Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Parasitol Res ; 123(9): 311, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39222092

RESUMEN

Striking morphological transformations characterize the invasion of a red blood cell by the malaria parasite. Shortly after the infection, parasite-induced membranes appear in the cytosol of the affected host erythrocyte. One intensely investigated membrane type, commonly called Maurer's clefts, has a slit-like morphology and can be arranged in the form of extended three-dimensional membrane stacks or networks. Here we report the three-dimensional reconstruction of a second membrane type, giant or extended membrane rings/loops, that have only occasionally been described on single ultrathin sections, however that have never been systematically examined so far. Serial ultrathin sectioning of P. falciparum-infected red blood cells, subsequent three-dimensional reconstructions, and in addition examination of Giemsa-stained blood films revealed that intraerythrocytic membrane rings/loops are not isolated structures but are locally in contact with the parasite. They consist either of the parasitophorous vacuolar membrane alone or contain the parasitophorous vacuolar membrane including the plasma membrane of the parasite and small amounts of parasite cytoplasm. We demonstrate that membrane rings/loops represent surface extensions of the parasite that maybe involved in ring stage parasite formation and Maurer's cleft generation at least in a subset of infected red blood cells.


Asunto(s)
Citosol , Eritrocitos , Plasmodium falciparum , Eritrocitos/parasitología , Plasmodium falciparum/fisiología , Citosol/parasitología , Citosol/química , Humanos , Membrana Eritrocítica/parasitología , Membrana Eritrocítica/ultraestructura , Malaria Falciparum/parasitología , Imagenología Tridimensional , Membrana Celular/parasitología
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125037, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39217961

RESUMEN

Raman spectroscopy was used to study erythrocytes collected from patients diagnosed with malaria at the University Hospital in Kraków and from healthy volunteers. A laser line with a wavelength of 442 nm was used to induce the Raman resonance of haem, while a laser with a wavelength of 785 nm was used for the normal Raman effect. The results were analysed using Principal Component Analysis. For the 442 nm laser line, analysis of the entire spectral range (3200 cm-1 to 300 cm-1) showed satisfactory separation of Raman spectra for healthy cells from infected cells, which was significantly improved in the 1500 cm-1-1200 cm-1 spectral range. For the 785 nm laser line, some separation was observed in each range studied, but the best results were achieved over the full spectral range. Plasmodium-derived nucleic acids and phosphodiester vibrations were observed at excitation lines of 442 nm and 785 nm, respectively.

3.
Front Microbiol ; 15: 1453998, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228384

RESUMEN

Drug resistance in Plasmodium falciparum presents a formidable challenge to the humanity. And, unavailability of an effective vaccine worsens the situation further. Autophagy is one of the mechanisms employed by parasite to evade drug pressure to survive. Autophagy induced by the P. falciparum in response to the oleuropein pressure may answer many questions related to the parasite survival as well as evolving drug tolerance. The survival/autophagy axis could be an important avenue to explore in order to address certain questions related to the evolution of drug resistance. In addition, humanized mouse model of P. falciparum infection could serve as an important preclinical tool to investigate the oleuropein-induced autophagy, potentially helping to dissect the mechanisms underlying the development of antimalarial drug resistance.

