Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003056

RESUMEN

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Asunto(s)
Arsénico , Exposición a Riesgos Ambientales , Estrés Oxidativo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , 8-Hidroxi-2'-Desoxicoguanosina , Arsénico/toxicidad , Biomarcadores/orina , China , Estudios Transversales , Daño del ADN , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Estudios Longitudinales , Estrés Oxidativo/efectos de los fármacos
2.
J Hazard Mater ; 478: 135550, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173388

RESUMEN

Micro/nano-plastics (MNPs) are emerging non-point source pollutants that have garnered increasing attention owing to their threat to ecosystems. Studies on the effects of MNPs on horticultural crops are scarce. Specifically, whether MNPs can be absorbed and transported by grapevines have not been reported. To fill this gap, we added polystyrene nanoplastics (PS-NPs, 100 nm) to a hydroponic environment and observed their distribution in grape seedlings of Thompson Seedless (TS, Vitis vinifera L.). After 15 d of exposure, plastic nanospheres were detected on the cell walls of the roots, stems, and leaves using confocal microscopy and scanning electron microscopy. This indicated that PS-NPs can also be absorbed by the root system through the epidermis-cortex interface in grapevines and transported upward along the xylem conduit. Furthermore, we analyzed the molecular response mechanisms of TS grapes to the PS-NPs. Through the measurement of relevant indicators and combined omics analysis, we found that plant hormone signal transduction, flavonoid and flavonol biosynthesis, phenylpropanoid biosynthesis, and MAPK signaling pathway biosynthesis played crucial roles in its response to PS-NPs. The results not only revealed the potential risk of MNPs being absorbed by grapevines and eventually entering the food chain but also provided valuable scientific evidence and data for the assessment of plant health and ecological risk.

3.
Mol Biol Rep ; 51(1): 930, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174728

RESUMEN

BACKGROUND: Among the three most used anticancer drugs, cyclophosphamide, Adriamycin, and 5-Fluorouracil (CAF), the most significant outcome is chemobrain, caused by increased oxidative stress, inflammatory insult, and mitochondrial dysfunction. OBJECTIVE: In this study, endogenous antioxidant coenzyme Q10 (CoQ10) was evaluated for its neuroprotective effects in CICI. MATERIALS AND METHODS: The chemobrain was induced in Swiss albino female mice by administering CAF (40 + 4 + 25 mg/kg) intraperitoneal (i.p.) in three cycles (single injection per week) followed by treatment with CoQ10 (40 mg/kg; p.o.) for up to 3 weeks followed by behavioral, biochemical, molecular and histopathological analysis. RESULTS: Treatment with CoQ10 significantly improved cognition by improving exploring time in novel objects recognition test followed by increasing the time spent in the target quadrant in MWM test as compared to CAF-treated animals. Moreover, CoQ10 demonstrated antioxidant properties by reducing the expression of LPO while increasing levels of GSH, SOD, and catalase as compared to CAF-treated animals. While the levels of AChEs were significantly reduced after CoQ10 treatment in CAF-treated animals. In terms of its mechanism, it effectively counteracted the pro-inflammatory substances (TNF-α and IL-1ß) triggered by CAF while also enhancing the levels of anti-inflammatory markers (IL-10 and Nrf2). Moreover, CoQ10 showed mitochondrial enhancers and it improved the level of Complex (I, II, and IV). Besides that, mitochondrial morphological analysis was done by TEM, and neuronal morphology along with quantification analysis was performed by H&E staining using Image J software to confirm the neuroprotective effect of CoQ10 over CAF-induced cognitive impairment. CONCLUSION: This study suggests CoQ10 can protect the mitochondria by imposing antioxidant, and anti-inflammatory properties, which could be a potential therapy for CICI.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Ratones , Femenino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Deterioro Cognitivo Relacionado con la Quimioterapia/tratamiento farmacológico , Deterioro Cognitivo Relacionado con la Quimioterapia/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Doxorrubicina/efectos adversos , Fluorouracilo/efectos adversos , Fluorouracilo/farmacología , Modelos Animales de Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/efectos adversos , Ciclofosfamida/efectos adversos , Ciclofosfamida/farmacología
4.
BMC Pharmacol Toxicol ; 25(1): 55, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175070

