Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros












Intervalo de año de publicación
1.
Mol Biol (Mosk) ; 58(2): 204-219, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-39355879

RESUMEN

The study of molecular and genetic mechanisms of sex determination in the poplar is of interest not only in the fundamental science, but also in the applied research. In landscaping of large settlements, it is advisable to use male individuals of the Populus genus due to their hypoallergenicity and increased resistance to environmental pollution, stress conditions, and pathogens. However, sex determination in poplars is complicated by the complex genetic structure of the sex-determining region of the genome (SDR). In this review, the emergence, evolution, structure, and function of the SDR in the genus Populus are discussed. Current insights into the structure and function of the key regulator of sex selection in poplars, orthologue of the ARR16/ARR17 gene and the possible roles of other genes that are differentially expressed between male and female plants, including microRNAs, in this process are discussed in detail. The great diversity of species and the high complexity of SDR organization justify the need for further study of the molecular mechanisms of sex determination in poplars.


Asunto(s)
Populus , Procesos de Determinación del Sexo , Populus/genética , Procesos de Determinación del Sexo/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/genética , Genoma de Planta
2.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39273461

RESUMEN

The northern bark beetle, Ips duplicatus, is an emerging economic pest, reportedly infesting various species of spruce (Picea spp.), pine (Pinus spp.), and larch (Larix spp.) in Central Europe. Recent climate changes and inconsistent forest management practices have led to the rapid spread of this species, leaving the current monitoring strategies inefficient. As understanding the molecular components of pheromone detection is key to developing novel control strategies, we generated antennal transcriptomes from males and females of this species and annotated the chemosensory proteins. We identified putative candidates for 69 odorant receptors (ORs), 50 ionotropic receptors (IRs), 25 gustatory receptors (GRs), 27 odorant-binding proteins (OBPs), including a tetramer-OBP, 9 chemosensory proteins (CSPs), and 6 sensory neuron membrane proteins (SNMPs). However, no sex-specific chemosensory genes were detected. The phylogenetic analysis revealed conserved orthology in bark beetle chemosensory proteins, especially with a major forest pest and co-habitant, Ips typographus. Recent large-scale functional studies in I. typographus chemoreceptors add greater significance to the orthologous sequences reported here. Nevertheless, identifying chemosensory genes in I. duplicatus is valuable to understanding the chemosensory system and its evolution in bark beetles (Coleoptera) and, generally, insects.


Asunto(s)
Antenas de Artrópodos , Escarabajos , Proteínas de Insectos , Filogenia , Receptores Odorantes , Transcriptoma , Animales , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Masculino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Escarabajos/genética , Escarabajos/metabolismo , Antenas de Artrópodos/metabolismo , Perfilación de la Expresión Génica/métodos
3.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125682

RESUMEN

Brassinosteroids (BRs) are an essential group of plant hormones regulating numerous aspects of plant growth, development, and stress responses. BRI1, along with its co-receptor BAK1, are involved in brassinosteroid sensing and early events in the BR signal transduction cascade. Mutational analysis of a particular gene is a powerful strategy for investigating its biochemical role. Molecular genetic studies, predominantly in Arabidopsis thaliana, but progressively in numerous other plants, have identified many mutants of the BRI1 gene and its orthologs to gain insight into its structure and function. So far, the plant kingdom has identified up to 40 bri1 alleles in Arabidopsis and up to 30 bri1 orthologs in different plants. These alleles exhibit phenotypes that are identical in terms of development and growth. Here, we have summarized bri1 alleles in Arabidopsis and its orthologs present in various plants including monocots and dicots. We have discussed the possible mechanism responsible for the specific allele. Finally, we have briefly debated the importance of these alleles in the research field and the agronomically valuable traits they offer to improve plant varieties.


