Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem ; 459: 140375, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991444

RESUMEN

Selenium (Se)-enriched yeast is a good nutritional source for human being. Kazachstania unispora (K. unispora) has shown the positive physiological functionality for human health, whose potential for Se enrichment, however, remains elusive. This study demonstrated the ability of K. unispora to convert inorganic Se to organic Se, and then comprehensively investigated the accumulation and metabolism of Se in K. unispora. The results indicated that K. unispora can effectively accumulate organic Se, of which 95% of absorbed Se was converted to organic forms. Among these organic Se, 46.17% of them was bound to protein and 16.78% was combined with polysaccharides. In addition, some of the organic Se was metabolized to selenomethionine (30.26%) and selenocystine (3.02%), during which four low-molecular weight selenometabolites were identified in K. unispora. These findings expand the scope of Se-enriched yeast species, and provide useful knowledge for further investigation of Se enrichment mechanism in K. unispora.


Asunto(s)
Selenio , Selenio/metabolismo , Selenio/análisis , Saccharomycetales/metabolismo
2.
Trop Anim Health Prod ; 56(4): 149, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691179

RESUMEN

Egg preference as a source of protein also provides beneficial fatty acids, vital for human consumption. However, rich in lipid products are prone to oxidative damage. The study aims to determine the effect of supplementing biogenic selenium (Se) from Stenotrophomonas maltophilia, ADS18 (ADS18) in laying hens' diet on yolk lipid oxidation status (MDA), beta-carotene (ß-carotene) content, cholesterol, fatty acids, Se, and vitamin E (VE) level. A total of one hundred and twenty (120) laying hens of Lohmann Brown strains aged 50 weeks, weighing 1500 to 2000 g were reared individually in A-shape two-tier stainless-steel cages sized 30 cm x 50 cm x 40 cm (width, depth height). The hens were randomly allotted into four treatments with six replications in a complete randomised design for the period of 12 weeks. The basal diet contains 100 mg/kg VE. Treatment diets consist of basal diet as control, SS containing 0.3 mg/kg sodium selenite, Se-yeast containing 0.3 mg/kg selenised yeast, and VADS18 containing 0.3 mg/kg of ADS18. Forty-eight eggs were collected and freeze-dried biweekly for analysis. The results of the present study showed that hens supplemented ADS18 had significantly (P < 0.05) lower MDA and cholesterol levels while their egg yolks had higher levels of Se and mono-unsaturated fatty acids (MUFA). The control group had significantly (P < 0.05) higher saturated fatty acid (SFA) contents than the VE and dietary Se-supplemented groups, while the ADS18 group had the lowest SFA contents. Conversely, in comparison to the inorganic and control groups, the VE content of the egg yolk was significantly (P < 0.05) higher in organic Se-supplemented (Se-yeast and VADS18) groups. Hens with SS supplementation had significantly (P < 0.05) higher egg yolk ß-carotene content. When compared to other treatment groups, the control group had higher (P < 0.05) polyunsaturated fatty acids (PUFA) content. The ADS18 is therefore deemed comparable to other Se sources. To prevent Se toxicity, however, a better understanding of the levels of ADS18 incorporation in poultry diets is required.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Yema de Huevo , Selenio , Vitamina E , Animales , Femenino , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Selenio/administración & dosificación , Selenio/análisis , Yema de Huevo/química , Vitamina E/administración & dosificación , Vitamina E/análisis , Dieta/veterinaria , Distribución Aleatoria , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Lípidos/análisis , beta Caroteno/análisis , beta Caroteno/administración & dosificación , beta Caroteno/metabolismo
3.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633150

RESUMEN

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Asunto(s)
Cíclidos , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/metabolismo , Cíclidos/metabolismo , Resistencia a la Enfermedad , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Suplementos Dietéticos , Antioxidantes/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Expresión Génica
4.
Cell Biochem Funct ; 42(2): e3975, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38475877