RESUMEN

BACKGROUND: Metamizole is banned in some countries because of its toxicity, although it is widely used in some European countries. In addition, there is limited information on its safety profile, and it is still debated whether it is toxic to the heart, lungs, liver, kidneys, and stomach. AIMS: Our study investigated the effects of metamizole on the heart, lung, liver, kidney, and stomach tissues of rats. METHODS: Eighteen rats were divided into three groups, wassix healthy (HG), 500 mg/kg metamizole (MT-500), and 1000 mg/kg metamizole (MT-1000). Metamizole was administered orally twice daily for 14 days. Meanwhile, the HG group received pure water orally. Biochemical, histopathologic, and macroscopic examinations were performed on blood samples and tissues. RESULTS: Malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) in the lung and gastric tissues of MT-500 and MT-1000 groups were almost the same as those of the HG (p > 0.05). However, MDA levels in the heart and liver tissues of MT-500 and MT-1000 groups were higher (p < 0.05) compared to the HG, while tGSH levels and SOD, and CAT activities were lower (p < 0.05). MDA levels of MT-500 and MT-1000 groups in the kidney tissue increased the most (p < 0.001), and tGSH levels and SOD and CAT activities decreased the most (p < 0.001) compared to HG. Metamizole did not cause oxidative damage in the lung and gastric tissue. While metamizole did not change troponin levels, it significantly increased alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine levels compared to HG. Histopathologically, mild damage was detected in heart tissue, moderate damage in liver tissue, and severe damage in renal tissue. However, no histopathologic damage was found in any groups' lung and gastric tissues. CONCLUSION: Metamizole should be used under strict control in patients with cardiac and liver diseases and it would be more appropriate not to use it in patients with renal disease.


Asunto(s)
Antiinflamatorios no Esteroideos , Dipirona , Corazón , Riñón , Hígado , Pulmón , Estómago , Animales , Dipirona/toxicidad , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Masculino , Ratas , Corazón/efectos de los fármacos , Estómago/efectos de los fármacos , Estómago/patología , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo , Catalasa/metabolismo , Miocardio/patología , Miocardio/metabolismo
5.
Int J Biol Macromol ; 278(Pt 2): 134532, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142474

RESUMEN

Abrus cantoniensis Polysaccharides (ACP) exhibit antioxidant activity and immune-regulatory functions. Abrus cantoniensis Hance widely distributed in the Guangdong and Guangxi regions of China. In this study, this research investigated the impact of phosphorylation modification on the biological activity of ACP, aiming to provide theoretical insights for its development. This research modified ACP through phosphorylation and evaluated changes in its in vitro antioxidant capacity, including free radical scavenging and resistance to cellular oxidative damage. Additionally, this research administered both native ACP and phosphorylated ACP (P-ACP) to mice to assess their protective effects against acute ethanol-induced oxidative injury. This research explored whether these effects were mediated through the Keap1-Nrf2 signaling pathway and their influence on gut microbiota. Results revealed that phosphorylation significantly enhanced ACP's antioxidant capacity and protective effects (p < 0.05). P-ACP improved mice resistance to acute oxidative injury, mitigating the adverse effects of 50 % ethanol (p < 0.05). Moreover, both ACP and P-ACP are involved in modulating the expression of the Keap1-Nrf2 signaling pathway and, to some extent, alter the composition of the gut microbiota in mice. In summary, phosphorylation modification effectively enhances ACP's antioxidant capacity and provides better protection against acute oxidative injury in mice.