Asunto(s)
Alelos , Proteínas de Arabidopsis , Arabidopsis , Brasinoesteroides , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Transducción de Señal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Ecotoxicol Environ Saf ; 282: 116737, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047365

RESUMEN

To develop a method for predicting chronic toxicity of pharmaceuticals in Daphnia, we investigated the feasibility of combining the presence of drug-target orthologs in Daphnia magna, classification based on pharmacological effects, and ecotoxicity quantitative structure-activity relationship (QSAR) prediction. We established datasets on the chronic toxicity of pharmaceuticals in Daphnia, including information on therapeutic categories, target proteins, and the presence or absence of drug-target orthologs in D. magna, using literature and databases. Chronic toxicity was predicted using ecotoxicity prediction QSAR (Ecological Structure Activity Relationship and Kashinhou Tool for Ecotoxicity), and the differences between the predicted and measured values and the presence or absence of drug-target orthologs were examined. For pharmaceuticals without drug-target orthologs in D. magna or without expected specific actions, the ecotoxicity prediction QSAR analysis yielded acceptable predictions of the chronic toxicity of pharmaceuticals. In addition, a workflow model to assess the chronic toxicity of pharmaceuticals in Daphnia was proposed based on these evaluations and verified using an additional dataset. The addition of biological aspects such as drug-target orthologs and pharmacological effects would support the use of QSARs for predicting the chronic toxicity of pharmaceuticals in Daphnia.


Asunto(s)
Daphnia , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua , Daphnia/efectos de los fármacos , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Pruebas de Toxicidad Crónica , Preparaciones Farmacéuticas/química , Daphnia magna
5.
J Vet Pharmacol Ther ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847265

RESUMEN

Orthologs of breast cancer resistance protein (BCRP/ABCG2), an ATP-binding cassette (ABC) efflux transmembrane transporter, are present in several species. The list of compounds known to interact with BCRP is growing, and many questions remain concerning species-specific variations in substrate specificity and affinity and the potency of inhibitors. As the most abundant efflux transporter known to be present in the blood-milk barrier, BCRP can increase the elimination of certain xenobiotics to milk, posing a risk for suckling offspring and dairy product consumers. Here we developed a model that can be employed to investigate species-specific differences between BCRP substrates and inhibitors. Membrane vesicles were isolated from transiently transduced human embryonic kidney (HEK) 293 cells, overexpressing BCRP, with human, bovine, caprine, and ovine cDNA sequences. To confirm BCRP transport activity in the transduced cells, D-luciferin efflux was measured and to confirm transport activity in the membrane vesicles, [3H] estrone-3-sulfate ([3H]E1S) influx was measured. We also determined the Michaelis-Menten constant (Km) and Vmax of [3H]E1S for each species. We have developed an in vitro transport model to study differences in compound interactions with BCRP orthologs from milk-producing animal species and humans. BCRP transport activity was demonstrated in the species-specific transduced cells by a reduced accumulation of D-luciferin compared with the control cells, indicating BCRP-mediated efflux of D-luciferin. Functionality of the membrane vesicle model was demonstrated by confirming ATP-dependent transport and by quantifying the kinetic parameters, Km and Vmax for the model substrate [3H]E1S. The values were not significantly different between species for the model substrates tested. This model can be insightful for appropriate inter-species extrapolations and risk assessments of xenobiotics in lactating woman and dairy animals.

