Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.192
Filtrar
1.
Adv Sci (Weinh) ; : e2403177, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120025

RESUMEN

Epigenetic regulation of metabolism profoundly influences cell fate commitment. During osteoclast differentiation, the activation of RANK signaling is accompanied by metabolic reprogramming, but the epigenetic mechanisms by which RANK signaling induces this reprogramming remain elusive. By transcriptional sequence and ATAC analysis, this study identifies that activation of RANK signaling upregulates PRMT6 by epigenetic modification, triggering a metabolic switching from fatty acids oxidation toward glycolysis. Conversely, Prmt6 deficiency reverses this shift, markedly reducing HIF-1α-mediated glycolysis and enhancing fatty acid oxidation. Consequently, PRMT6 deficiency or inhibitor impedes osteoclast differentiation and alleviates bone loss in ovariectomized (OVX) mice. At the molecular level, Prmt6 deficiency reduces asymmetric dimethylation of H3R2 at the promoters of genes including Ppard, Acox3, and Cpt1a, enhancing genomic accessibility for fatty acid oxidation. PRMT6 thus emerges as a metabolic checkpoint, mediating metabolic switch from fatty acid oxidation to glycolysis, thereby supporting osteoclastogenesis. Unveiling PRMT6's critical role in epigenetically orchestrating metabolic shifts in osteoclastogenesis offers a promising target for anti-resorptive therapy.

2.
Front Pharmacol ; 15: 1423884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108758

RESUMEN

Background: Fu-zi decoction (FZD) has a long history of application for treating Rheumatoid arthritis (RA) as a classic formulation. However, its underlying mechanisms have not been fully elucidated. This study aimed to decipher the potential mechanism of FZD in treating RA, with a specific focus on receptor activator of nuclear factor κB/receptor activator of nuclear factor κB ligand (RANK/RANKL) signaling pathway. Methods: The impact of FZD on RA was investigated in collagen-induced arthritis rats (CIA), and the underlying mechanism was investigated in an osteoclast differentiation cell model. In vivo, the antiarthritic effect of FZD at various doses (2.3, 4.6, 9.2 g/kg/day) was evaluated by arthritis index score, paw volume, toe thickness and histopathological examination of inflamed joints. Additionally, the ankle joint tissues were determined with micro-CT and safranin O fast green staining to evaluate synovial hyperplasia and articular cartilage damage. In vitro, osteoclast differentiation and maturation were evaluated by TRAP staining in RANKL-induced bone marrow mononuclear cells. The levels of pro- and anti-inflammatory cytokines as well as RANKL and OPG were evaluated by ELISA kits. In addition, Western blotting was used to investigate the effect of FZD on RANK/RANKL pathway activation both in vivo and in vitro. Results: FZD significantly diminished the arthritis index score, paw volume, toe thickness and weigh loss in CIA rats, alleviated the pathological joint alterations. Consistent with in vivo results, FZD markedly inhibited RANKL-induced osteoclast differentiation by decreasing osteoclast numbers in a dose-dependent manner. Moreover, FZD decreased the levels of pro-inflammatory cytokines IL-6, IL-1ß and TNF-α, while increasing anti-inflammatory cytokine IL-10 level both in serum and culture supernatants. Treatment with FZD significantly reduced serum RANKL levels, increased OPG levels, and decreased the RANKL/OPG ratio. In both in vivo and in vitro settings, FZD downregulated the protein expressions of RANK, RANKL, and c-Fos, while elevating OPG levels, further decreasing the RANKL/OPG ratio. Conclusion: In conclusion, FZD exerts a therapeutic effect in CIA rats by inhibiting RANK/RANKL-mediated osteoclast differentiation, which suggested that FZD is a promising treatment for RA.