4.
Biochem Biophys Res Commun ; 733: 150599, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39208643

RESUMEN

TBVs are suggested to inhibit parasite transmission from humans to Anopheles mosquitoes. For the transmission of Plasmodium parasite, a variety of factors are included in gametes fusion phase. In this step, conserved male-specific generative cell specific 1 antigen is necessary for fusion of cytoplasmic membranes of micro- and macro-gametocytes and zygot formation. The partial blocking activities of elicited antibodies against either the HAP2-GCS1 domain or the cd loop of this antigen have been recorded to hinder the transmission of Plasmodium species in Anopheles mid-gut. Thus, the objective of the present study was to investigate if the cd loop-fusion can enhance the quantity and quality of humoral and cellular immune responses against Plasmodium falciparum GCS1 in comparison to non-fusion antigen (without cd loop), in the adjuvanted and non-adjuvanted mouse groups. The immunogenicity of two constructs of P. falciparum generative cell specific 1 antigen, a fusion protein composed of cd loop and HAP2-GCS1 domain (cd-HAP) and another recombinant PfGCS1 containing solo HAP2-GCS1 domain (HAP2) were assessed to impede Plasmodium gametocytes integration before zygote formation. The antibodies profiling, titer, and avidity of induced antibodies were measured by the immunized mice sera, and the released cytokines (IL-5, TNF, and INF-γ) were analyzed in the supernatants of stimulated splenocytes. Furthermore, the inhibitory potency of the elicited antibodies against HAP2 and cd-HAP was measured during oocyst development by Standard Membrane Feeding Assay (SMFA). The comparative results in the present study showed the higher titer of IgG antibodies and IgG2a subclass, avidity, and transmission-reducing activity (TRA = 72.5 %) when mice were immunized by cd-HAP rather than HAP2. Moreover, our findings confirmed intensified Th1-directed immune responses in group 4 received cd-HAP/Poly(I:C). These findings declared the potential ability of cd loop fusion (cd-HAP) to upsurge humoral and cellular immune responses. However, the immune responses may switch to stronger Th1-type using alternative formulations. Explicitly, the cd-HAP-based vaccine may enhance the overall efficiency of immune responses and present a promising implementation in aiming malaria transmission.

5.
BMC Immunol ; 25(1): 44, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987710

RESUMEN

BACKGROUND: Malaria is a life-threatening parasitic disease typically transmitted through the bite of an infected Anopheles mosquito. There is ample evidence showing the potential of malaria infection to affect the counts of lymphocyte subpopulations in the peripheral blood, but the extent of alteration might not be consistent in all geographical locations, due to several local factors. Although Ghana is among the malaria-endemic countries, there is currently no available data on the level of alterations that occur in the counts of lymphocyte subpopulations during P. falciparum malaria infection among adults. AIM: The study was to determine the immunophenotypic alterations in the level of peripheral blood lymphocytes and their subsets in adults with uncomplicated P. falciparum malaria infection and apparently healthy participants. METHODS: The study was a cross-sectional comparative study conducted in two municipalities of the Volta region of Ghana. Blood samples were collected from study participants and taken through serology (P. falciparum/Pan Rapid Diagnostic Kits), microscopy (Thick and thin blood films) and Haematological (Flow cytometric and Full blood count) analysis. RESULTS: A total of 414 participants, comprising 214 patients with malaria and 200 apparently healthy individuals (controls) were recruited into this study. Parasite density of the malaria patients ranged from 75/µL to 84,364/µL, with a mean of 3,520/µL. It was also observed that the total lymphocytes slightly decreased in the P. falciparum-infected individuals (Mean ± SD: 2.08 ± 4.93 × 109/L) compared to the control group (Mean ± SD: 2.47 ± 0.80 × 109/L). Again, there was a significant moderate positive correlation between parasite density and haematocrit levels (r = 0.321, p < 0.001). Apart from CD45 + T-cells, more people in the control group had normal values for the lymphocyte subsets measured compared to the malaria patients. CONCLUSIONS: From the results obtained, there was high parasite density among the malaria patients suggestive of high intensity of infection in the case group. The malaria patients again showed considerable haematological alterations in lymphocyte sub-sets and the parasite density appeared to be strongly associated with CD4 + T-cell reduction. Also, the parasite density significantly associated with decreasing haematocrit levels. This indicates that lymphocyte subset enumeration can be used to effectively support malaria diagnosis.