6.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826418

RESUMEN

Hair cells (HCs) are the sensory receptors of the auditory and vestibular systems in the inner ears of vertebrates that selectively transduce mechanical stimuli into electrical activity. Although all HCs have the hallmark stereocilia bundle for mechanotransduction, HCs in non-mammals and mammals differ in their molecular specialization in the apical, basolateral and synaptic membranes. HCs of non-mammals, such as zebrafish (zHCs), are electrically tuned to specific frequencies and possess an active process in the stereocilia bundle to amplify sound signals. Mammalian cochlear HCs, in contrast, are not electrically tuned and achieve amplification by somatic motility of outer HCs (OHCs). To understand the genetic mechanisms underlying differences among adult zebrafish and mammalian cochlear HCs, we compared their RNA-seq-characterized transcriptomes, focusing on protein-coding orthologous genes related to HC specialization. There was considerable shared expression of gene orthologs among the HCs, including those genes associated with mechanotransduction, ion transport/channels, and synaptic signaling. For example, both zebrafish and mouse HCs express Tmc1, Lhfpl5, Tmie, Cib2, Cacna1d, Cacnb2, Otof, Pclo and Slc17a8. However, there were some notable differences in expression among zHCs, OHCs, and inner HCs (IHCs), which likely underlie the distinctive physiological properties of each cell type. Tmc2 and Cib3 were not detected in adult mouse HCs but tmc2a and b and cib3 were highly expressed in zHCs. Mouse HCs express Kcna10, Kcnj13, Kcnj16, and Kcnq4, which were not detected in zHCs. Chrna9 and Chrna10 were expressed in mouse HCs. In contrast, chrna10 was not detected in zHCs. OHCs highly express Slc26a5 which encodes the motor protein prestin that contributes to OHC electromotility. However, zHCs have only weak expression of slc26a5, and subsequently showed no voltage dependent electromotility when measured. Notably, the zHCs expressed more paralogous genes including those associated with HC-specific functions and transcriptional activity, though it is unknown whether they have functions similar to their mammalian counterparts. There was overlap in the expressed genes associated with a known hearing phenotype. Our analyses unveil substantial differences in gene expression patterns that may explain phenotypic specialization of zebrafish and mouse HCs. This dataset also includes several protein-coding genes to further the functional characterization of HCs and study of HC evolution from non-mammals to mammals.

7.
IMA Fungus ; 15(1): 13, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849861

RESUMEN

The Terminal Fusarium Clade (TFC) is a group in the Nectriaceae family with agricultural and clinical relevance. In recent years, various phylogenies have been presented in the literature, showing disagreement in the topologies, but only a few studies have conducted analyses on the divergence time scale of the group. Therefore, the evolutionary history of this group is still being determined. This study aimed to understand the evolutionary history of the TFC from a phylogenomic perspective. To achieve this objective, we performed a phylogenomic analysis using the available genomes in GenBank and ran eight different pipelines. We presented a new robust topology of the TFC that differs at some nodes from previous studies. These new relationships allowed us to formulate new hypotheses about the evolutionary history of the TFC. We also inferred new divergence time estimates, which differ from those of previous studies due to topology discordances and taxon sampling. The results suggested an important diversification process in the Neogene period, likely associated with the diversification and predominance of terrestrial ecosystems by angiosperms. In conclusion, we presented a robust time-scale phylogeny that allowed us to formulate new hypotheses regarding the evolutionary history of the TFC.

8.
Genes (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38927593

RESUMEN

Tunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family. Most important was the evolution of a second type of cadherin. This, a Type II cadherin, had the property of detaching the cell containing that cadherin from cells that expressed the Type I class. The set of such Type II cadherins could now detach and move away from their Type I neighbours, a process which would eventually evolve into the formation of the neural crest, "the fourth germ layer", providing a wide range of possibilities for further evolutionary invention. A second important contribution were key additions to the broad development of the muscle and nerve protein and visual perception toolkits. These developments in mobility and vision provided the basis for the development of the efficient predatory capabilities of the Vertebrata.


Asunto(s)
Evolución Molecular , Urocordados , Animales , Humanos , Urocordados/genética , Urocordados/clasificación , Cadherinas/genética , Cadherinas/metabolismo , Filogenia
9.
Methods Mol Biol ; 2802: 1-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38819554