3.
J Bone Miner Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095084

RESUMEN

Bone-resorbing osteoclasts (OCLs) are formed by differentiation and fusion of monocyte precursor cells, generating large multi-nucleated cells. Tightly-regulated cell fusion during osteoclastogenesis leads to formation of resorption-competent OCLs, whose sizes fall within a predictable physiological range. The molecular mechanisms that regulate the onset of OCL fusion and its subsequent arrest are, however, largely unknown. We have previously shown that OCLs cultured from mice homozygous for the R51Q mutation in the vesicle trafficking-associated protein sorting nexin 10, a mutation that induces autosomal recessive osteopetrosis in humans and in mice, display deregulated and continuous fusion that generates gigantic, inactive OCLs. Fusion of mature OCLs is therefore arrested by an active, genetically-encoded, cell-autonomous, and SNX10-dependent mechanism. In order to directly examine whether SNX10 performs a similar role in vivo, we generated SNX10-deficient (SKO) mice and demonstrated that they display massive osteopetrosis and that their OCLs fuse uncontrollably in culture, as do homozygous R51Q SNX10 (RQ/RQ) mice. OCLs that lack SNX10 exhibit persistent presence of DC-STAMP protein at their periphery, which may contribute to their uncontrolled fusion. In order to visualize endogenous SNX10-mutant OCLs in their native bone environment we genetically labelled the OCLs of wild-type, SKO and RQ/RQ mice with EGFP, and then visualized the three-dimensional organization of resident OCLs and the pericellular bone matrix by two-photon, confocal, and second harmonics generation microscopy. We show that the volumes, surface areas and, in particular, the numbers of nuclei in the OCLs of both mutant strains were on average 2-6 fold larger than those of OCLs from wild-type mice, indicating that deregulated, excessive fusion occurs in the mutant mice. We conclude that the fusion of OCLs, and consequently their size, are regulated in vivo by SNX10-dependent arrest of fusion of mature OCLs.


Osteoclasts (OCLs) are cells that degrade bone. These cells are generated by fusion of monocyte precursor cells, but the mechanisms that regulate this process and eventually arrest it are unknown. We had previously shown that OCLs cultured from mice carrying the R51Q mutation in the protein sorting nexin 10 (SNX10) lose their resorptive capacity and become gigantic due to uncontrolled fusion. To examine whether SNX10 is required for OCL fusion arrest also in vivo, we inactivated the Snx10 gene in mice and fluorescently labelled their OCLs and OCLs of R51Q SNX10 mice, isolated their femurs, and used advanced 3D microscopy methods to visualize OCLs within the bone matrix. As expected, mice lacking SNX10 exhibited excessive bone mass, indicating that their OCLs are inactive. OCLs within bones of both mutant mouse strains were on average 2-6-fold larger than in control mice, and contained proportionally more nuclei. We conclude that OCL fusion is arrested in control, but not SNX10 mutant, mice, indicating that the sizes of mature OCLs are limited in vivo by an active, SNX10-dependent mechanism that suppresses cell fusion.

5.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089619

RESUMEN

INTRODUCTION: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.

6.
Prog Orthod ; 25(1): 29, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129034

RESUMEN

BACKGROUND: Orthodontic tooth movement (OTM) is a dynamic equilibrium of bone remodeling, involving the osteogenesis of new bone and the osteoclastogenesis of old bone, which is mediated by mechanical force. Periodontal ligament stem cells (PDLCSs) in the periodontal ligament (PDL) space can transmit mechanical signals and regulate osteoclastogenesis during OTM. KAT6A is a histone acetyltransferase that plays a part in the differentiation of stem cells. However, whether KAT6A is involved in the regulation of osteoclastogenesis by PDLSCs remains unclear. RESULTS: In this study, we used the force-induced OTM model and observed that KAT6A was increased on the compression side of PDL during OTM, and also increased in PDLSCs under compression force in vitro. Repression of KAT6A by WM1119, a KAT6A inhibitor, markedly decreased the distance of OTM. Knockdown of KAT6A in PDLSCs decreased the RANKL/OPG ratio and osteoclastogenesis of THP-1. Mechanistically, KAT6A promoted osteoclastogenesis by binding and acetylating YAP, simultaneously regulating the YAP/TEAD axis and increasing the RANKL/OPG ratio in PDLSCs. TED-347, a YAP-TEAD4 interaction inhibitor, partly attenuated the elevation of the RANKL/OPG ratio induced by mechanical force. CONCLUSION: Our study showed that the PDLSCs modulated osteoclastogenesis and increased the RANKL/OPG ratio under mechanical force through the KAT6A/YAP/TEAD4 pathway. KAT6A might be a novel target to accelerate OTM.