Asunto(s)
Inmunofenotipificación , Malaria Falciparum , Plasmodium falciparum , Humanos , Malaria Falciparum/inmunología , Malaria Falciparum/sangre , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Masculino , Femenino , Adulto , Plasmodium falciparum/inmunología , Estudios Transversales , Ghana , Persona de Mediana Edad , Adulto Joven , Subgrupos Linfocitarios/inmunología , Adolescente , Linfocitos/inmunología , Recuento de Linfocitos
6.
Trop Med Infect Dis ; 9(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39058191

RESUMEN

Several countries are reporting natural populations of P. falciparum with deletions in the pfhrp2/3 genes that can lead to false-negative results in rapid diagnostic tests. To investigate the prevalence of deletion in the pfhrp2/3 genes in the Rio Negro basin in the Brazilian Amazon and identify whether there is clinical differentiation between individuals infected by these parasites, clinical samples collected from 2003 to 2016 were analyzed from symptomatic and asymptomatic P. falciparum-infected individuals. The molecular deletion of pfhrp2 and pfhrp3 genes was evaluated using the protocols recommended by the WHO. From 82 samples used, 28 (34.2%) had a single deletion in pfhrp2, 19 (23.2%) had a single deletion in pfhrp3, 15 (18.3%) had a double deletion (pfhrp2/3), and 20 (24.4%) did not have a deletion in either gene. In total, 29.3% of individuals had an asymptomatic plasmodial infection and were 3.64 times more likely to have parasites with a double deletion (pfhrp2/3) than patients with clinical malaria (p = 0.02). The high prevalence of parasites with pfhrp2/3 deletions shows the need to implement a surveillance program in this area. Deletions in parasites may be associated with the clinical pattern of the disease in this area. More studies must be carried out to elucidate these findings.

7.
Elife ; 132024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976500

RESUMEN

New antimalarial drug candidates that act via novel mechanisms are urgently needed to combat malaria drug resistance. Here, we describe the multi-omic chemical validation of Plasmodium M1 alanyl metalloaminopeptidase as an attractive drug target using the selective inhibitor, MIPS2673. MIPS2673 demonstrated potent inhibition of recombinant Plasmodium falciparum (PfA-M1) and Plasmodium vivax (PvA-M1) M1 metalloaminopeptidases, with selectivity over other Plasmodium and human aminopeptidases, and displayed excellent in vitro antimalarial activity with no significant host cytotoxicity. Orthogonal label-free chemoproteomic methods based on thermal stability and limited proteolysis of whole parasite lysates revealed that MIPS2673 solely targets PfA-M1 in parasites, with limited proteolysis also enabling estimation of the binding site on PfA-M1 to within ~5 Å of that determined by X-ray crystallography. Finally, functional investigation by untargeted metabolomics demonstrated that MIPS2673 inhibits the key role of PfA-M1 in haemoglobin digestion. Combined, our unbiased multi-omic target deconvolution methods confirmed the on-target activity of MIPS2673, and validated selective inhibition of M1 alanyl metalloaminopeptidase as a promising antimalarial strategy.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Plasmodium vivax , Proteómica , Proteínas Protozoarias , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/enzimología , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/enzimología , Plasmodium vivax/efectos de los fármacos , Humanos , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteómica/métodos , Aminopeptidasas/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Aminopeptidasas/química
8.
Cell Rep ; 43(8): 114533, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052480

RESUMEN

Ghana and other parts of West Africa have experienced lower COVID-19 mortality rates than other regions. This phenomenon has been hypothesized to be associated with previous exposure to infections such as malaria. This study investigated the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influence of previous malaria exposure. Blood samples were collected from individuals with asymptomatic or symptomatic COVID-19 (n = 217). A variety of assays were used to characterize the SARS-CoV-2-specific immune response, and malaria exposure was quantified using Plasmodium falciparum ELISA. The study found evidence of attenuated immune responses to COVID-19 among asymptomatic individuals, with elevated proportions of non-classical monocytes and greater memory B cell activation. Symptomatic patients displayed higher P. falciparum-specific T cell recall immune responses, whereas asymptomatic individuals demonstrated elevated P. falciparum antibody levels. Summarily, this study suggests that P. falciparum exposure-associated immune modulation may contribute to reduced severity of SARS-CoV-2 infection among people living in malaria-endemic regions.


