RESUMEN
This work presents an approach to the fast determination of a medical accelerator irradiation isocenter as a quality assurance (QA) procedure in radiotherapy. The isocenter determination tool is the tissue equivalent high-resolution 3D polymer gel dosimeter (PABIGnx) in a dedicated container combined with kilovoltage imaging systems and the polyGeVero-CT software package (v. 1.2, GeVero Co., Poland). Two accelerators were employed: Halcyon and TrueBeam (Varian, USA), both equipped with cone beam computed tomography (CBCT) and iterative reconstruction CBCT (iCBCT) algorithms. The scope of this work includes: (i) the examination of factors influencing image quality (reconstruction algorithms and modes), radiation field parameters (dose and multi-leaf collimator (MLC) gaps), fiducial markers, signal averaging for reconstruction algorithms and the scanning time interval between consecutive scans, (ii) the examination of factors influencing the isocenter determination, image processing (signal averaging, background subtraction, image filtering) and (iii) an isocenter determination report using a 2D and 3D approach. An optimized protocol and isocenter determination conditions were found. The time and effort required to determine the isocenter are discussed.
RESUMEN
This work presents the features of the PABIGnx 3D polymer gel dosimeter. It consists of two cross-linkers: poly(ethylene glycol) diacrylate (PEGDA), as one biacrylic component, and N,N'-methylenebisacrylamide (MBA), which is another cross-linker often used in 3D dosimeters. Additionally, it contains oxygen scavenges of copper sulfate pentahydrate and ascorbic acid. All ingredients are embedded in a physical gel matrix of gelatine. Upon irradiation, the biacrylic cross-linking agents (PEGDA and MBA) undergo radical polymerisation and cross-linking, which is manifested by the appearance of the opacity of the intensity related to the absorbed dose. PABIGnx was irradiated with an oncological source of ionising radiation, and analysed by using a nuclear magnetic resonance (0.5 T). The following characteristics were obtained: (i) linear and dynamic dose-response of 0.5 to ~18 Gy and 40 Gy, respectively, (ii) dose sensitivity of 0.071 ± 0.001 Gy-1 s-1, (iii) integral 3D dose distribution for at least 24 days after irradiation, (iv) adequate batch-to-batch reproducibility, (v) dose-response independent of irradiation with 6 MV photons, 15 MV photons, 6 MV photons FFF of 0.0168-0.1094 Gy/s dose rates, and (vi) soft tissue equivalence. The study showed that the features of PABIGnx confirm its suitability for use in 3D radiotherapy dosimetry.