6.
Transfus Clin Biol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142558

RESUMEN

INTRODUCTION: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzyme disorder in red blood cell (RBC). Due to the importance of G6PD enzyme as an antioxidant in RBC, we tried to investigate the oxidative damage in red cell concentrates (RCCs) prepared from donors with G6PD enzyme deficiency in comparison with healthy donors. MATERIAL METHOD: This cross-sectional study was conducted on 20 male donors. Ten of the donors had G6PD deficiency (as a case) and the others had normal enzyme activity (as a control). Biochemical and oxidative damage parameters were examined in RCCs prepared from two groups on days 0, 7, 14, 21, 28 and 35 of RCCs storage; data comparison was analyzed by SPSS statistical software. RESULTS: According to the result, lactate concentration increased significantly from the 7th day to the 35th day of RCC storage in G6PD-deficient donors compared to the control (P<0.05). In addition, malondialdehyde (MDA) concentration in G6PD-deficient RCC showed a significant increase compared to the control in all days of storage (P<0.05). Among the hematological parameters, mean corpuscular volume (MCV) and mean cell hemoglobin (MCH) increased significantly in all days of RCC storage in G6PD-deficient donors compared to the control (P<0.05). CONCLUSION: Our study showed that oxidative changes in G6PD-deficient donors were significantly increased compared to the healthy donors, which probably leads to RCC storage lesion and an increase in blood transfusion complications. Due to the high prevalence of G6PD enzyme deficiency in pandemic areas, it seems that enzyme screening should be included in donor screening programs.

7.
Ecotoxicol Environ Saf ; 283: 116858, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137464

RESUMEN

Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39111617

RESUMEN

Developing chick embryos that are subjected to increased incubation temperature are more stressor-resilient later in life, but the underlying process is poorly understood. The potential mechanism may involve changes in small intestine function. In this study, we determined behavioral, morphological, and molecular effects of increased embryonic incubation temperatures and post-hatch heat challenge in order to understand how embryonic heat conditioning (EHC) affects gut function. At 4 days post-hatch, duodenum, jejunum, and ileum samples were collected at 0, 2, and 12 h relative to the start of heat challenge. In EHC chicks, we found that markers of heat and oxidative stress were generally lower while those of nutrient transport and antioxidants were higher. Temporally, gene expression changes in response to the heat challenge were similar in control and EHC chicks for markers of heat and oxidative stress. Crypt depth was greater in control than EHC chicks at 2 h post-challenge, and the villus height to crypt depth ratio increased from 2 to 12 h in both control and EHC chicks. Collectively, these results suggest that EHC chicks might be more energetically efficient at coping with thermal challenge, preferentially allocating nutrients to other tissues while protecting the mucosal layer from oxidative damage. These results provide targets for future studies aimed at understanding the molecular mechanisms underlying effects of embryonic heat exposure on intestinal function and stressor resiliency later in life.

9.
Chem Biodivers ; : e202400874, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113595

RESUMEN

This study evaluates the pharmacological effects of iridoid glucoside loganic acid, a plant constituent with diverse properties, based on literature, and explores the underlying cellular mechanisms for treating several ailments. Data were collected from reliable electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar, etc. The results demonstrated the anti-inflammatory, anti-oxidant, and other protective effects of loganic acid on metabolic diseases and disorders such as atherosclerosis, diabetes, and obesity, in addition to its osteoprotective and anticancer properties. The antioxidant activity of loganic acid demonstrates its capacity to protect cells from oxidative damage and mitigates inflammation by reducing the activity of inflammatory cytokines involving TNF-α and IL-6, substantially upregulating the expression of PPAR-γ/α, and decreasing the clinical signs of inflammation-related conditions related to hypertriglyceridemia and atherosclerosis. Meanwhile, loganic acid inhibits bone loss, exhibits osteoprotective properties by increasing mRNA expression levels of bone synthesizing genes such as Alpl, Bglap, and Sp7, and significantly increases osteoblastic proliferation in preosteoblast cells. Loganic acid is an anti-metastatic drug that reduces MnSOD expression, inhibits EMT and metastasis, and prevents cellular migration, proliferation, and invasion in hepatocellular carcinoma cells. However, additional clinical trials are required to assess its safety, efficacy, and human dose.