Asunto(s)
COVID-19 , Malaria Falciparum , Plasmodium falciparum , SARS-CoV-2 , Humanos , COVID-19/inmunología , SARS-CoV-2/inmunología , Masculino , Femenino , Adulto , Persona de Mediana Edad , Plasmodium falciparum/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/epidemiología , Inmunidad Celular , Enfermedades Endémicas , Adulto Joven , Anciano , Ghana/epidemiología , Linfocitos T/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Adolescente , Malaria/inmunología , Monocitos/inmunología
9.
Medicina (Kaunas) ; 60(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38929629

RESUMEN

Background and Objectives: Malaria continues to be a significant global health challenge. The efficacy of artemisinin-based combination therapies (ACTs) has declined in many parts of the Greater Mekong Subregion, including Vietnam, due to the spread of resistant malaria strains. This study was conducted to assess the efficacy of the Dihydroartemisinin (DHA)-Piperaquine (PPQ) regimen in treating uncomplicated falciparum malaria and to conduct molecular surveillance of antimalarial drug resistance in Binh Phuoc and Dak Nong provinces. Materials and Methods: The study included 63 uncomplicated malaria falciparum patients from therapeutic efficacy studies (TES) treated following the WHO treatment guidelines (2009). Molecular marker analysis was performed on all 63 patients. Methods encompassed Sanger sequencing for pfK13 mutations and quantitative real-time PCR for the pfpm2 gene. Results: This study found a marked decrease in the efficacy of the DHA-PPQ regimen, with an increased rate of treatment failures at two study sites. Genetic analysis revealed a significant presence of pfK13 mutations and pfpm2 amplifications, indicating emerging resistance to artemisinin and its partner drug. Conclusions: The effectiveness of the standard DHA-PPQ regimen has sharply declined, with rising treatment failure rates. This decline necessitates a review and possible revision of national malaria treatment guidelines. Importantly, molecular monitoring and clinical efficacy assessments together provide a robust framework for understanding and addressing detection drug resistance in malaria.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Plasmodium falciparum , Quinolinas , Humanos , Artemisininas/uso terapéutico , Quinolinas/uso terapéutico , Vietnam , Antimaláricos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Masculino , Femenino , Adulto , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Resistencia a Medicamentos/genética , Adolescente , Persona de Mediana Edad , Quimioterapia Combinada/métodos , Adulto Joven , Proteínas Protozoarias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Mutación , Piperazinas
10.
Genes (Basel) ; 15(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38927622

RESUMEN

BACKGROUND: Malaria results in more than 550,000 deaths each year due to drug resistance in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of genes is important for identifying drug targets and understanding the evolution of drug resistance. RESULTS: Genes function by interacting with one another. So, analyzing gene co-expression networks can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build gene co-expression networks in P. falciparum have been limited to a single network inference method or gaining biological understanding for only a single gene and its interacting partners. Here, we explore multiple inference methods and aim to systematically predict functional annotations for all P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene-Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation. We assess overlaps of the different networks' edges (gene co-expression relationships), as well as predicted functional knowledge. The networks' edges are overall complementary: 47-85% of all edges are unique to each network. In terms of the accuracy of predicting gene functional annotations, all networks yielded relatively high precision (as high as 87% for the network inferred using mutual information), but the highest recall reached was below 15%. All networks having low recall means that none of them capture a large amount of all existing gene-GO term annotations. In fact, their annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We provide ranked lists of inferred gene-gene interactions and predicted gene-GO term annotations for future use and wet lab validation by the malaria community. CONCLUSIONS: The different networks seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and predicted gene functional annotations. Thus, relying on a single network inference method should be avoided when possible. SUPPLEMENTARY DATA: Attached.