RESUMEN

Different organic compounds can have varying degrees of impact on the activity of Lactobacillus paracasei. The study focused on the impact and action mechanism of different organic selenium products on the bioactivity of two strains of L. paracasei. The growth, antioxidant activity, extracellular polysaccharide secretion, quorum sensing (QS), and biofilm formation of the strains before and after the addition of organic selenium crude products and three organic selenium standard were evaluated. The results showed that the addition of crude organic selenium promoted the various activities of the strain. l-selenocysteine had the strongest regulatory effect, with maximum GIM1.80 biofilm formation when it reached a critical concentration of 0.4 µg/mL; l-selenomethionine resulted in the highest activity of the signal molecule Auto inducer-2 of GDMCC1.155, when it reached a critical concentration of 0.4 µg/mL. The results of scanning electron microscopy demonstrated that the addition of organic selenium effectively improved the morphological structure of the two bacterial cells. Molecular docking revealed that the mechanism by which organic selenium regulates QS in Lactobacillus was achieved by binding two crucial receptor proteins (histidine protein kinase HKP and periplasmic binding protein LuxP) from specific sites. Furthermore, organic selenium products have a beneficial regulatory effect on the biological activity of L. paracasei. Overall, these findings provide a new alternative (organic selenium) for regulating the viability and beneficial activity of L. paracasei.


Asunto(s)
Lacticaseibacillus paracasei , Selenio , Percepción de Quorum , Antioxidantes/farmacología , Selenio/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Biopelículas
5.
Biol Trace Elem Res ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538964

RESUMEN

In this study, we investigated the protective effect of selenium (Se)-enriched peptide isolated from Cardamine violifolia (SPE) against ethanol-induced liver injury. Cell proliferation assays show that different concentrations of SPE protect human embryonic liver L-02 cells against ethanol-induced injury in a dose-dependent manner. Treatment with 12 µmol/L Se increases the cell survival rate (82.44%) and reduces the release of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and apoptosis rate. SPE treatment with 12 µmol/L Se effectively reduces the concentration of intracellular reactive oxygen species and increases the contents of intracellular superoxide dismutase (51.64 U/mg), catalase (4.41 U/mg), glutathione peroxidase (1205.28 nmol/g), and glutathione (66.67 µmol/g), thereby inhibiting the effect of ethanol-induced oxidative damage. The results of the transcriptomic analysis show that the glutathione metabolism and apoptotic pathway play significant roles in the protection of L-02 hepatocytes by SPE. Real-time qPCR analysis shows that SPE increases the mRNA expression of GPX1 and NGFR. The results of this study highlight the protective effects of SPE against ethanol-induced liver injury.

6.
Anim Sci J ; 95(1): e13944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549501

RESUMEN

The objective of this study was to investigate the effects of two different organic selenium (Se) supplements, selenomethionine (Se-Met) and selenohomolanthionine (Se-Hlan), on the serum biochemical parameters and Se status of dairy cows. Different dietary Se supplementation treatments were set as follows: a control group (CON, adding sodium selenite at 0.3 mg Se/kg dry matter [DM]), 0.3 and 0.5 Se-Met (adding Se-Met at 0.3 and 0.5 mg Se/kg DM, respectively), as well as 0.3 and 0.5 Se-Hlan (adding Se-Hlan at 0.3 and 0.5 mg Se/kg DM, respectively). The experiment lasted 8 weeks. The serum measurements showed that both organic Se treatments resulted in higher uric acid than CON. Se-Met produced higher aspartate aminotransferase, glucose, urea, low-density lipoprotein cholesterol, and lactate dehydrogenase than Se-Hlan. Regarding the Se status, the highest milk Se values appeared in 0.5 Se-Met, with intermediate values in 0.3 Se-Met and 0.5 Se-Hlan, whereas the highest and lowest serum Se levels were presented in 0.5 Se-Met and 0.3 Se-Hlan, respectively. Our results suggest that Se-Hlan was not as efficient in boosting serum or milk Se as Se-Met and differences in serum biomarkers between Se-Met and Se-Hlan may be associated with distinct metabolic pathways for different forms of organic Se.