10.
Ecotoxicol Environ Saf ; 283: 116851, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128452

RESUMEN

This study aimed to assess the ecological risks posed by sulfamethoxazole (SMX) at environmentally relevant concentrations. Specifically, its effects on the growth and biochemical components (total protein, total lipid, and total carbohydrate) of two marine microalgae species, namely Skeletonema costatum (S. costatum) and Phaeodactylum tricornutum (P. tricornutum), were investigated. Our findings revealed that concentrations of SMX below 150 ng/L stimulated the growth of both microalgae. Conversely, at higher concentrations, SMX inhibited their growth while promoting the synthesis of photosynthetic pigments, total protein, total lipid, and total carbohydrate (P < 0.05). Transmission electron microscope (TEM) observations demonstrated significant alterations in the ultrastructure of algal cells exposed to SMX, including nuclear marginalization, increased chloroplast volume, and heightened vacuolation. In addition, when SMX was lower than 250 ng/L, there was no oxidative damage in two microalgae cells. However, when SMX was higher than 250 ng/L, the antioxidant defense system of algal cells was activated to varying degrees, and the level of malondialdehyde (MDA) increased, indicating that algae cells were damaged by oxidation. From the molecular level, environmental concentration of SMX can induce microalgae cells to produce more energy substances, but there are almost no other adverse effects, indicating that the low level of SMX at the actual exposure level was unlikely to threaten P. tricornutum, but a higher concentration can significantly reduce its genetic products, which can affect the changes of its cell structure and damage P. tricornutum to some extent. Therefore, environmental concentration of SMX still has certain potential risks to microalgae. These outcomes improved current understanding of the potential ecological risks associated with SMX in marine environments.

11.
Animals (Basel) ; 14(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39123683

RESUMEN

Weaning is a critical stage in the growth and development of piglets, often inducing stress reactions. This study aims to investigate the effects of Parabacteroides distasonis (PBd) derived from Ningxiang pigs on growth performance, intestinal apoptosis, oxidative damage, and inflammation in ETEC-challenged weaned piglets. A total of 22 Duroc × Landrace × Yorkshire (DLY) piglets, 24 days old with similar body weights, were randomly divided into three groups: Control (n = 7), ETEC (n = 7), and PBd + ETEC (n = 8). The results show that, compared to the Control group, ETEC challenge led to decreased growth performance, reduced villus height in the duodenum and jejunum, increased crypt depth in the duodenum, a decreased villus-height-to-crypt-depth ratio, increased expression of apoptosis-related genes (Caspase-8 and Caspase-9), increased expression of oxidative damage-related genes (Nrf2, GSH-PX, mTOR, and Beclin1), increased expression of inflammation-related genes (Myd88, P65, TNF-α, and IL-6), and reduced the contents of SCFAs in the colonic chyme (acetate, propionate, butyrate, valerate, and total SCFAs). Compared to the ETEC group, the PBd + ETEC group alleviated the reduction in growth performance, mitigated intestinal morphological damage, and reduced the expression of the aforementioned apoptosis, oxidative damage, and inflammation-related genes with the increase in SCFAs. In conclusion, PBd derived from Ningxiang pigs effectively reduces ETEC-induced intestinal damage in weaned piglets, improves intestinal health, and increases the content of SCFAs in the colonic chyme, thereby enhancing growth performance.

12.
Sci Total Environ ; 950: 175270, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111436

RESUMEN

Increased anthropogenic activities over the last decades have led to a gradual increase in chromium (Cr) content in the soil, which, due to its high mobility in soil, makes Cr accumulation in plants a serious threat to the health of animals and humans. The present study investigated the ameliorative effect of foliar-applied Si nanoparticles (SiF) and soil-applied SiNPs enriched biochar (SiBc) on the growth of wheat in Cr-polluted soil (CPS). Two levels of CPS were prepared, including 12.5 % and 25 % by adding Cr-polluted wastewater in the soil as soil 1 (S1) and soil 2 (S2), respectively for the pot experiment with a duration of 40 days. Cr stress significantly reduced wheat growth, however, combined application of SiF and SiBc improved root and shoot biomass production under Cr stress by (i) reducing Cr accumulation, (ii) increasing activities of antioxidant enzymes (ascorbate peroxidase and catalase), and (iii) increasing protein and total phenolic contents in both root and shoot respectively. Nonetheless, separate applications of SiF and SiBc effectively reduced Cr toxicity in shoot and root respectively, indicating a tissue-specific regulation of wheat growth under Cr. Later, the Langmuir and Freundlich adsorption isotherm analysis showed a maximum soil Cr adsorption capacity ∼ Q(max) of 40.6 mg g-1 and 59 mg g-1 at S1 and S2 respectively, while the life cycle impact assessment showed scores of -1 mg kg-1 and -211 mg kg-1 for Cr in agricultural soil and - 0.184 and - 38.7 for human health at S1 and S2 respectively in response to combined SiF + SiBC application, thus indicating the environment implication of Si nanoparticles and its biochar in ameliorating Cr toxicity in different environmental perspectives.