RESUMEN

Most genes are part of larger families of evolutionary-related genes. The history of gene families typically involves duplications and losses of genes as well as horizontal transfers into other organisms. The reconstruction of detailed gene family histories, i.e., the precise dating of evolutionary events relative to phylogenetic tree of the underlying species has remained a challenging topic despite their importance as a basis for detailed investigations into adaptation and functional evolution of individual members of the gene family. The identification of orthologs, moreover, is a particularly important subproblem of the more general setting considered here. In the last few years, an extensive body of mathematical results has appeared that tightly links orthology, a formal notion of best matches among genes, and horizontal gene transfer. The purpose of this chapter is to broadly outline some of the key mathematical insights and to discuss their implication for practical applications. In particular, we focus on tree-free methods, i.e., methods to infer orthology or horizontal gene transfer as well as gene trees, species trees, and reconciliations between them without using a priori knowledge of the underlying trees or statistical models for the inference of phylogenetic trees. Instead, the initial step aims to extract binary relations among genes.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Familia de Multigenes , Filogenia , Modelos Genéticos , Biología Computacional/métodos
10.
Mol Phylogenet Evol ; 197: 108113, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796071

RESUMEN

A robust and stable phylogenetic framework is a fundamental goal of evolutionary biology. As the third largest insect order in the world following Coleoptera and Diptera, Lepidoptera (butterflies and moths) play a central role in almost every terrestrial ecosystem as indicators of environmental change and serve as important models for biologists exploring questions related to ecology and evolutionary biology. However, for such a charismatic insect group, the higher-level phylogenetic relationships among its superfamilies are still poorly resolved. Compared to earlier phylogenomic studies, we increased taxon sampling among Lepidoptera (37 superfamilies and 68 families containing 263 taxa) and acquired a series of large amino-acid datasets from 69,680 to 400,330 for phylogenomic reconstructions. Using these datasets, we explored the effect of different taxon sampling with significant increases in the number of included genes on tree topology by considering a series of systematic errors using maximum-likelihood (ML) and Bayesian inference (BI) methods. Moreover, we also tested the effectiveness in topology robustness among the three ML-based models. The results showed that taxon sampling is an important determinant in tree robustness of accurate lepidopteran phylogenetic estimation. Long-branch attraction (LBA) caused by site-wise heterogeneity is a significant source of bias giving rise to unstable positions of ditrysian groups in phylogenomic reconstruction. Phylogenetic inference showed the most comprehensive framework to reveal the relationships among lepidopteran superfamilies, and presented some newly relationships with strong supports (Papilionoidea was sister to Gelechioidea and Immoidea was sister to Galacticoidea, respectively), but limited by taxon sampling, the relationships within the species-rich and relatively rapid radiation Ditrysia and especially Apoditrysia remain poorly resolved, which need to increase taxon sampling for further phylogenomic reconstruction. The present study demonstrates that taxon sampling is an important determinant for an accurate lepidopteran tree of life and provides some essential insights for future lepidopteran phylogenomic studies.


Asunto(s)
Teorema de Bayes , Mariposas Diurnas , Mariposas Nocturnas , Filogenia , Animales , Mariposas Nocturnas/genética , Mariposas Nocturnas/clasificación , Funciones de Verosimilitud , Mariposas Diurnas/genética , Mariposas Diurnas/clasificación , Modelos Genéticos
11.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592842

RESUMEN

Amaranthus is a genus of C4 dicotyledonous herbaceous plant species that are widely distributed in Asia, Africa, Australia, and Europe and are used as grain, vegetables, forages, and ornamental plants. Amaranth species have gained significant attention nowadays as potential sources of nutritious food and industrial products. In this study, we performed a comparative genome analysis of five amaranth species, namely, Amaranthus hypochondriacus, Amaranthus tuberculatus, Amaranthus hybridus, Amaranthus palmeri, and Amaranthus cruentus. The estimated repeat content ranged from 54.49% to 63.26% and was not correlated with the genome sizes. Out of the predicted repeat classes, the majority of repetitive sequences were Long Terminal Repeat (LTR) elements, which account for about 13.91% to 24.89% of all amaranth genomes. Phylogenetic analysis based on 406 single-copy orthologous genes revealed that A. hypochondriacus is most closely linked to A. hybridus and distantly related to A. cruentus. However, dioecious amaranth species, such as A. tuberculatus and A. palmeri, which belong to the subgenera Amaranthus Acnida, have formed their distinct clade. The comparative analysis of genomic data of amaranth species will be useful to identify and characterize agronomically important genes and their mechanisms of action. This will facilitate genomics-based, evolutionary studies, and breeding strategies to design faster, more precise, and predictable crop improvement programs.