Asunto(s)
Selenio , Femenino , Bovinos , Animales , Suplementos Dietéticos , Leche/metabolismo , Selenometionina/metabolismo , Alimentación Animal/análisis , Biomarcadores/metabolismo , Dieta/veterinaria
7.
Compr Rev Food Sci Food Saf ; 23(3): e13329, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38551194

RESUMEN

Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.


Asunto(s)
Compuestos de Selenio , Selenio , Oligoelementos , Humanos , Ácido Selénico , Antioxidantes
8.
Foods ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338539

RESUMEN

Chlorella has been applied in the production of selenium (Se) enriched organic biomass. However, limited information exists regarding heterotrophic selenium tolerance and its incorporation into Chlorella. This study aimed to investigate the potential of using Chlorella vulgaris K-01 for selenium biotransformation. To assess the dose-response effect of Se stress on the strain, time-series growth curves were recorded, growth productivity parameters were calculated, and Gaussian process (GP) regression analysis was performed. The strain's carbon and energy metabolism were evaluated by measuring residual glucose in the medium. Characterization of different forms of intracellular Se and residual Se in the medium was conducted using inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometer (ICP-OES). The EC50 value for the strain in response to Se stress was 38.08 mg/L. The maximum biomass productivity was 0.26 g/L/d. GP regression analysis revealed that low-level Se treatment could increase the biomass accumulation and the carrying capacity of Chlorella vulgaris K-01 in a heterotrophic culture. The maximum organic Se in biomass was 154.00 µg/g DW. These findings lay the groundwork for understanding heterotrophic microalgal production of Se-containing nutraceuticals, offering valuable insights into Se tolerance, growth dynamics, and metabolic responses in Chlorella vulgaris K-01.

9.
J Agric Food Chem ; 72(7): 3388-3396, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38343309

RESUMEN

Accurately quantifying selenium (Se) speciation and transformation in Se-enriched crops is highly significant for human health. The investigation of Se species in Se-enriched crops involves assessing the enrichment of both organic and inorganic Se species, considering their plant families and edible parts. The staple crops of rice, corn, and wheat showed no or less inorganic Se with the increase of total Se; however, potatoes expressed a proportion of selenate [Se(VI)]. In addition, the organic Se proportions in Se-enriched crops of Cruciferous, Brassicaceae, and Umbelliferae plant families were relatively lower than the proportion of inorganic Se. Concurrently, the edible parts of the Se-enriched gramineous or cereal crops enriched with organic Se and crops with fruit, stem, leaf, and root as edible parts contain the maximum percentage of organic Se with a certain proportion of inorganic Se. This study contributes to a sparse body of literature by meticulously discerning appropriate Se-enriched crop selection through a comprehensive evaluation of Se speciation and its organic and inorganic accumulation potential.


Asunto(s)
Compuestos de Selenio , Selenio , Humanos , Ácido Selénico , Productos Agrícolas , Grano Comestible
10.
Food Chem ; 443: 138460, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295566

RESUMEN

Currently, planting selenium-rich crops using inorganic selenium such as selenate and selenite is used to address human selenium deficiency problems. In this paper, besides the above two traditional inorganic selenium speciation, we chose a new organic selenium speciation of potassium selenocyanoacetate to investigate the different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism via foliar application. Plantingexperiments showed that the selenium content of garlic bulbs treated with organic selenium was 1.8-3.9 times higher than that of inorganic selenium. Additionally, the absorption and transformation efficiency of organic selenium in garlic was also the highest, reaching over 95 %. Importantly, it was noteworthy that the cadmium content in bulbs treated with organic selenium was significantly lower than the Chinese food safety standard (0.2 mg/kg). Hence, this study provides an efficient organic selenium speciation which is beneficial to meet human selenium requirements and ensure safe utilization of cadmium-contaminated soils.