13.
J Therm Biol ; 123: 103935, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098059

RESUMEN

Climate change is an increasing concern of stakeholders worldwide. The intestine is severely impacted by the heat stress. This study aimed to investigate the alleviating effects of methionine on the intestinal damage induced by heat stress in mice. The mice were divided into four groups: control group (C), methionine deficiency group (MD), methionine + heat stress group (MH), and methionine deficiency + heat stress group (MDH). Histopathological techniques, PAS-Alcian blue staining, immunohistochemistry method, biochemical quantification method, ELISA, and micro method were used to study the changes in the intestinal mucosal morphology, the number of goblet cells, the expression of tight junction proteins, the peroxide product contents and antioxidant enzyme activities, the intestinal mucosal damage, the content of immunoglobulins and HSP70, the activity of Na+/K+-ATPase. The results showed that methionine can improve intestinal mucosal morphology (increase the villi height, V/C value, and muscle layer thickness, decrease crypt depth), increase the expression of tight junction proteins (Claudin-1, Occludin, ZO-1) and the content of DAO, decrease the content of intestinal mucosa damage markers (ET, FABP2) and peroxidation products (MDA), increase the activity of antioxidant enzymes (GR, GSH-Px, SOD), the number of goblet cells, the contents of immunoglobulins (sIgA, IgA, IgG, IgM) and stress protein (HSP70), and the activity of Na+/K+-ATPase. It is suggested that methionine can alleviate intestinal damage in heat-stressed mice.

14.
BMC Endocr Disord ; 24(1): 138, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39090709

RESUMEN

BACKGROUND: Mitochondrial DNA (mtDNA) copy number is associated with tumor activity and carcinogenesis. This study was undertaken to investigate mtDNA copy number in papillary thyroid cancer (PTC) tissues and to evaluate the risk of PTC development. The clinicopathological features of patients and mtDNA copy number were correlated. The value of mtDNA copy number was evaluated as a biomarker for PTC. METHOD: DNA was extracted from 105 PTC tissues and 67 control thyroid tissues, and mtDNA copy number mtDNA oxidative damage were determined using qPCR techniques. RESULTS: Overall, the relative mtDNA copy number was significantly higher in PTC patients (p < 0.001). The risk of developing PTC increased significantly across the tertiles of mtDNA copy number (p trend < 0.001). The higher the mtDNA copy number tertile, the greater the risk of developing PTC. Patients with follicular variants had an odds ratio of 2.09 (95% CI: 1.78-2.44) compared to those with classical variants (p < 0.001). The level of mtDNA oxidative damage in PTC was significantly elevated compared to controls (p < 0.001). The ROC analysis of mtDNA copy number indicated an area under the curve (AUC) of 77.7% (95% CI: 0.71 to 0.85, p < 0.001) for the ability of mtDNA copy number z-scores in differentiate between PTC and controls. CONCLUSION: Our results indicated that the augmentation of mtDNA content plays a significant role during the initiation of thyroid cancer, and it might represent a potential biomarker for predicting the risk of PTC.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , ADN Mitocondrial/genética , Masculino , Femenino , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/epidemiología , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Persona de Mediana Edad , Adulto , Estudios de Casos y Controles , Factores de Riesgo , Biomarcadores de Tumor/genética , Pronóstico , Estudios de Seguimiento
15.
Artículo en Inglés | MEDLINE | ID: mdl-39093466

