonplanar nanographenes for optoelectronic device applications.

16.
Small ; : e2403345, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118557

RESUMEN

Although brightness and efficiency have been continually improved, the inability to achieve superior efficiency, color stability, and low-efficiency roll-off simultaneously in white organic light-emitting diodes (OLEDs) remains a knotty problem restricting the commercial application. In this paper, emission balance for two different horizontal orientation emitting molecules is maintained by using hole transport materials and bipolar host materials to control carriers' recombination and exciton diffusion. Impressively, the obtained devices exhibit extremely stable white emission with small chromaticity coordinates variation of (0.0023, 0.0078) over a wide brightness range from 1000 to 50000 cd m-2. Meanwhile, the optimal white OLED realizes the power efficiency, current efficiency, and external quantum efficiency up to 70.68 lm W-1, 85.53 cd A-1, and 24.33%, respectively at the practical brightness of 1000 cd m-2. Owing to reduced heterogeneous interfaces and broadening recombination region, this device exhibits a high EQE over 20% under high luminance of 10000 cd m-2, demonstrating slight efficiency roll-off. The operating mechanism of the device is analyzed by versatile experimental and theoretical evidences, which concludes precise manipulation of charges and excitons is the key points to achieve these excellent performances. This work provides an effective strategy for the design of high-performance white OLEDs.

17.
Materials (Basel) ; 17(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124361

RESUMEN

This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton-vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it outlines charge trapping and recombination in the materials and draws the corresponding practical implications. The following section focuses on the practical application of organic materials in optoelectronics devices and highlights the detailed structure, operational principle, and performance metrics of organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs), organic photodetectors, and organic transistors in detail. Finally, this study underscores the transformative impact of organic materials on the evolution of optoelectronics, providing a comprehensive understanding of their properties, mechanisms, and diverse applications that contribute to advancing innovative technologies in the field.

18.
Angew Chem Int Ed Engl ; : e202414488, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198216

RESUMEN

Constructing folded molecular structures is emerging as a promising strategy to develop efficient thermally activated delayed fluorescence (TADF) materials. Most folded TADF materials have V-shaped configurations formed by donors and acceptors linked on carbazole or fluorene bridges. In this work, a facile molecular design strategy is proposed for exploring sandwich-structured molecules, and a series of novel and robust TADF materials with regular U-shaped sandwich conformations are constructed by using 11,12-dihydroindolo[2,3-a]carbazole as bridge, xanthone as acceptor, and dibenzothiophene, dibenzofuran, 9-phenylcarbazole and indolo[3,2,1-JK]carbazole as donors. They hold outstanding thermal stability with ultrahigh decomposition temperatures (556-563 °C), and exhibit fast delayed fluorescence and excellent photoluminescence quantum efficiencies (86 %-97 %). The regular and close stacking of acceptor and donors results in rigidified molecular structures with efficient through-space interaction, which are conducive to suppressing intramolecular motion and reducing reorganized excited-state energy. The organic light-emitting diodes (OLEDs) using them as emitters exhibit excellent electroluminescence performances, with maximum external quantum efficiencies of up to 30.6 %, which is a leading value for the OLEDs based on folded TADF emitters. These results demonstrate the proposed strategy of employing 11,12-dihydroindolo[2,3-a]carbazole as bridge for planar donors and acceptors to construct efficient folded TADF materials is applicable.

19.
Angew Chem Int Ed Engl ; 63(38): e202409580, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38969620

RESUMEN

Herein, we propose a regional functionalization molecular design strategy that enables independent control of distinct pivotal parameters through different molecule segments. Three novel multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters A-BN, DA-BN, and A-DBN, have been successfully synthesized by integrating highly rigid and three-dimensional adamantane-containing spirofluorene units into the MR framework. These molecules form two distinctive functional parts: part 1 comprises a boron-nitrogen (BN)-MR framework with adjacent benzene and fluorene units forming a central luminescent core characterized by an exceptionally rigid planar geometry, allowing for narrow FWHM values; part 2 includes peripheral mesitylene, benzene, and adamantyl groups, creating a unique three-dimensional "umbrella-like" conformation to mitigate intermolecular interactions and suppress exciton annihilation. The resulting A-BN, DA-BN, and A-DBN exhibit remarkably narrow FWHM values ranging from 18 to 14 nm and near-unity photoluminescence quantum yields. Particularly, OLEDs based on DA-BN and A-DBN demonstrate outstanding efficiencies of 35.0 % and 34.3 %, with FWHM values as low as 22 nm and 25 nm, respectively, effectively accomplishing the integration of high color purity and high device performance.

20.
Chem Asian J ; : e202400679, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073242

RESUMEN

Despite the rapid development of thermally activated delayed fluorescent (TADF) materials, developing organic light-emitting diodes (OLEDs) with small efficiency roll-off remains a formidable challenge. Herein, we have designed a TADF molecule (mClSFO) based on the spiro fluorene skeleton. The highly twisted structure and multiple charge-transfer channels effectively suppress aggregation-caused quenching (ACQ) and endow mClSFO with excellent exciton dynamic properties to reduce efficiency roll-off. Fast radiative rate (kr) and rapid reverse intersystem crossing (RISC) rate (kRISC) of 1.6 × 107 s-1 and 1.07 × 106 s-1, respectively, are obtained in mClSFO. As a result, OLEDs based on mClSFO obtain impressive maximum external quantum efficiency (EQEmax) exceeding 20% across a wide doping concentration range of 10-60 wt%. 30 wt% doped OLED exhibits an EQEmax of 23.1% with a small efficiency roll-off, maintaining an EQE of 18.6% at 1000 cd m-2. The small efficiency roll-off and low concentration dependence observed in the TADF emitter underscore its significant potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...