Asunto(s)
Ajo , Selenio , Humanos , Selenio/farmacología , Cadmio , Ácido Selenioso , Antioxidantes , Ácido Selénico
11.
Chemistry ; 30(14): e202303384, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38126954

RESUMEN

Dynamic bonds are essential structural ingredients of dynamic covalent chemistry that involve reversible cleavage and formation of bonds. Herein, we explore the electronic characteristics of Se-N bonds in the organo-selenium antioxidant ebselen and its derivatives for their propensity to function as dynamic covalent bonds by employing high-resolution X-ray quantum crystallography and complementary computational studies. An analysis of the experimentally reconstructed X-ray wavefunctions reveals the salient electronic features of the Se-N bonds with very low electron density localized at the bonding region and a positive Laplacian value at the bond critical point. Bond orders and percentage covalency and ionicity estimated from the X-ray wavefunctions, along with localized orbital locator (LOL) and electron localization function (ELF) analyses show that the Se-N bond is unique in its closed shell-like features, despite being a covalent bond. Time-dependent DFT calculations simulate the cleavage of Se-N bonds in ebselen in the excited state, further substantiating their nature as dynamic bonds.

12.
J Fungi (Basel) ; 9(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38132740

RESUMEN

The administration of yeast products as feed additives has been proven to beneficially affect animal productivity through energy, oxidative, and immune status improvement. This study evaluated a combination of Saccharomyces cerevisiae live yeast (LY) with yeast postbiotics (rich in mannan-oligosaccharides (MOS) and beta-glucans) and selenium (Se)-enriched yeast on ewes' milk performance and milk quality, energy and oxidative status, and gene expression related to their immune system during the peripartum period. Ewes were fed a basal diet (BD; F:C = 58:42 prepartum and 41:59 postpartum) including inorganic Se (CON; n = 27), the BD supplemented with a LY product, and inorganic Se (AC; n = 29), as well as the combination of the LY, a product of yeast fraction rich in MOS and beta-glucans, and organic-Se-enriched yeast (ACMAN; n = 26) from 6 weeks prepartum to 6 weeks postpartum. The ß-hydroxybutyric acid concentration in the blood of AC and ACMAN ewes was lower (compared to the CON) in both pre- and postpartum periods (p < 0.010). Postpartum, milk yield was increased in the AC and ACMAN Lacaune ewes (p = 0.001). In addition, the activity of superoxide dismutase (p = 0.037) and total antioxidant capacity (p = 0.034) measured via the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was increased in the blood plasma of the ACMAN postpartum. Higher ABTS values were also found (p = 0.021), while protein carbonyls were reduced (p = 0.023) in the milk of the treated groups. The relative transcript levels of CCL5 and IL6 were downregulated in the monocytes (p = 0.007 and p = 0.026 respectively), and those of NFKB were downregulated in the neutrophils of the ACMAN-fed ewes postpartum (p = 0.020). The dietary supplementation of ewes with yeast postbiotics rich in MOS and beta-glucans, and organic Se, improved energy status, milk yield and some milk constituents, and oxidative status, with simultaneous suppression of mRNA levels of proinflammatory genes during the peripartum period.