RESUMEN

Cyclophosphamide (CP) is a popular cancer treatment; however, despite its efficacy, it is known to cause harm to the testicles. To mitigate the reproductive damage caused by CP in male rats, we examined the protective effect of azilsartan (AZ) on CP-induced testicular damage. Thirty Sprague-Dawley male rats were equally divided into three groups: normal control group: received 0.5% CMC suspension for 13 days; induction group: received a single dose of 200 mg/kg of CP on day 6 by intraperitoneal (IP) injection, azilsartan group: received azilsartan (4 mg/kg) orally for 5 days followed by a single dose of 200 mg/kg of (CP) on day 6 by IP injection, then azilsartan administered again for 7 days. Animals were sacrificed on day 14, and sperm characteristics, testosterone levels, and testicular histopathology were evaluated. Induction with CP caused a significant reduction in median value compared to normal control in sperm count (12.0 vs. 22.0 × 106/mm3), sperm motility (30 vs. 90%), abnormal sperm (30.32 vs. 14.43%), dead sperm count (32.43 vs. 10.49 × 106/mm3), DNA fragmentation (21.57 vs. 5.49%); meanwhile, azilsartan prevent these effects on median sperm count (17.0 × 106/mm3), sperm motility (70.0%), abnormal sperm (23.19%), dead sperm count (26.17 × 106/mm3), DNA fragmentation (13.81%), and improved plasmatic testosterone levels compared to the CP group and prevented histopathological alterations of the testes. Azilsartan's mitigation of CP's effects suggests it can prevent male rats' reproductive damage caused by CP. One possible explanation for AZ's protective effects is that it inhibits lipid peroxidation and has antioxidant properties.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 630-634, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948270

RESUMEN

Objective: To investigate the effect of Sanshentongmai (SSTM) mixture on the regulation of oxidative damage to rat cardiomyocytes (H9C2) through microRNA-146a and its mechanism. Methods: H9C2 were cultured in vitro, H2O2 was used as an oxidant to create an oxidative damage model in H9C2 cells. SSTM intervention was administered to the H9C2 cells. Then, the changes in H2O2-induced oxidative damage in H9C2 cells and the expression of microRNA-146a were observed to explore the protective effect of SSTM on H9C2 and its mechanism. H9C2 cells cultured i n vitro were divided into 3 groups, including a control group, a model group of H2O2-induced oxidative damage (referred to hereafter as the model group), and a group given H2O2 modeling plus SSTM intervention at 500 µg/L for 72 h (referred to hereafter as the treatment group). The cell viability was measured by CCK8 assay. In addition, the levels of N-terminal pro-brain natriuretic peptide (Nt-proBNP), nitric oxide (NO), high-sensitivity C-reactive protein (Hs-CRP), and angiotensin were determined by enzyme-linked immunosorbent assay (ELISA). The expression level of microRNA-146a was determined by real-time PCR (RT-PCR). Result: H9C2 cells were pretreated with SSTM at mass concentrations ranging from 200 to 1500 µg/L. Then, CCK8 assay was performed to measure cell viability and the findings showed that the improvement in cell proliferation reached its peak when the mass concentration of SSTM was 500 µg/L, which was subsequently used as the intervention concentration. ELISA was performed to measure the indicators related to heart failure, including Nt-proBNP, NO, Hs-CRP, and angiotensin Ⅱ. Compared with those of the control group, the expressions of Nt-proBNP and angiotensin Ⅱ in the treatment group were up-regulated (P<0.05), while the expression of NO was down-regulated (P<0.05). There was no significant difference in the expression of Hs-CRP between the treatment group and the control group. These findings indicate that SSTM could effectively ameliorate oxidative damage in H9C2 rat cardiomyocytes. Finally, according to the RT-PCR findings for the expression of microRNA-146a in each group, H2O2 treatment at 15 µmol/L could significantly reduce the expression of microRNA-146a, and the expression of microRNA-146a in the treatment group was nearly doubled compared with that in the model group. There was no significant difference between the treatment group and the control group. Conclusion: SSTM can significantly resist the H2O2-induced oxidative damage of H9C2 cells and may play a myocardial protective role by upregulating microRNA-146a.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , MicroARNs , Miocitos Cardíacos , Estrés Oxidativo , Regulación hacia Arriba , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/citología , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ratas , Estrés Oxidativo/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , Medicamentos Herbarios Chinos/farmacología , Regulación hacia Arriba/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Línea Celular , Combinación de Medicamentos
17.
Cureus ; 16(6): e61896, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975563