Asunto(s)
Histona Acetiltransferasas , Osteogénesis , Osteoprotegerina , Ligamento Periodontal , Ligando RANK , Técnicas de Movimiento Dental , Factores de Transcripción , Técnicas de Movimiento Dental/métodos , Ligando RANK/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Factores de Transcripción/metabolismo , Osteogénesis/fisiología , Humanos , Histona Acetiltransferasas/metabolismo , Osteoprotegerina/metabolismo , Proteínas de Unión al ADN/metabolismo , Osteoclastos/metabolismo , Células Madre , Transducción de Señal/fisiología , Animales
7.
Chem Biodivers ; : e202401689, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136520

RESUMEN

Mesophotic coral ecosystems (MCEs), located at depths ranging from 30-150 m, host some of the most diverse yet least explored marine bioresources, particularly significant for the discovery of new bioactive molecules. The fungus Beauveria sp. NBUF147, associated with an Irciniidae sponge from the mesophotic zone at a depth of 82 m, underwent chemical investigation that led to the identification of one new sterol, beautoide A (1), and one reported sterol, 3ß,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (2). Their structures were determined from analysis of spectroscopic data and X-ray crystallography. Evaluation of biological activity in prednisolone-induced osteoporotic zebrafish showed that 1 was anti-osteoclastogenic in vivo at 3.0 µM.

8.
Mol Med ; 30(1): 125, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152382

RESUMEN

BACKGROUND: Epimedin A (EA) has been shown to suppress extensive osteoclastogenesis and bone resorption, but the effects of EA remain incompletely understood. The aim of our study was to investigate the effects of EA on osteoclastogenesis and bone resorption to explore the corresponding signalling pathways. METHODS: Rats were randomly assigned to the sham operation or ovariectomy group, and alendronate was used for the positive control group. The therapeutic effect of EA on osteoporosis was systematically analysed by measuring bone mineral density and bone biomechanical properties. In vitro, RAW264.7 cells were treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) to induce osteoclast differentiation. Cell viability assays, tartrate-resistant acid phosphatase (TRAP) staining, and immunofluorescence were used to elucidate the effects of EA on osteoclastogenesis. In addition, the expression of bone differentiation-related proteins or genes was evaluated using Western blot analysis or quantitative polymerase chain reaction (PCR), respectively. RESULTS: After 3 months of oral EA intervention, ovariectomized rats exhibited increased bone density, relative bone volume, trabecular thickness, and trabecular number, as well as reduced trabecular separation. EA dose-dependently normalized bone density and trabecular microarchitecture in the ovariectomized rats. Additionally, EA inhibited the expression of TRAP and NFATc1 in the ovariectomized rats. Moreover, the in vitro results indicated that EA inhibits osteoclast differentiation by suppressing the TRAF6/PI3K/AKT/NF-κB pathway. Further studies revealed that the effect on osteoclast differentiation, which was originally inhibited by EA, was reversed when the TRAF6 gene was overexpressed. CONCLUSIONS: The findings indicated that EA can negatively regulate osteoclastogenesis by inhibiting the TRAF6/PI3K/AKT/NF-κB axis and that ameliorating ovariectomy-induced osteoporosis in rats with EA may be a promising potential therapeutic strategy for the treatment of osteoporosis.