13.
BMC Vet Res ; 19(1): 247, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008716

RESUMEN

Dietary selenium (Se) sources affects the structure of the rumen microbial community and rumen fermentation. This study evaluated the effects of sodium selenite (SS) and bio-nanostructured selenium (SeNSM) on rumen fermentation and structure of rumen microbial community of lactating Barki ewes. Twenty one lactating Barki ewes were assigned into three groups based on their body weight and milk yield. The experiment lasted for 50 days, whenever, the control group was fed basal diet; group SS received basal diets plus sodium selenite as inorganic source of Se; and group SeNSM received basal diet plus organic selenium bio-nanostructured. Ruminal pH and volatile Fatty Acids (VFA) was lower (P < 0.05) in SeNSM group compared to control. Principle Coordinate Analysis separated the microbial communities into three clusters based on feeding treatment. The bacterial community was dominated by phylum Bacteroidetes and Firmicutes that were affected (P < 0.05) by Se sources. Specifically Bacteriodetes was higher (P < 0.05) in SS and SeNSM groups; and Firmicutes was higher (P < 0.05) in the control group. Moreover, the predominant bacterial genera were Prevotella, Rikenellaceae RC9 gut group, Unclassified_Bacteroidales, which were higher (P < 0.05) in SeNSM group. The methanogenic community belonged to phylum Euryarchaeota and was significantly decreased (P < 0.05) by Se supplementation. Principal component analysis based on rumen fermentation parameters, and relative abundances of bacteria and methanogens revealed three distinct clusters. These findings suggest that Se supplementation affected the relative abundances of dominant bacterial groups, declined rumen methanogens and SeNSM supplementation showed some positive impacts on some fibrolytic bacteria.


Asunto(s)
Microbiota , Selenio , Ovinos , Animales , Femenino , Selenito de Sodio/farmacología , Suplementos Dietéticos/análisis , Selenio/farmacología , Selenio/metabolismo , Rumen/metabolismo , Lactancia , Fermentación , Dieta/veterinaria , Bacterias , Firmicutes
14.
Trop Anim Health Prod ; 55(6): 365, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857928

RESUMEN

The aim of this study was to evaluate the effect of adding selenium-enriched yeast (SE) in the diet of dairy goats during 60 days of lactation and its effect on productive, thermoregulatory, and hormonal responses of animals managed in a semi-arid region. Sixteen Saanen × Toggenburg crossbred goats were used in a completely randomized design. Goats were weighed, and their milk yield was monitored weekly. Before the animals entered the treatments and at every 20-day milk producing, blood samples were collected to determine the SE levels. At 20, 40, and days of the lactation cycle, individual milk samples were collected to determine composition, casein, urea nitrogen, and selenium content. Measurements of respiratory rate (RR), rectal temperature (RT), coat surface temperature (CST), and epidermal temperature (ET) were performed weekly during the experimental period in two shifts, one in the morning (9 am) and the other in the afternoon (3 pm). No difference (P > 0.05) was detected for body weight, milk yield, composition, selenium concentration, and urea nitrogen. Lower RR and ET (P < 0.05) were observed for animals that received SE supplementation. Thyroid hormone concentrations were similar between treatments (P > 0.05). The positive results of the SE supplementation were concentrated in thermoregulatory responses, and there was no effect on productive, hormonal responses, and plasmatic concentration of selenium in the milk. The SE supplementation for dairy goats managed in a Brazilian semi-arid region was able to promote reduction of RR and coat temperatures.


Asunto(s)
Selenio , Femenino , Animales , Selenio/farmacología , Saccharomyces cerevisiae , Brasil , Suplementos Dietéticos , Leche/química , Lactancia/fisiología , Dieta/veterinaria , Urea , Cabras/fisiología , Nitrógeno
15.
Molecules ; 28(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37513172

RESUMEN

Organic selenium has been widely studied as a nutritional supplement for animal feed. However, there are few studies on the effect of organic selenium on flesh quality. In this study, the effects of organic selenium (yeast selenium (YS), Se 0.002 mg/L) on the metabolism and protein expression in Micropterus salmoides muscle under temporary fasting condition (6 weeks) were investigated. The muscle structure was observed through a microscope, and regulatory pathways were analyzed using proteomics and metabolomics methods. Electron microscopy showed that YS made the muscle fibers of M. salmoides more closely aligned. Differential analysis identified 523 lipid molecules and 268 proteins. The numbers of upregulated and downregulated proteins were 178 and 90, respectively, including metabolism (46.15%), cytoskeleton (11.24%) and immune oxidative stress (9.47%), etc. Integrated analyses revealed that YS enhanced muscle glycolysis, the tricarboxylic acid cycle and oxidative phosphorylation metabolism. In the YS group, the content of eicosapentaenoic acid was increased, and that of docosahexaenoic acid was decreased. YS slowed down protein degradation by downregulating ubiquitin and ubiquitin ligase expression. These results suggest that organic selenium can improve M. salmoides muscle quality through the aforementioned pathways, which provides potential insights into the improvement of the quality of aquatic products, especially fish.