Asunto(s)
Redes Reguladoras de Genes , Plasmodium falciparum , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Malaria Falciparum/genética , Humanos , Ontología de Genes , Anotación de Secuencia Molecular/métodos , Proteínas Protozoarias/genética
11.
Elife ; 122024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935423

RESUMEN

Background: The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission. Methods: To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018. Results: Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes. Conclusions: Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors. Funding: This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Tanzanía/epidemiología , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Humanos , Genotipo
12.
Trends Parasitol ; 40(8): 707-716, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38910098

RESUMEN

The protozoan parasite Plasmodium falciparum, responsible for the deadliest form of human malaria, employs antigenic variation via monoallelic expression as a key survival strategy. The selective activation of one out of the 60-member var gene family is key to understanding the parasite's ability to cause severe disease and evade the host immune response. var gene activation is initiated by its relocation to a specialized expression site. While the perinuclear expression site (PES) plays a crucial role in enabling the expression of a single allele, the characteristics of this PES remain largely obscure. Recent breakthroughs in genome editing tools and the discovery of regulatory noncoding RNAs have shed light on this intriguing biological feature, offering significant insights into the mechanisms of pathogen virulence.


Asunto(s)
Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Humanos , Regulación de la Expresión Génica , Malaria Falciparum/parasitología
13.
BMC Infect Dis ; 24(1): 603, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898395

RESUMEN

BACKGROUND: the mortality associated with severe malaria due to Plasmodiun falciparum remains high despite improvements in malaria management. Case prensentation: this case series aims to describe the efficacy and safety of the exchange transfusion combined with artesunate (ET-AS) regimen in severe P. falciparum malaria. Eight patients diagnosed with severe P. falciparum malaria were included. All patients underwent ET using the COBE Spectra system. The aimed for a post-exchange hematocrit of 30%. Half the estimated blood volume was removed and replaced using fresh frozen plasma. The regimen was well-tolerated without complications. The parasite clearance time ranged from 1 ~ 5 days. Five patients with cerebral malaria exhibited full improved consciousness within 3 days, while patient2 with hemolysis improved on day 2. Liver function improved within 1 ~ 6 days, and patient 1 and patient 6 showed improvements renal function on days 18 and 19, respectively. The length of intensive care unit stay range from 2 ~ 10 days, and all patients treated with ET-AS remained in the hospital for 3 ~ 19 days. CONCLUSIONS: these preliminary results suggest that ET-AS regimens are a safe and effective therapy for severe P. falciparum malaria and can benefit patients in clinical settings.


Asunto(s)
Antimaláricos , Artemisininas , Artesunato , Recambio Total de Sangre , Malaria Falciparum , Humanos , Artesunato/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/terapia , Masculino , Adulto , Femenino , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Persona de Mediana Edad , Artemisininas/uso terapéutico , Resultado del Tratamiento , Adulto Joven , Plasmodium falciparum/efectos de los fármacos , Anciano , Terapia Combinada
14.
MSMR ; 31(5): 31-36, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857496

RESUMEN

MSMR publishes annual updates on the incidence of malaria among U.S. service members. Malaria infection remains a potential health threat to U.S. service members located in or near endemic areas due to duty assignment, participation in contingency operations, or personal travel. In 2023, a total of 39 active and reserve component service members were diagnosed with or reported to have malaria, an 8.3% increase from the 36 cases identified in 2022. Over half of the malaria cases in 2023 were caused by Plasmodium falciparum (53.8%; n=21) followed by unspecified types of malaria (35.9%; n=14) and P vivax and other Plasmodia (5.1%; n=2 each ). Malaria cases were diagnosed or reported from 22 different medical facilities: 18 in the U.S., 2 in Germany, 1 in Africa, 1 in South Korea. Of the 33 cases with known locations of diagnoses, 6 (18.2%) were reported from or diagnosed outside the U.S.