Asunto(s)
Diferenciación Celular , FN-kappa B , Osteoclastos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Animales , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Osteoclastos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratones , Células RAW 264.7 , Flavonoides/farmacología , Osteogénesis/efectos de los fármacos , Ratas Sprague-Dawley , Osteoporosis/metabolismo , Osteoporosis/etiología , Ovariectomía/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
9.
Adv Sci (Weinh) ; : e2404080, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041921

RESUMEN

The molecular mechanism underlying abnormal osteoclastogenesis triggering subchondral bone remodeling in osteoarthritis (OA) is still unclear. Here, single-cell and bulk transcriptomics sequencing analyses are performed on GEO datasets to identify key molecules and validate them using knee joint tissues from OA patients and rat OA models. It is found that the catalytic subunit of protein phosphatase 2A (PP2Ac) is highly expressed during osteoclastogenesis in the early stage of OA and is correlated with autophagy. Knockdown or inhibition of PP2Ac weakened autophagy during osteoclastogenesis. Furthermore, the ULK1 expression of the downstream genes is significantly increased when PP2Ac is knocked down. PP2Ac-mediated autophagy is dependent on ULK1 phosphorylation activity during osteoclastogenesis, which is associated with enhanced dephosphorylation of ULK1 Ser637 residue regulating at the post-translational level. Additionally, mTORC1 inhibition facilitated the expression level of PP2Ac during osteoclastogenesis. In animal OA models, decreasing the expression of PP2Ac ameliorated early OA progression. The findings suggest that PP2Ac is also a promising therapeutic target in early OA.

10.
ACS Appl Mater Interfaces ; 16(31): 40726-40738, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39042094

RESUMEN

The development of an artificial ligament with a multifunction of promoting bone formation, inhibiting bone resorption, and preventing infection to obtain ligament-bone healing for anterior cruciate ligament (ACL) reconstruction still faces enormous challenges. Herein, a novel artificial ligament based on a PI fiber woven fabric (PIF) was fabricated, which was coated with a phytic acid-gallium (PA-Ga) network via a layer-by-layer assembly method (PFPG). Compared with PIF, PFPG with PA-Ga coating significantly suppressed osteoclastic differentiation, while it boosted osteoblastic differentiation in vitro. Moreover, PFPG obviously inhibited fibrous encapsulation and bone absorption while accelerating new bone regeneration for ligament-bone healing in vivo. PFPG remarkably killed bacteria and destroyed biofilm, exhibiting excellent antibacterial properties in vitro as well as anti-infection ability in vivo, which were ascribed to the release of Ga ions from the PA-Ga coating. The cooperative effect of the surface characteristics (e.g., hydrophilicity/surface energy and protein absorption) and sustained release of Ga ions for PFPG significantly enhanced osteogenesis while inhibiting osteoclastogenesis, thereby achieving ligament-bone integration as well as resistance to infection. In summary, PFPG remarkably facilitated osteoblastic differentiation, while it suppressed osteoclastic differentiation, thereby inhibiting osteoclastogenesis for bone absorption while accelerating osteogenesis for ligament-bone healing. As a novel artificial ligament, PFPG represented an appealing option for graft selection in ACL reconstruction and displayed considerable promise for application in clinics.


Asunto(s)
Osteogénesis , Ácido Fítico , Animales , Ácido Fítico/química , Ácido Fítico/farmacología , Ratones , Osteogénesis/efectos de los fármacos , Ligamentos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Regeneración Ósea/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología
11.
Bioorg Chem ; 150: 107603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968905

RESUMEN

Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.


Asunto(s)
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Osteoporosis/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Células RAW 264.7 , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
12.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062974

RESUMEN

RNA-binding proteins (RBPs), which regulate gene expression through post-transcriptional modifications of RNAs, play a role in diverse biological processes that include bone cell development and bone tissue formation. RBP dysregulation may result in aberrant bone homeostasis and contribute to various bone diseases. The function of RBPs in bone physiology and pathophysiology and the underlying molecular mechanisms have been extensively studied in recent years. This article provides a review of such studies, highlighting the potential of RBPs as pivotal targets for therapeutic intervention.