RESUMEN

OBJECTIVE: Stress is a hazardous occurrence that causes a variety of physiological and behavioral responses in a person. It increases energy metabolism and enhances oxidative stress, both of which are implicated in the pathophysiology of several diseases. Numerous vitamins and minerals have the ability to modulate oxidative stress. The present investigation aimed to evaluate the effectiveness of a multivitamin-mineral (MM) supplement in addressing oxidative imbalances caused by chronic stress in the plasma, hepatic, and renal tissues of Swiss albino mice. METHODS: Thirty healthy male Swiss albino mice were randomly assigned to one of the three groups, with 10 animals each: control, unpredictable chronic stress (UCS), and MM + UCS. The experiment lasted for four weeks, after which all the animals underwent cervical decapitation, and samples of their blood, liver, and kidney were taken for biochemical studies. DNA damage analysis was performed on lymphocytes. RESULTS: Exposure to UCS negatively affected all biochemical markers, as indicated by reduced levels of antioxidants (superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and reduced glutathione) in the plasma, liver, and kidney tissues, along with enhanced levels of lipid peroxidation and marker enzymes. MM supplementation normalized the deranged biochemical markers in stress-exposed mice. The results of DNA damage supported the biochemical findings mentioned above. CONCLUSION: The findings suggest that MM supplementation could help reduce oxidative disturbances caused by stress in both healthy and diseased conditions.

18.
Int J Ophthalmol ; 17(7): 1173-1183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026918

RESUMEN

In his beautiful book, Consilience: The Unity of Knowledge, the eminent biologist Edward O Wilson, advocates the need for integration and reconciliation across the sciences. He defines consilience as "literally a 'jumping together' of knowledge with a linking of facts ... to create a common groundwork of explanation". It is the premise of this paper that as much as basic biomedical research is in need of data generation using the latest available techniques- unifying available knowledge is just as critical. This involves the necessity to resolve contradictory findings, reduce silos, and acknowledge complexity. We take the cornea and the lens as case studies of our premise. Specifically, in this perspective, we discuss the conflicting and fragmented information on protein aggregation, oxidative damage, and fibrosis. These are fields of study that are integrally tied to anterior segment research. Our goal is to highlight the vital need for Wilson's consilience and unity of knowledge which in turn should lead to enhanced rigor and reproducibility, and most importantly, to greater understanding and not simply knowing.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39005228

RESUMEN

Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (Taeniopygia castanotis) exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.

20.
Heliyon ; 10(12): e32887, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988586

RESUMEN

Dry age-related macular degeneration (AMD) is one of the main diseases that causes blindness in humans, and the number of cases is increasing yearly. However, effective treatments are unavailable, and arbutin (ARB) has been reported to have antioxidant, anti-inflammatory, and anti-aging effects in other age-related diseases. However, whether ARB can be used to treat dry AMD remains unknown. To explore the therapeutic potential and molecular mechanism of arbutin in the treatment of dry AMD. MTT assays, reactive oxygen species (ROS) production assays, flow cytometry assays, qPCR and western blotting were used to assess the impact of ARB on human RPECs induced by H2O2. A transcriptome sequencing assay was used to further explore how ARB acts on human RPECs treated with H2O2. Hematoxylin and eosin (H&E) staining and total antioxidant capacity (T-AOC) assays were used to observe the impact of ARB on mouse retina induced by sodium iodate. ARB counteracted the H2O2-induced reduction in human RPECs viability, ARB reversed H2O2-induced cellular ROS production by increasing the expression of antioxidant-related genes and proteins, ARB also reversed H2O2-induced cell apoptosis by altering the expression of apoptosis-related genes and proteins. Transcriptome sequencing and western blotting showed that ARB reduced ERK1/2 and P-38 phosphorylation to prevent H2O2-induced oxidation damage. The in vivo experiments demonstrated that ARB protected against retinal morphology injury in mice, increased serum T-AOC levels and increased antioxidant oxidase gene expression levels in the mouse retina induced by sodium iodate. We concluded that ARB reversed the H2O2-induced decrease in human RPECs viability through the inhibition of ROS production and apoptosis. The ERK1/2 and P38 MAPK signaling pathways may mediate this process. ARB maintained retinal morphology, increased serum T-AOC level and improved the expression of antioxidant oxidase genes in mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...