Asunto(s)
Malaria , Personal Militar , Humanos , Estados Unidos/epidemiología , Personal Militar/estadística & datos numéricos , Incidencia , Malaria/epidemiología , Masculino , Femenino , Adulto , Vigilancia de la Población , Adulto Joven , Malaria Falciparum/epidemiología
15.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119772, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838856

RESUMEN

FeS clusters are prosthetic groups present in all organisms. Proteins with FeS centers are involved in most cellular processes. ISC and SUF are machineries necessary for the formation and insertion of FeS in proteins. Recently, a phylogenetic analysis on more than 10,000 genomes of prokaryotes have uncovered two new systems, MIS and SMS, which were proposed to be ancestral to ISC and SUF. SMS is composed of SmsBC, two homologs of SufBC(D), the scaffolding complex of SUF. In this review, we will specifically focus on the current knowledge of the SUF system and on the new perspectives given by the recent discovery of its ancestor, the SMS system.


Asunto(s)
Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Filogenia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
16.
Elife ; 132024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38921824

RESUMEN

While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , ARN Polimerasa III , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/enzimología , Virulencia , ARN Polimerasa III/metabolismo , ARN Polimerasa III/genética , Humanos , Malaria Falciparum/parasitología , Eritrocitos/parasitología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Adhesión Celular , Regulación de la Expresión Génica
17.
Nat Prod Res ; : 1-13, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828834

RESUMEN

Eugenol(1), a terpenoid found in Ocimum, has various biological activities. The present study aims at extraction, isolation of the plant secondary metabolite eugenol (1), it's derivatisation and structure identification as bioactive molecules. Synthesis and antiplasmodial activity (in-vitro and in-vivo), of a series of fourteen novel eugenol-based 1,2,3-triazole derivatives was done in the present study. Derivatives 5a-5n showed good antimalarial activity against the strain Plasmodium falciparum NF54. Derivative 5 m, IC50 at 2.85 µM was found to be several times better than its precursor 1 (106.82 µM) whereas the derivative 5n showed three fold better activity than compound 1, in vitro. The structure-activity relationship of the synthesised compounds indicated that the presence of triazole ring in eugenol analogues is responsible for their good activity. Compound 5m, was further evaluated for in-vivo antimalarial activity which showed about 79% parasitemia suppression. It is the first report on antimalarial activity of triazole eugenol derivatives.

18.
Heliyon ; 10(10): e30740, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38770342

RESUMEN

Malaria, a major public health burden, is caused by Plasmodium spp parasites that first replicate in the human liver to establish infection before spreading to erythrocytes. Liver-stage malaria research has remained challenging due to the lack of a clinically relevant and scalable in vitro model of the human liver. Here, we demonstrate that organoids derived from intrahepatic ductal cells differentiated into a hepatocyte-like fate can support the infection and intrahepatic maturation of Plasmodium falciparum. The P.falciparum exoerythrocytic forms observed expressed both early and late-stage parasitic proteins and decreased in frequency in response to treatment with both known and putative antimalarial drugs that target intrahepatic P.falciparum. The P.falciparum-infected human liver organoids thus provide a platform not only for fundamental studies that characterise intrahepatic parasite-host interaction but can also serve as a powerful translational tool in pre-erythrocytic vaccine development and to identify new antimalarial drugs that target the liver stage infection.