12.
BMC Genomics ; 25(1): 270, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475739

RESUMEN

BACKGROUND: Mung bean (Vigna radiata (L.) Wilczek), is an important pulse crop in the global south. Early flowering and maturation are advantageous traits for adaptation to northern and southern latitudes. This study investigates the genetic basis of the Days-to-Flowering trait (DTF) in mung bean, combining genome-wide association studies (GWAS) in mung bean and comparisons with orthologous genes involved with control of DTF responses in soybean (Glycine max (L) Merr) and Arabidopsis (Arabidopsis thaliana). RESULTS: The most significant associations for DTF were on mung bean chromosomes 1, 2, and 4. Only the SNPs on chromosomes 1 and 4 were heavily investigated using downstream analysis. The chromosome 1 DTF association is tightly linked with a cluster of locally duplicated FERONIA (FER) receptor-like protein kinase genes, and the SNP occurs within one of the FERONIA genes. In Arabidopsis, an orthologous FERONIA gene (AT3G51550), has been reported to regulate the expression of the FLOWERING LOCUS C (FLC). For the chromosome 4 DTF locus, the strongest candidates are Vradi04g00002773 and Vradi04g00002778, orthologous to the Arabidopsis PhyA and PIF3 genes, encoding phytochrome A (a photoreceptor protein sensitive to red to far-red light) and phytochrome-interacting factor 3, respectively. The soybean PhyA orthologs include the classical loci E3 and E4 (genes GmPhyA3, Glyma.19G224200, and GmPhyA2, Glyma.20G090000). The mung bean PhyA ortholog has been previously reported as a candidate for DTF in studies conducted in South Korea. CONCLUSION: The top two identified SNPs accounted for a significant proportion (~ 65%) of the phenotypic variability in mung bean DTF by the six significant SNPs (39.61%), with a broad-sense heritability of 0.93. The strong associations of DTF with genes that have orthologs with analogous functions in soybean and Arabidopsis provide strong circumstantial evidence that these genes are causal for this trait. The three reported loci and candidate genes provide useful targets for marker-assisted breeding in mung beans.


Asunto(s)
Arabidopsis , Fabaceae , Vigna , Vigna/genética , Estudio de Asociación del Genoma Completo , Arabidopsis/genética , Fitomejoramiento , Fabaceae/genética , Glycine max , Genómica
13.
Physiol Mol Biol Plants ; 30(1): 93-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38435852

RESUMEN

Rice, a critical cereal crop, grapples with productivity challenges due to its inherent sensitivity to low temperatures, primarily during the seedling and booting stages. Recognizing the polygenic complexity of cold stress signaling in rice, a meta-analysis was undertaken, focusing on 20 physiological traits integral to cold tolerance. This initiative allowed the consolidation of genetic data from 242 QTLs into 58 meta-QTLs, thereby significantly constricting the genetic and physical intervals, with 84% of meta-QTLs (MQTLs) being reduced to less than 2 Mb. The list of 10,505 genes within these MQTLs, was further refined utilizing expression datasets to pinpoint 46 pivotal genes exhibiting noteworthy differential regulation during cold stress. The study underscored the presence of several TFs such as WRKY, NAC, CBF/DREB, MYB, and bHLH, known for their roles in cold stress response. Further, ortho-analysis involving maize, barley, and Arabidopsis identified OsWRKY71, among others, as a prospective candidate for enhancing cold tolerance in diverse crop plants. In conclusion, our study delineates the intricate genetic architecture underpinning cold tolerance in rice and propounds significant candidate genes, offering crucial insights for further research and breeding strategies focused on fortifying crops against cold stress, thereby bolstering global food resilience. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01412-1.