Asunto(s)
Desarrollo Óseo , Enfermedades Óseas , Proteínas de Unión al ARN , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Enfermedades Óseas/metabolismo , Enfermedades Óseas/genética , Animales , Desarrollo Óseo/genética , Osteogénesis/genética , Huesos/metabolismo
13.
Cells ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994943

RESUMEN

Gingival fibroblasts (GFs) can differentiate into osteoblast-like cells and induce osteoclast precursors to differentiate into osteoclasts. As it is unclear whether these two processes influence each other, we investigated how osteogenic differentiation of GFs affects their osteoclast-inducing capacity. To establish step-wise mineralization, GFs were cultured in four groups for 3 weeks, without or with osteogenic medium for the final 1, 2, or all 3 weeks. The mineralization was assessed by ALP activity, calcium concentration, scanning electron microscopy (SEM), Alizarin Red staining, and quantitative PCR (qPCR). To induce osteoclast differentiation, these cultures were then co-cultured for a further 3 weeks with peripheral blood mononuclear cells (PBMCs) containing osteoclast precursors. Osteoclast formation was assessed at different timepoints with qPCR, enzyme-linked immunosorbent assay (ELISA), TRAcP activity, and staining. ALP activity and calcium concentration increased significantly over time. As confirmed with the Alizarin Red staining, SEM images showed that the mineralization process occurred over time. Osteoclast numbers decreased in the GF cultures that had undergone osteogenesis. TNF-α secretion, a costimulatory molecule for osteoclast differentiation, was highest in the control group. GFs can differentiate into osteoblast-like cells and their degree of differentiation reduces their osteoclast-inducing capacity, indicating that, with appropriate stimulation, GFs could be used in regenerative periodontal treatments.


Asunto(s)
Diferenciación Celular , Fibroblastos , Encía , Osteoclastos , Osteogénesis , Humanos , Osteoclastos/metabolismo , Osteoclastos/citología , Encía/citología , Fibroblastos/metabolismo , Fibroblastos/citología , Células Cultivadas , Calcio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Técnicas de Cocultivo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo
14.
Calcif Tissue Int ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030433

RESUMEN

Renin-angiotensin-aldosterone system plays a crucial role in the regulation of blood pressure and fluid homeostasis. It is reported to be involved in mediating osteoclastogenesis and bone loss in diseases of inflammatory bone resorption such as osteoporosis. Angiotensin-(1-7), a product of Angiotensin I and II (Ang I, II), is cleaved by Angiotensin-converting enzyme 2 and then binds to Mas receptor to counteract inflammatory effects produced by Ang II. However, the mechanism by which Ang-(1-7) reduces bone resorption remains unclear. Therefore, we aim to elucidate the effects of Ang-(1-7) on lipopolysaccharide (LPS)-induced osteoclastogenesis. In vivo, mice were supracalvarial injected with Ang-(1-7) or LPS ± Ang-(1-7) subcutaneously. Bone resorption and osteoclast formation were compared using micro-computed tomography, tartrate-resistant acid phosphatase (TRAP) stain, and real-time PCR. We found that Ang-(1-7) attenuated tumor necrosis factor (TNF)-α, TRAP, and Cathepsin K expression from calvaria and decreased osteoclast number along with bone resorption at the suture mesenchyme. In vitro, RANKL/TNF-α ± Ang-(1-7) was added to cultures of bone marrow-derived macrophages (BMMs) and osteoclast formation was measured via TRAP staining. The effect of Ang-(1-7) on LPS-induced osteoblasts RANKL expression and peritoneal macrophages TNF-α expression was also investigated. The effect of Ang-(1-7) on the MAPK and NF-κB pathway was studied by Western blotting. As a result, Ang-(1-7) reduced LPS-stimulated macrophages TNF-α expression and inhibited the MAPK and NF-κB pathway activation. However, Ang-(1-7) did not affect osteoclastogenesis induced by RANKL/TNF-α nor reduce osteoblasts RANKL expression in vitro. In conclusion, Ang-(1-7) alleviated LPS-induced osteoclastogenesis and bone resorption in vivo via inhibiting TNF-α expression in macrophages.