19.
Malar J ; 23(1): 144, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741101

RESUMEN

BACKGROUND: Monitoring therapeutic efficacy is important to ensure the efficacy of artemisinin-based combination therapy (ACT) for malaria. The current first-line treatment for uncomplicated malaria recommended by the National Malaria Control Program in Niger is artemether-lumefantrine (AL). In 2020, an in vivo study was carried out to evaluate clinical and parasitological responses to AL as well as the molecular resistance to the drug in three sentinel sites: Agadez, Tessaoua and Gaya, in Niger. METHODS: A multi-center, single-arm trial was conducted according to the 28-day World Health Organization (WHO) 2009 therapeutic efficacy study protocol. Children between 6 months and 15 years with confirmed uncomplicated Plasmodium falciparum infection and 1000-200,000 asexual parasites/µL of blood were enrolled and followed up for 28 days. Uncorrected and PCR-corrected efficacy results at day 28 were calculated, and molecular correction was performed by genotyping the msp1, msp2, and glurp genes. The pfk13, pfdhfr, pfdhps, pfcrt and pfmdr genes were analyzed by PCR and Sanger sequencing. The Kaplan-Meier curve assessed parasite clearance. RESULTS: A total of 255 patients were enrolled in the study. The adequate clinical and parasitological response after PCR correction was 98.9% (95% CI 96.4-101.0%), 92.2% (85.0-98.5%) and 97.1% (93.1-101.0%) in Gaya, Tessaoua and Agadez, respectively. No adverse events were observed. Ten mutations (SNP) were found, including 7 synonyms (K248K, G690G, E691E, E612E, C469C, G496G, P718P) and 3 non-synonyms (N594K, R255K, V714S). Two mutations emerged: N594K and V714S. The R255K mutation detected in Southeast Asia was also detected. The pfdhpsK540E and pfdhfrI164L mutations associated with high levels of resistance are absent. There is a reversal of chloroquine resistance. CONCLUSION: The study findings indicate that AL is effective and well tolerated for the treatment of uncomplicated malaria in three sites in Niger. The emergence of a pfk13 mutation requires additional testing such as the Ring Stage Assay and CRISPR/Cas9 to confirm the role of these emerging mutations. Trial registration NCT05070520, October 7, 2021.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Malaria Falciparum , Plasmodium falciparum , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Antimaláricos/uso terapéutico , Antimaláricos/efectos adversos , Preescolar , Humanos , Niger , Niño , Lactante , Adolescente , Masculino , Femenino , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Resistencia a Medicamentos/genética
20.
Open Forum Infect Dis ; 11(5): ofae274, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38807754

RESUMEN

Background: This trial tested the effectiveness of a novel regimen to prevent malaria and sexually transmitted infections (STIs) among pregnant women with HIV in Cameroon. Our hypothesis was that the addition of azithromycin (AZ) to standard daily trimethoprim-sulfamethoxazole (TMP-SMX) prophylaxis would reduce malaria and STI infection rates at delivery. Methods: Pregnant women with HIV at gestational age <28 weeks were randomized to adjunctive monthly oral AZ 1 g daily or placebo for 3 days and both groups received daily standard oral TMP-SMX through delivery. Primary outcomes were (1) positive peripheral malaria infection by microscopy or polymerase chain reaction and (2) composite bacterial genital STI (Chlamydia trachomatis, Neisseria gonorrhoeae, or syphilis) at delivery. Relative risk and 95% confidence intervals were estimated using 2 × 2 tables with significance as P < .05. Results: Pregnant women with HIV (n = 308) were enrolled between March 2018 and August 2020: 155 women were randomized to TMP-SMX-AZ and 153 women to TMP-SMX-placebo. Groups were similar at baseline and loss to follow up was 3.2%. There was no difference in the proportion with malaria (16.3% in TMP-SMX-AZ vs 13.2% in TMP-SMX; relative risk, 1.24 [95% confidence interval, .71-2.16]) or STI at delivery (4.2% in TMP-SMX-AZ vs 5.8% in TMP-SMX; relative risk, 0.72 [95% confidence interval, .26-2.03]). Adverse birth outcomes were not significantly different, albeit lower in the TMP-SMX-AZ arm (preterm delivery 6.7% vs 10.7% [P = .3]; low birthweight 3.4% vs 5.4% [P = .6]). Conclusions: The addition of monthly azithromycin to daily TMP-SMX prophylaxis in pregnant women living with HIV in Cameroon did not reduce the risk of malaria or bacterial STI at delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...