14.
Cell Rep ; 43(2): 113777, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358883

RESUMEN

There is a broad diversity among Cas12a endonucleases that possess nucleic acid detection and gene-editing capabilities, but few are studied extensively. Here, we present an exhaustive investigation of 23 Cas12a orthologs, with a focus on their cis- and trans-cleavage activities in combination with noncanonical crRNAs. Through biochemical assays, we observe that some noncanonical crRNA:Cas12a effector complexes outperform their corresponding wild-type crRNA:Cas12a. Cas12a can recruit crRNA with modifications such as loop extensions and split scaffolds. Moreover, the tolerance of Cas12a to noncanonical crRNA is also observed in mammalian cells through the formation of indels. We apply the adaptability of Cas12a:crRNA complexes to detect SARS-CoV-2 in clinical nasopharyngeal swabs, saliva samples, and tracheal aspirates. Our findings further expand the toolbox for next-generation CRISPR-based diagnostics and gene editing.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Endonucleasas/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Mamíferos/metabolismo
15.
Microorganisms ; 12(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257969

RESUMEN

'Candidatus Phytoplasma meliae' is a pathogen associated with chinaberry yellowing disease, which has become a major phytosanitary problem for chinaberry forestry production in Argentina. Despite its economic impact, no genome information of this phytoplasma has been published, which has hindered its characterization at the genomic level. In this study, we used a metagenomics approach to analyze the draft genome of the 'Ca. P. meliae' strain ChTYXIII. The draft assembly consisted of twenty-one contigs with a total length of 751.949 bp, and annotation revealed 669 CDSs, 34 tRNAs, and 1 set of rRNA operons. The metabolic pathways analysis showed that ChTYXIII contains the complete core genes for glycolysis and a functional Sec system for protein translocation. Our phylogenomic analysis based on 133 single-copy genes and genome-to-genome metrics supports the classification as unique 'Ca. P. species' within the MPV clade. We also identified 31 putative effectors, including a homolog to SAP11 and others that have only been described in this pathogen. Our ortholog analysis revealed 37 PMU core genes in the genome of 'Ca. P. meliae' ChTYXIII, leading to the identification of 2 intact PMUs. Our work provides important genomic information for 'Ca. P. meliae' and others phytoplasmas for the 16SrXIII (MPV) group.

16.
Microbiol Spectr ; 12(1): e0282723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37991376

RESUMEN

IMPORTANCE: This study reports the results of the largest analysis of genome sequences from phages that infect the Alphaproteobacteria class of bacterial hosts. We analyzed over 100 whole genome sequences of phages to construct dotplots, categorize them into genetically distinct clusters, generate a bootstrapped phylogenetic tree, compute protein orthologs, and predict packaging strategies. We determined that the phage sequences primarily cluster by the bacterial host family, phage morphotype, and genome size. We expect that the findings reported in this seminal study will facilitate future analyses that will improve our knowledge of the phages that infect these hosts.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genómica , Genoma Viral , Secuenciación Completa del Genoma
17.
3 Biotech ; 14(1): 14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111612

RESUMEN

Doubled haploid (DH) breeding is a powerful technique to ensure global food security via accelerated crop improvement. DH can be produced in planta by employing haploid inducer stock (HIS). Widely used HIS in maize is known to be governed by ZmPLA, ZmDMP, ZmPLD3, and ZmPOD65 genes. To develop such HIS in rice and wheat, we have identified putative orthologs of these genes using in silico approaches. The OsPLD1; TaPLD1, and OsPOD6; TaPOD8 were identified as putative orthologs of ZmPLD3 and ZmPOD65 in rice and wheat, respectively. Despite being closely related to ZmPLD3, OsPLD1 and TaPLD1 have shown higher anther-specific expression. Similarly, OsPOD6 and TaPOD8 were found closely related to the ZmPOD65 based on both phylogenetic and expression analysis. However, unlike ZmPLD3 and ZmPOD65, two ZmDMP orthologs have been found for each crop. OsDMP1 and OsDMP2 in rice and TaDMP3 and TaDMP13 in wheat have shown similarity to ZmDMP in terms of both sequence and expression pattern. Furthermore, analogs to maize DMP proteins, these genes possess four transmembrane helices making them best suited to be regarded as ZmDMP orthologs. Modifying these predicted orthologous genes by CRISPR/Cas9-based genome editing can produce a highly efficient HIS in both rice and wheat. Besides revealing the genetic mechanism of haploid induction, the development of HIS would advance the genetic improvement of these crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03857-9.