15.
Antioxidants (Basel) ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39061918

RESUMEN

Keap1 interacts with Nrf2 by assisting in its ubiquitination and subsequent proteolysis. By preventing ROS accumulation during RANKL-induced osteoclastogenesis, Nrf2 activation can prevent the differentiation of osteoclasts. Additionally, inhibiting the Keap1-Nrf2 PPI can be an effective strategy for triggering Nrf2 to regulate oxidative stress. Structure-based virtual screening was performed to discover a potentially novel Keap1-Nrf2 PPI inhibitor wherein KCB-F06 was identified. The inhibitory effects of KCB-F06 on osteoclastogenesis were investigated in vitro through TRAP staining and bone resorption assays. An ovariectomy-induced osteoporosis mouse model was applied to evaluate KCB-F06's therapeutic effects in vivo. Lastly, the underlying mechanisms were explored using real-time PCR, Western blotting, and co-IP assays. KCB-F06 was discovered as a novel Keap1-Nrf2 PPI inhibitor. As a result, the expression of antioxidants (HO-1 and NQO1) was suppressed, hence reducing ROS accumulation during osteoclastogenesis. Subsequently, this caused the inactivation of RANKL-induced IKB/NF-kB signaling. This eventually led to the downregulation of osteoclast-specific proteins including NFATc1, which is an essential transcription factor for osteoclastogenesis. These results demonstrated that Nrf2 activation in osteoclasts is a valuable tool for osteoclastic bone loss management. In addition, KCB-F06 presents as an alternative candidate for treating osteoclast-related bone diseases and as a novel small molecule that can serve as a model for further Keap1-NRF2 PPI inhibitor development.

16.
Phytomedicine ; 132: 155890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033726

RESUMEN

BACKGROUND: Reactive Oxygen Species (ROS) is a key factor in the pathogenesis of osteoporosis (OP) primarily characterized by excessive osteoclast activity. Active fraction of Polyrhachis vicina Rogers (AFPR) exerts antioxidant effects and possesses extensive promising therapeutic effects in various conditions, however, its function in osteoclastogenesis and OP is unknown. PURPOSE: The aim of this study is to elucidate the cellular and molecular mechanisms of AFPR in OP. STUDY DESIGN AND METHODS: CCK8 assay was used to evaluate the cell viability under AFPR treatment. TRAcP staining, podosome belts staining and bone resorption were used to test the effect of AFPR on osteoclastogenesis. Immunofluorescence staining was used to observe the effect of AFPR on ROS production. si-RNA transfection, coimmunoprecipitation and Western-blot were used to clarify the underlying mechanisms. Further, an ovariectomy (OVX) -induced OP mice model was used to identify the effect of AFPR on bone loss using Micro-CT scanning and histological examination. RESULTS: In the present study, AFPR inhibited osteoclast differentiation and bone resorption induced by nuclear factor-κB receptor activator (NF-κB) ligand (RANKL) in dose-/ time-dependent with no cytotoxicity. Meanwhile, AFPR decreased RANKL-mediated ROS levels and enhanced ROS scavenging enzymes. Mechanistically, AFPR promoted proteasomal degradation of TRAF6 by significantly upregulating its K48-linked ubiquitination, subsequently inhibiting NFATc1 activity. We further observed that tripartite motif protein 38 (TRIM38) could mediate the ubiquitination of TRAF6 in response to RANKL. Moreover, TRIM38 could negatively regulate the RANKL pathway by binding to TRAF6 and promoting K48-linked polyubiquitination. In addition, TRIM38 deficiency rescued the inhibition of AFPR on ROS and NFATc1 activity and osteoclastogenesis. In line with these results, AFPR reduced OP caused by OVX through ameliorating osteoclastogenesis. CONCLUSION: AFPR alleviates ovariectomized-induced bone loss via suppressing ROS and NFATc1 by targeting Trim38 mediated proteasomal degradation of TRAF6. The research offers innovative perspectives on AFPR's suppressive impact in vivo OVX mouse model and in vitro, and clarifies the fundamental mechanism.