Asunto(s)
Lubina , Selenio , Animales , Selenio/farmacología , Proteómica , Músculos , Metabolómica , Ubiquitinas
16.
Bioresour Technol ; 384: 129313, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37302765

RESUMEN

This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.


Asunto(s)
Microalgas , Selenio , Estramenopilos , Selenito de Sodio , Selenio/metabolismo , Selenio/farmacología , Microalgas/metabolismo , Aguas Residuales , Biotransformación , Azúcares , Estramenopilos/metabolismo
17.
Molecules ; 28(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241725

RESUMEN

Selenium (Se) is a trace mineral found in plants with a distinct sulfuric odor that is cardioprotective and reported to have low toxicity. West Java, Indonesia, has a variety of plants with a distinct odor that are consumed raw, such as jengkol (Archidendron pauciflorum). This study is conducted to determine the Se content of jengkol using the fluorometric method, where the jengkol extract is separated, and the Se content is detected using high-pressure liquid chromatography (HPLC), combined with fluorometry. Two fractions with the highest Se concentration (A and B) are found and characterized using liquid chromatography mass spectrometry to predict the organic Se content by comparing the results with those in the external literature. The Se content of fraction (A) is found to be selenomethionine (m/z 198), gamma glutamyl-methyl-selenocysteine-(GluMetSeCys; m/z 313), and the Se-sulfur (S) conjugate of cysteine-selenoglutathione (m/z 475). Furthermore, these compounds are docked on receptors involved in cardioprotection. The receptors are peroxisome proliferator-activated receptor-γ (PPAR-γ), nuclear factor kappa-B (NF-κB), and phosphoinositide 3-kinase (PI3K/AKT). The interaction of receptor and ligan that has the lowest binding energy of the docking simulation is measured with molecular dynamic simulation. MD is performed to observe bond stability and conformation based on root mean square deviation, root mean square fluctuation, radius gyration, and MM-PBSA parameters. The results of the MD simulation show that the stability of the complex organic Se compounds tested with the receptors is lower than that of the native ligand, while the binding energy is lower than that of the native ligand based on the MM-PSBA parameter. This indicates that the predicted organic Se in jengkol, i.e., gamma-GluMetSeCys to PPAR-γ, gamma-GluMetSeCys AKT/PI3K, and Se-S conjugate of cysteine-selenoglutathione to NF-κB, has the best interaction results and provides a cardioprotection effect, compared to the molecular interaction of the test ligands with the receptors.


Asunto(s)
FN-kappa B , Selenio , FN-kappa B/metabolismo , Selenio/química , Fosfatidilinositol 3-Quinasas , PPAR gamma/metabolismo , Cisteína/análisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ligandos
18.
Front Nutr ; 10: 1136458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006921

RESUMEN

Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.