18.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38003266

RESUMEN

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a unique genome editing tool that can be easily used in a wide range of applications, including functional genomics, transcriptomics, epigenetics, biotechnology, plant engineering, livestock breeding, gene therapy, diagnostics, and so on. This review is focused on the current CRISPR/Cas9 landscape, e.g., on Cas9 variants with improved properties, on Cas9-derived and fusion proteins, on Cas9 delivery methods, on pre-existing immunity against CRISPR/Cas9 proteins, anti-CRISPR proteins, and their possible roles in CRISPR/Cas9 function improvement. Moreover, this review presents a detailed outline of CRISPR/Cas9-based diagnostics and therapeutic approaches. Finally, the review addresses the future expansion of genome editors' toolbox with Cas9 orthologs and other CRISPR/Cas proteins.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento , Sistemas CRISPR-Cas/genética , Edición Génica , Proteína 9 Asociada a CRISPR/genética , Biotecnología
19.
Front Genome Ed ; 5: 1251903, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901282

RESUMEN

Cas12a, also known as Cpf1, is a highly versatile CRISPR-Cas enzyme that has been widely used in genome editing. Unlike its well-known counterpart, Cas9, Cas12a has unique features that make it a highly efficient genome editing tool at AT-rich genomic regions. To enrich the CRISPR-Cas12a plant genome editing toolbox, we explored 17 novel Cas12a orthologs for their genome editing capabilities in plants. Out of them, Ev1Cas12a and Hs1Cas12a showed efficient multiplexed genome editing in rice and tomato protoplasts. Notably, Hs1Cas12a exhibited greater tolerance to lower temperatures. Moreover, Hs1Cas12a generated up to 87.5% biallelic editing in rice T0 plants. Both Ev1Cas12a and Hs1Cas12a achieved effective editing in poplar T0 plants, with up to 100% of plants edited, albeit with high chimerism. Taken together, the efficient genome editing demonstrated by Ev1Cas12a and Hs1Cas12a in both monocot and dicot plants highlights their potential as promising genome editing tools in plant species and beyond.

20.
PNAS Nexus ; 2(10): pgad299, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37822767

RESUMEN

The underlying biological mechanisms that contribute to the heterogeneity of major depressive disorder (MDD) presentation remain poorly understood, highlighting the need for a conceptual framework that can explain this variability and bridge the gap between animal models and clinical endpoints. Here, we hypothesize that comparative analysis of molecular data from different experimental systems of chronic stress, and MDD has the potential to provide insight into these mechanisms and address this gap. Thus, we compared transcriptomic profiles of brain tissue from postmortem MDD subjects and from mice exposed to chronic variable stress (CVS) to identify orthologous genes. Ribosomal protein genes (RPGs) were down-regulated, and associated ribosomal protein (RP) pseudogenes were up-regulated in both conditions. A seeded gene co-expression analysis using altered RPGs common between the MDD and CVS groups revealed that down-regulated RPGs homeostatically regulated the synaptic changes in both groups through a RP-pseudogene-driven mechanism. In vitro analysis demonstrated that the RPG dysregulation was a glucocorticoid-driven endocrine response to stress. In silico analysis further demonstrated that the dysregulation was reversed during remission from MDD and selectively responded to ketamine but not to imipramine. This study provides the first evidence that ribosomal dysregulation during stress is a conserved phenotype in human MDD and chronic stress-exposed mouse. Our results establish a foundation for the hypothesis that stress-induced alterations in RPGs and, consequently, ribosomes contribute to the synaptic dysregulation underlying MDD and chronic stress-related mood disorders. We discuss the role of ribosomal heterogeneity in the variable presentations of depression and other mood disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...