Asunto(s)
Osteoclastos , Osteogénesis , Osteoporosis , Extractos Vegetales , Especies Reactivas de Oxígeno , Factor 6 Asociado a Receptor de TNF , Animales , Factor 6 Asociado a Receptor de TNF/metabolismo , Ratones , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteínas de Motivos Tripartitos/metabolismo , Ligando RANK/metabolismo , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/metabolismo , Ovariectomía , Resorción Ósea/tratamiento farmacológico , Células RAW 264.7 , Diferenciación Celular/efectos de los fármacos , Factores de Transcripción NFATC/metabolismo , Humanos
17.
Eur J Cell Biol ; 103(3): 151440, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954934

RESUMEN

One of the deficits of knowledge on bone remodelling, is to what extent cells that are driven towards osteogenic differentiation can contribute to osteoclast formation. The periodontal ligament fibroblast (PdLFs) is an ideal model to study this, since they play a role in osteogenesis, and can also orchestrate osteoclastogenesis.when co-cultured with a source of osteoclast-precursor such as peripheral blood mononuclear cells (PBMCs). Here, the osteogenic differentiation of PdLFs and the effects of this process on the formation of osteoclasts were investigated. PdLFs were obtained from extracted teeth and exposed to osteogenic medium for 0, 7, 14, or 21 out of 21 days. After this 21-day culturing period, the cells were co-cultured with peripheral blood mononuclear cells (PBMCs) for an additional 21 days to study osteoclast formation. Alkaline phosphatase (ALP) activity, calcium concentration, and gene expression of osteogenic markers were assessed at day 21 to evaluate the different stages of osteogenic differentiation. Alizarin red staining and scanning electron microscopy were used to visualise mineralisation. Tartrate-resistant acid phosphatase (TRAcP) activity, TRAcP staining, multinuclearity, the expression of osteoclastogenesis-related genes, and TNF-α and IL-1ß protein levels were assessed to evaluate osteoclastogenesis. The osteogenesis assays revealed that PdLFs became more differentiated as they were exposed to osteogenic medium for a longer period of time. Mineralisation by these osteogenic cells increased with the progression of differentiation. Culturing PdLFs in osteogenic medium before co-culturing them with PMBCs led to a significant decrease in osteoclast formation. qPCR revealed significantly lower DCSTAMP expression in cultures that had been supplemented with osteogenic medium. Protein levels of osteoclastogenesis stimulator TNF-α were also lower in these cultures. The present study shows that the osteogenic differentiation of PdLFs reduces the osteoclastogenic potential of these cells. Immature cells of the osteoblastic lineage may facilitate osteoclastogenesis, whereas mature mineralising cells may suppress the formation of osteoclasts. Therefore, mature and immature osteogenic cells may have different roles in maintaining bone homeostasis.


Asunto(s)
Diferenciación Celular , Fibroblastos , Osteoclastos , Osteogénesis , Ligamento Periodontal , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Humanos , Fibroblastos/metabolismo , Fibroblastos/citología , Células Cultivadas , Técnicas de Cocultivo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología
18.
Int Immunopharmacol ; 139: 112720, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047450

RESUMEN

Periodontitis is a widely prevalent oral disease around the world characterized by the disruption of the periodontal ligament and the subsequent development of periodontal pockets, as well as the loss of alveolar bone, and may eventually lead to tooth loss. This research aims to assess the suppressive impact of Eupatilin, a flavone obtained from Artemisia argyi, on osteoclastogenesis in vitro and periodontitis in vivo. We found that Eupatilin can efficiently obstruct the differentiation of Raw264.7 and bone marrow-derived macrophages (BMDMs) induced by RANKL, leading to the formation of mature osteoclasts. Consistently, bone slice resorption assay showed that Eupatilin significantly inhibited osteoclast-mediated bone resorption in a dose-dependent manner. Eupatilin also downregulated the expression of osteoclast-specific genes and proteins in Raw264.7 and BMDMs. RNA sequencing showed that Eupatilin notably downregulated the expression of Siglec-15. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses identified significantly enriched pathways in DEGs, including MAPK signaling pathway. And further mechanistic investigations confirmed that Eupatilin repressed MAPKs/NF-κBsignaling pathways. It was found that Siglec-15 overexpression reversed the inhibitory impact of Eupatilin on the differentiation of osteoclasts. Furthermore, activating MAPK signaling pathway reversed the downregulation of Siglec-15 and the inhibition of osteoclastogenesis by Eupatilin. To sum up, Eupatilin reduced the expression of Siglec-15 by suppressing MAPK signaling pathway, ultimately leading to the inhibition of osteoclastogenesis. Meanwhile, Eupatilin suppressed the alveolar bone resorption caused by experimentalperiodontitis in vivo. Eupatilin exhibits potential therapeutic effects in the treatment of periodontitis, rendering it a promising pharmaceutical agent.