19.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771062

RESUMEN

It is an important way for healthy Selenium (Se) supplement to transform exogenous Se into organic Se through crops. In the present study, Vigna unguiculata was selected as a test material and sprayed with biological nano selenium (SeNPs) and Na2SeO3, and its nutrient composition, antioxidant capacity, total Se and organic Se content were determined, respectively. Further, the response of ABC transporter family members in cowpea to different exogenous Se treatments was analyzed by transcriptome sequencing combined with different Se forms. The results show that the soluble protein content of cowpea increased after twice Se treatment. SeNPs treatment increased the content of cellulose in cowpea pods. Na2SeO3 treatment increased the content of vitamin C (Vc) in cowpea pods. Se treatments could significantly increase the activities of Peroxidase (POD), polyphenol oxidase (PPO) and catalase (CAT) in cowpea pods and effectively maintain the activity of Superoxide dismutase (SOD). SeNPs can reduce the content of malondialdehyde (MDA) in pods. After Se treatment, cowpea pods showed a dose-effect relationship on the absorption and accumulation of total Se, and Na2SeO3 treatment had a better effect on the increase of total Se content in cowpea pods. After treatment with SeNPs and Na2SeO3, the Se species detected in cowpea pods was mainly SeMet, followed by MeSeCys. Inorganic Se can only be detected in the high concentration treatment group. Analysis of transcriptome data of cowpea treated with Se showed that ABC transporters could play an active role in response to Se stress and Se absorption, among which ABCB, ABCC and ABCG subfamilies played a major role in Se absorption and transportation in cowpea. Further analysis by weighted gene co-expression network analysis (WGCNA) showed that the content of organic Se in cowpea treated with high concentration of SeNPs was significantly and positively correlated with the expression level of three transporters ABCC11, ABCC13 and ABCC10, which means that the ABCC subfamily may be more involved in the transmembrane transport of organic Se in cells.


Asunto(s)
Selenio , Vigna , Selenio/farmacología , Vigna/genética , Vigna/metabolismo , Antioxidantes/farmacología , Vitaminas/farmacología , Valor Nutritivo
20.
J Anim Sci Biotechnol ; 14(1): 12, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631908

RESUMEN

BACKGROUND: There is an urgent need to identify natural bioactive compounds that can enhance gastrointestinal health and promote pig growth performance in the absence of pharmacological levels of zinc oxide (ZnO). The objectives of this study were to: 1) compare the effects of mushroom powder supplemented with inorganic selenium (inSeMP) to mushroom powder enriched with organic selenium (orgSeMP) to pharmacological levels of ZnO on growth performance and faecal scores (FS) for the first 21 d post-weaning (Period 1); and 2) compare the molecular and microbial effects of inSeMP and orgSeMP in these pigs on d 39 post-weaning (Period 2). METHODS: In Period 1, pigs (3 pigs/pen; 8 pens/treatment) were assigned to: (1) basal diet (control); (2) basal diet + zinc oxide (ZnO) (3100 mg/kg d 1-14, 1550 mg/kg d 15-21); (3) basal diet + mushroom powder supplemented with inorganic selenium (inSeMP) containing selenium (selenite) content of 0.3 mg/kg feed; (4) basal diet + mushroom powder enriched with organic selenium (orgSeMP) containing selenium (selenocysteine) content of 0.3 mg/kg feed. Mushroom powders were included at 6.5 g/kg of feed. RESULTS: In Period 1, there was no effect of diets on average daily gain (ADG) and gain:feed (G:F) ratio (P > 0.05). The orgSeMP supplemented pigs had a lower average daily feed intake (ADFI) compared to all other groups (P < 0.05). The ZnO supplemented pigs had reduced FS compared to the basal and mushroom group, while the orgSeMP supplemented pigs had lower FS compared to the basal group during the 21 d experimental period (P < 0.05). In Period 2, there was no effect of diets on ADFI, ADG and G:F ratio (P > 0.05). The orgSeMP supplementation increased the caecal abundance of bacterial members of the Firmicutes and Bacteroidetes phylum, including Lactobacillus, Agathobacter, Roseburia, and Prevotella and decreased the abundance of Sporobacter compared to the basal group, while inSeMP increased the caecal abundance of Prevotella and decreased the caecal abundance of Sporobacter compared to the basal group (P < 0.05). Dietary supplementation with inSeMP increased expression of TLR4 and anti-inflammatory cytokine gene IL10 and decreased nutrient transporter gene FABP2 compared to the orgSeMP group (P < 0.05). CONCLUSION: OrgSeMP is a novel and sustainable way to incorporate selenium and ß-glucans into the diet of weaned pigs whilst improving FS and modulating the caecal microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...