Asunto(s)
Pérdida de Hueso Alveolar , Flavonoides , Osteoclastos , Osteogénesis , Periodontitis , Animales , Ratones , Osteogénesis/efectos de los fármacos , Células RAW 264.7 , Flavonoides/farmacología , Flavonoides/uso terapéutico , Pérdida de Hueso Alveolar/tratamiento farmacológico , Osteoclastos/efectos de los fármacos , Periodontitis/tratamiento farmacológico , Ratones Endogámicos C57BL , Diferenciación Celular/efectos de los fármacos , Masculino , Macrófagos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Artemisia/química , Ligando RANK/metabolismo
19.
Chem Biol Drug Des ; 104(1): e14574, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958121

RESUMEN

To develop novel bovine lactoferrin (bLF) peptides targeting bLF-tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6) binding sites, we identified two peptides that could target bLF-TRAF6 binding sites using structural analysis. Moreover, another peptide that could bind to the TRAF6 dimerization area was selected from the bLF sequence. The effects of each peptide on cytokine expression in lipopolysaccharide (LPS)-stimulated osteoblasts (ST2) and on osteoclastogenesis were examined using an LPS-treated co-culture of primary bone marrow cells (BMCs) with ST2 cells and a single culture of osteoclast precursor cells (RAW-D) treated with soluble receptor activator of NF-κB ligand. Finally, the effectiveness of these peptides against LPS-induced alveolar bone destruction was assessed. Two of the three peptides significantly suppressed LPS-induced TNF-α and interleukin-1ß expression in ST2 cells. Additionally, these peptides inhibited and reversed LPS-induced receptor activator of NF-κB ligand (RANKL) upregulation and osteoprotegerin (OPG) downregulation, respectively. Furthermore, both peptides significantly reduced LPS-induced osteoclastogenesis in the BMC-ST2 co-culture and RANKL-induced osteoclastogenesis in RAW-D cells. In vivo, topical application of these peptides significantly reduced the osteoclast number by downregulating RANKL and upregulating OPG in the periodontal ligament. It is indicated that the novel bLF peptides can be used to treat periodontitis-associated bone destruction.


Asunto(s)
Lactoferrina , Lipopolisacáridos , Osteoclastos , Péptidos , Animales , Lactoferrina/farmacología , Lactoferrina/química , Lactoferrina/metabolismo , Lipopolisacáridos/farmacología , Ratas , Péptidos/farmacología , Péptidos/química , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ligando RANK/metabolismo , Masculino , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Bovinos , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Ratas Sprague-Dawley , Osteogénesis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Sitios de Unión , Técnicas de Cocultivo , Osteoprotegerina/metabolismo , Modelos Animales de Enfermedad
20.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838669

RESUMEN

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Asunto(s)
Hematopoyesis Clonal , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Periodontitis , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Ratones , Hematopoyesis Clonal/genética , Humanos , Periodontitis/genética , Periodontitis/patología , Mutación , Masculino , Femenino , Inflamación/genética , Inflamación/patología , Osteoclastos/metabolismo , Ratones Endogámicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Hematopoyesis/genética , Osteogénesis/genética , Células Madre Hematopoyéticas/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...